Keshif: 提供可视化初学者快速有表现力的表格数据探索 (Keshif: Rapid and Expressive Tabular Data Exploration for Novices)

现有的一些交互式可视化设计环境,一般针对的是通用的可视化环境,强调强大的表达能力。用户需要手动定义可视化和交互。这样就造成用户学习这类工具的开销较大,探索数据的速度减缓等问题并且可视化初学者容易选择低效甚至错误的可视化映射。

继续阅读 »

气泡树图对不确定性的可视化(Bubble Treemaps for Uncertainty Visualization)

本文[1]提出了一个新的圆形树图类型,故意分配额外的视觉变量的额外空间。有了这个扩展的可视化设计空间,对分层结构数据及其组合图中的不确定性进行编码。本文引入一个分层和基于力的圆填充算法来计算气泡图,其中每个节点使用嵌套轮廓圆弧的可视化。气泡图不需要任何颜色或底纹,以提供更多的设计选择。本文探讨的不确定性可视化作为一个应用程序,使用标准误差图和蒙特卡洛的统计模型。为此,本文将讨论不确定性如何在层次结构中传播。此外,本文用三个不同的例子说明了我们的可视化的有效性:Flare的包装结构、标准普尔500指数和美国消费者支出调查。

继续阅读 »

CrystalBall: 对于社交媒体数据进行未来事件识别和分析的可视分析系统 (CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data)

社交媒体数据可以为世界各地发生的事件提供宝贵的见解,且事件本质上是时间和空间的。现有的文本可视分析系统专注于探测和分析过去和正在进行的事件,很少有人利用社交媒体信息来寻找未来可能发生的事件。在本文中,我们提出了一个交互式可视化分析系统CrystalBall,它可以自动识别和排列来自Twitter的未来事件。 CrystalBall集成了新的方法,通过交互式可视化发现事件,从而可以识别未来事件。该方法利用有关的时间,地点,社交网络和消息,整合了七种不同的方法来识别和表征未来事件。同时,可视化界面与计算方法紧密结合以提供未来可能事件的简明摘要。

继续阅读 »

在异步协同式意义构建场景下使用知识传输图传递知识(Supporting Handoff in Asynchronous Collaborative Sensemaking Using Knowledge-Transfer Graphs)

在数据分析中,将知识和发现通过可视化的方式展现出来可以帮助分析者追踪、组织、综合自己的发现和问题。当分析者互相合作时,通过互相交流,这些可视化形式能够帮助分析者互相理解自己的发现,这被称为协同式意义构建(Collaborative Sensemaking)。然而在复杂场景下,如何在合作者之间明确的传递知识(Tranfer of Knowledge/Handoff) 仍然是一个挑战。在异步合作场景下,分析者由于时空限制或者隐私考虑等不能够直接见面或者交流,前一个分析者需要将自己的发现传递给下一个分析者,但是少有的分析系统能够满足这样的需求。本文提出了一系列可视化加护技术帮助异步合作者之间有效传递发现、知识。

继续阅读 »

基于规则,聚类以及选择的多变量事件序列的探索(Exploring Multivariate Event Sequences using Rules, Aggregations, and Selections)

事件序列类型的数据在现实生活中广泛存在,比如通信过程中传递的数据包,医院中病人的看病流程,商场中用户的购买记录等等。在通常情况下,对于事件序列进行分析用到的属性非常有限,包括时间属性以及事件类型,然而对于某些数据分析任务,必须要结合对于事件对象的多变量分析。本文所针对的问题即为多变量的事件序列数据的探索[1], 将正则表达式扩展到事件序列的基础上,提出基于规则,聚类以及选择的多变量事件序列的探索流程,并且在此基础上开发了多变量事件序列的可视分析系统,本文通过对于通话数据以及病人看病流程数据的探索验证了系统的有效性。

继续阅读 »

分析深度生成模型的训练过程 (Analyzing the Training Processes of Deep Generative Models)

DGMTracker系统界面

深度生成模型是针对非监督学习和半监督学习的一种强有力的解决方案。通过深度生成模型,深度学习在没有外部数据标签或者带标签数据集过小的情况下仍然能继续工作。与其他的深度模型,比如卷积神经网络,更强有力的深度生成模型,也意味着其训练过程对训练者的要求更高。一方面,生成模型既有着确定性的函数,又包含随机变量;另一方面,生成模型是一种自上而下不断生成细节的过程,而诸如卷积神经网络则是从细节中不断提取高层特征的自底向上的过程。综合这两方面,如果理解深度生成模型的训练过程,以及如何对其过程进行诊断就变得尤其重要。本文就考虑用可视分析的手段来帮着这个分析过程。

继续阅读 »

用于在大规模并行应用程序中优化通信的可视分析系统 (A Visual Analytics System for Optimizing Communications in Massively Parallel Applications)

近年来,超级计算机被广泛应用于诸如气候和分子动力学模拟等大规模并行应用程序中。这些超级计算机往往包含大规模的计算结点,结点之间通过复杂的通信网络连接,例如5D torus或者dragonfly等。应用程序的计算任务被分配到各个计算结点,并且由这些结点协作完成。在这个过程中,结点之间的通信是非常关键的,在很大程度上影响着并行程序的可扩展性和并行效率。因此, 如何识别通信瓶颈并且对通信进行优化变得非常重要。造成通信瓶颈的原因有很多,例如通信路由比较长,通信网络上收发的信息量比较大等。研究者需要能够了解通信路由,减少通信网络拥堵。今年VAST会议上有一篇文章提出了一个可视分析系统,使用可视化方法对通信行为进行分析[1]。

继续阅读 »

ThermalPlot: 使用暖气流隐喻可视化多属性时序数据(ThermalPlot: Visualizing Multi-Attribute Time-Series Data Using a Thermal Metaphor)

多属性时间序列数据在许多不同的领域,如经济学,传感器网络和生物学中都起着至关重要的作用。理解这些数据的一个重要任务是为用户提供一个总览,帮助用户识别随着时间的推移显示出有趣的绝对和相对变化的数据项。但是,现有的可视化技术并不能很好地支持这一点。为了解决这个问题,作者提出了ThermalPlot[1],把多个属性随着时间的推移变化映射到空间中位置的变化。ThermalPlot中的x位置是基于用户定义的兴趣度Degree-of-interest(DoI)函数,该函数通过加权综合了多个属性数值。 y位置由用户指定时间窗口内DoI值(DDoI)的相对变化决定。通过一个移动的时间窗口对这个映射进行动画处理会导致数据项的位置随着时间做环形的移动,就像热系统一样,因此使用暖气流的隐喻。作者通过OECD国家经济合作和发展数据和股票市场数据两种使用场景来展示ThermalPlot技术的有效性。

继续阅读 »

从位图可视化中提取和更改颜色映射(Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations )

可视化设计人员经常使用颜色来编码数值型和类别型的数据。然而,之前的可视化经常违反感知色彩设计原则,而且可能是位图图像。在这项工作中,我们提供了一种从位图可视化图像中半自动提取颜色编码的方法。给定图像和图例位置,我们将图例分类为描述离散或连续颜色编码,识别所使用的颜色,并使用OCR方法提取图例文本。然后我们结合这些信息来重新做颜色映射。用户还可以使用注释界面来纠正解释错误。我们使用从科学论文中提取的图像语料库评估我们的技术,并证明各种图表类型的颜色映射的准确率。此外,我们介绍了我们的方法的两个应用:自动重新着色以提高知觉效果,交互式操作以改善静态可视化的可读性 [1]。

继续阅读 »

Zooids: 为群用户界面建立模块(Zooids: Building Blocks for Swarm User Interfaces)

这个工作[1]介绍了群用户界面,这是一个新的人机界面的类别,由很多自动机器人组成用来展示和交互。Zooids是一个开源的公开硬件设计的桌面群界面,这个平台包含一组定制设计的有轮的直径为2.6cm的小机器人,一个基于无线电的站,一个高速DLP结构的小投影机用来做轨迹追踪和一个为应用的发展和控制的软件架构。这一工作通过一系列Zooids的应用脚本展示了桌面群界面的潜能,并且讨论了普遍的思路与群用户界面设计上的区别。

继续阅读 »