Map-based Graph Visualization

地图形式的图可视化方式指将图中的社群用一段连续的区域表示,不同的社群构成了地图上不同的“国家”。这样的可视化方式既可以提高可视化美观度,吸引用户花更多的时间探索数据[1];又可以增强用户的对可视化内容的记忆,更准确回忆自己的发现结果[2]。

继续阅读 »

Podium:用混合驱动的可视分析对数据排序(Podium: Ranking Data Using Mixed-Initiative Visual Analytics)

对数据进行排序是数据分析中基础的操作之一。人们使用排序来理解大数据集中最重要的元素、根据数据属性进行决策、或者给原本没有排名的数据增加排名以表达某种含义。例如,人们会按照统计数据给球队排名,会根据电影的特性或者票房给电影排序等等。人们也会将一些排名和自己的认识进行对比,例如球队的粉丝可能希望理解专家发布的排名是基于什么样的准则。

继续阅读 »

西藏拉萨中学师生参观北大可视化与可视分析实验室

2018年1月4日,来自西藏拉萨中学的2名老师、10名学生以及正在拉萨中学支教的北京大学第十九届研究生支教团西藏分团的4名志愿者同学,来到北京大学可视化与可视分析实验室参观。志愿者中有一位是我们实验室的硕士生田敏同学。

继续阅读 »

EVA: 可视分析用于识别欺诈事件

金融机构需要为他们的客户确保安全和质量,如银行需要及时识别和阻止有害的交易。 为了检测欺诈操作,通常使用数据挖掘技术和客户画像分析,但是这些方法目前还没有得到可视分析的支持。 然而可视分析技术可以帮助增强知识发现的过程,并提高欺诈事件探测系统检测和预测的准确性。因此,这篇文章提出了EVA,一种用于欺诈交易的可视化分析方法,将自动算法与可视分析相结合,提高系统检测的准确性。

继续阅读 »

对TensorFlow中数据流图的可视分析(Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow)

对TensorFlow中数据流图的可视分析

TensorFlow是谷歌开发的、当下最流行的机器学习软件库之一。它采用数据流图(Dataflow Graph)来表达机器学习算法的计算过程,用户可以定制不同的数据流图来构建自己的算法。然而,随着深度学习的兴起与流行,各类神经网络渐趋大规模、复杂化。算法开发者仅凭借自身的理解与记忆、很难把握算法的各部分体系结构,相互之间也难以进行沟通。为此,这篇文章[1]提出了可视化工具TensorFlow Graph Visualizer,通过可视分析帮助用户在TensorFlow中进行算法分析与开发。值得一提的是,该文章荣获了IEEE VAST 2017的最佳论文奖(Best Paper Award)。

继续阅读 »

在可视分析中系统地结合降维投影与聚类方法(Towards a Systematic Combination of Dimension Reduction and Clustering in Visual Analytics)

在可视分析中系统地结合降维投影与聚类方法

在高维数据分析中,聚类(Clustering)与降维(Dimension Reduction)都是常用的机器学习方法。前者尝试对数据进行归纳分类,而后者则试图压缩维度并尽可能地保留分布信息。可视分析往往结合两者的优点,以帮助用户更好地挖掘数据隐含的信息。在具体应用中,我们应该如何挑选聚类和降维方法呢?两者的结合都有哪些因素需要考虑,又有哪几种不同的方案呢?这篇发表于IEEE VAST 2017的文章[1] 便系统地探讨了这些问题。

继续阅读 »

我手中的全息图:可感知的沉浸式增强现实中的三维可视化交互探索效率如何?(The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?)

随着新型展示和交互技术的发展,信息可视化已经不再局限于传统的桌面应用。AR,VR领域日新月异,越来越多的可穿戴设备能够支持多自由度交互和沉浸式展示,为人们身临其境地和数据交互,深入理解数据对象提供了很大便利。对于一些三维视图,传统的桌面可视化在展示性能上仍有不足。我们很自然地想到结合这两种技术,让用户使用头戴式设备在沉浸式环境下进行三维数据探索,但这同时也引起我们产生一个疑问——用户和真实世界中全息图进行交互探索,和传统可视化相比是否是一种更有效率的策略?这篇文章[1]给出了一个有关桌面三维可视化、平板电脑中的AR可视化、和头戴式设备中的沉浸式可视化在完成三维探索任务性能上的研究,通过分别完成三维点云中的几个基本问题,从而比较三种方式完成任务效率等方面的差异。

继续阅读 »

可视化与可视分析专业委员会12月23日在北京成立

2017年12月23日,中国图象图形学学会可视化与可视分析专业委员会在北京正式成立。中国图象图形学会副理事长,北京大学汪国平教授和学会秘书长,清华大学马惠敏副教授作为学会代表参加了成立大会。

上午开幕仪式上,中国图象图形学会副理事长,北京大学汪国平教授代表学会作了讲话,转达了学会对可视化与可视分析专业委员会的期待和大力支持。大会特邀嘉宾,可视化研究领域的两位前辈前辈,国防科技大学李思昆教授和北京大学董士海教授回顾了中国可视化的发展历程,并表达了对专委会成立的殷切期望。北京大学袁晓如研究员代表专委会筹备组回顾了近十年来国内可视化领域的发展历程,介绍了半年多来可视化与可视分析专委会的筹备过程。

继续阅读 »

在2D+时间轨迹上评估对时间和速度的感知(Assessing the Graphical Perception of Time and Speed on 2D+Time Trajectories)

时序数据在历史,气象,金融,地理,运动等许多领域都很普遍。文献中有许多在2D路径上进行时间和/或速度编码的研究,经常使用的视觉变量有大小,色彩亮度和段长度等。 然而到目前为止还没有研究来评估这些可视编码的相对可解释性。该工作[1]实验性地评估了人们在2D路径上感知非恒定时间和速度的程度。 在该图形感知研究中,作者评估了文献中所存在的关于直线和曲线路径上映射时间和/或速度的九种编码。 当x和y轴已经编码其他数据维度时,例如位置信息,在此基础上可视化时间和速度信息是一个挑战。 该研究成果为InfoVis设计人员提供了在2D路径上进行时间和/或速度编码的指导方针。其中,作者建议尽可能使用颜色值来编码速度和路径的分段长度来编码时间。

继续阅读 »

一种基于三维卷积稀疏编码的体渲染智能系统方案 (An Intelligent System Approach for Probabilistic Volume Rendering using Hierarchical 3D Convolutional Sparse Coding)

图8:Kiwi数据和Aneurysm数据的体渲染结果,分别为[2]、[3]和本文方法

直接体渲染是一种表现三维体数据的强大可视化手段。过去数十年间,研究者们进行了大量的研究,来提高体渲染的速度与质量。其中,传递函数的设计是影响这两个指标的一个重要因素。传递函数将体素的值映射到诸如颜色、不透明度、可见性等光学性质。然而,要设计一个好的传递函数通常面临着很大的困难,对非专业使用者更是如此。绝大多数传递函数设计的方法都依赖用户大量的交互,用户需要根据数据的统计特征,通过不断试错,以求达到好的效果。这里的统计特征通常是数据某些属性的直方图。在本文中,作者提出了一种基于机器学习方法:三维卷积稀疏编码,能对体素进行精确分类,从而得到优秀的体渲染结果。同时,基于智能系统的交互方式,能让用户通过直观的输入,来完成传递函数设计过程。

继续阅读 »