AILA:基于 Attention 的深度神经网络进行文本类别标注 (AILA: Attentive Interactive Labeling Assistant for Document Classification through Attention-based Deep Neural Networks)

文本分类(Text Classification)已经运用到越来越多的自然语言处理任务(Natural Langurage Processing,NLP)上,如垃圾邮件检测(Span Detection), 假新闻过滤(Fake news filtering),情感分析(Sentiment Analysis)等等。基于深度学习的这类任务都需要大量的标注数据,然而标注是一个十分耗时耗力的过程,需要标注者长时间的注意力。特别地,对于一些特定领域的数据,如法律、医学等等,更要求标注者有着一定的专业知识。如果系统能够自动的高亮出文本中对于文本类别影响较大的关键词可以一定程度上减轻标注者的任务。

继续阅读 »

比较苹果和橙子:表格数据中成对比较的分类和设计(Comparing Apples and Oranges: Taxonomy and Design of Pairwise Comparisons within Tabular Data)

成对比较问题很常见,它可以帮助我们进行类比推理、社会比较、决策以及知识发现。然而,我们经常是在比较苹果和橙子(compare apples and oranges——两个感兴趣的东西不易比较。比如比较北京和纽约,这两个城市在很多方面都有不同之处。本文 [1] 旨在系统地研究成对比较问题。作者们提出了成对比较的分类,开发了一个电子表格应用程序Duo以帮助人们完成成对比较。此外,他们还研究了用马虎规则(sloppy rules)和自然语言来指定成对比较问题的不同。

继续阅读 »

适用可扩展链接可视化的平衡交互级延迟及像素敏感性的系统(Falcon: Balancing Interactive Latency and Resolution Sensitivity for Scalable Linked Visualizations )

在ACM SIGCHI 2019 会议上,美国华盛顿大学交互数据实验室的 Moritz 等人(Jeffrey Heer 组)发表了关于针对大规模链接可视化的低延迟系统的文章。文章提出的系统 Falcon 可以平衡交互延迟和像素精度。结合数据索引,数据预取和渐进式交互等方法,Falcon 可以从查询和界面系统两方面一体式地对多视图链接可视化进行优化。

继续阅读 »

排名可视化的图形知觉研究(Ranked-List Visualization: A Graphical Perception Study)

将排名列表进行可视化是一个非常常见的任务,现在已经存在了很多种可视化方法。这篇文章首先对现有方法做了很好的总结和分析,然后设置了详细的用户知觉实验,来比较不同的排名列表可视化方法。

继续阅读 »

B-Script:基于文本的推荐式视频B-roll编辑

在视频编辑中,向视频中加入B-roll是一种比较常见的做法。B-roll可以使得原视频变得更加丰富、更加吸引人。但是,对于新手来说,很难选择插入哪个B-roll,以及插入A-roll的哪个位置。因此,本文[1]提出了B-Script来辅助用户解决上述问题。特别的,B-Script主要针对vlog的B-roll插入问题。

继续阅读 »

主动墨迹:手写笔与数据的交互式探索(ActiveInk: (Th)Inking with Data)

在日常工作和生活中,为了进一步地理解关注的事物,人们往往会进行主动性的阅读,从不同渠道选取数据来分析。而数据通常形态各异,文字、图片、图表等等不一而足,这为分析和记录带来了困难。本文提出一种基于数码写字笔的多模态数据分析交互技术:ActiveInk。它能够使用户在传统书写标注的基础上,对多模态的内容流畅地执行高亮、关联等交互,更为自如地验证猜想、获取洞见。

继续阅读 »

RuleMatrix:使用规则可视化和理解分类器 (RuleMatrix: Visualizing and Understanding Classifiers with Rules)

随着机器学习技术的日益普及,人们对使机器学习系统更加透明和可解释的研究兴趣激增。研究者们已经开发了各种可视化以帮助模型开发者理解,诊断和改进机器学习模型。然而,大量潜在但被忽视的用户是领域专家,他们对机器学习知之甚少,但预计会与机器学习系统一起工作。本文作者提出了一种交互式可视化技术,以帮助在机器学习方面缺乏专业知识的用户理解,探索和验证预测模型。通过将模型视为黑盒子,作者从其输入 – 输出行为中提取标准化的基于规则的知识表示。然后,作者设计了RuleMatrix,基于矩阵的规则可视化,以帮助用户导航和验证规则和黑盒模型。作者通过两个用例和一个可用性研究来评估RuleMatrix的有效性。

继续阅读 »

理解伴随音频叙述的可视化中的视觉线索 (Understanding Visual Cues in Visualizations Accompanied by Audio Narrations)

为了使用数据可视化进行有效的演示,演示者通常通过视觉线索(visual cues)增强观众的体验。视觉线索/视觉提示通过修改可视化的外观或引入其他视觉元素来引导观众对可视化的相关部分的关注。通常认为视觉提示有助于可视化叙事和演示。但是,这一假设尚未得到系统研究。本文[1]中,作者研究了视觉线索对伴随音频叙述(audio narration)的可视化的回忆和理解的影响。

继续阅读 »

iStoryline: 向手绘故事线收敛的有效工具(iStoryline: Effective Convergence to Hand-drawn Storylines)

图1:电影Jurassic Park和The Moon and Sixpence的故事线可视化: (a)和 (b)为手绘版本, (c)和 (d)为iStoryline绘制的版本; (e)和(f)为StoryFlow自动生成的版本.

 

故事线可视化技术(storyline visualization techniques)在自动生成复杂故事对应的插图这方面取得了显著进展。虽然其性能有所提升,应用领域得到扩展,但是故事线的视觉布局没有因此得到增强。现有方法的优化目标包括减少空白空间、最小化线条交叉和摆动等。然而,与手绘的故事线相比,追求这些优化目标并不能产生最佳的结果,会产生布局重复、情节缺失等问题。为解决这些问题,作者实现了iStoryline工具,通过将用户的交互集成到自动生成技术的优化算法中,在手绘故事线和自动布局之间实现平衡。

继续阅读 »

用于交通数据预测的深度时空3维卷积神经网络 (Deep Spatial–Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting)

在智能交通系统中,可靠的交通预测具有重要的意义,可以帮助决策者制定更好的管理策略,也可以帮助人们调整出行计划。但是,交通预测中存在一些挑战:

  • 空间相关性:相邻区域的交通数据具有一定的相关性
  • 时间相关性:相邻时间的交通数据具有一定的相关性
  • 异质性:不同地区和时间相关性的贡献并不相同

本文提出了一种基于深度学习的时空交通预测网络,ST-3DNet,用来解决时空网格数据预测问题。ST-3DNet结合了3维卷积和残差单元,提出了一种再校准模块来描述空间维度上相关性的不同贡献,并结合局部和长期的时间模式来达到较好的效果。

继续阅读 »