月度存档: 一月 2017

让边绑定更加清晰:网络可视化中融合绘制方式的探索(Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization)

%e5%b1%8f%e5%b9%95%e5%bf%ab%e7%85%a7-2017-01-07-%e4%b8%8a%e5%8d%8810-26-57

本文采用了Confluent Drawing(CD)这种技术,相比较传统的spatial edge-bundling(EB)的方法的优点在于能够按照图的拓扑结构进行边绑定(只有起点与终点相同的边才会在绑定在一起),因此所得到的结果会更加注重图的连接关系。本文所采用的Confluent Drawing(CD)技术是在Power Graph(PG)的基础上完成的,在得到Confluent Drawing的绘制结果之后,文章从系统分析的角度使用图中经常出现的motif检验Confluent Drawing的绘制效果,并且通过User Study的方式比较四种常用的消除连接模糊(edge ambiguity)方法。
继续阅读 »

WeightLifter:多准则权重空间的可视探索(WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making)

WeightLifter:多准则权重空间的可视探索

人们在做选择的时候,往往会综合考虑事物的多个方面。譬如在选择住房时,有的人注重装修,有的人看重便利的交通,有的人则更偏好良好的社区环境等等。当多个准则并存,我们常常赋予它们不同的权重,并选择综合得分最高的作为最佳选项。然而,人对权重的把握总是模糊的,如果略微改变权重设定,得到的“最佳选项”是否会不一样呢?在这篇文章[1]中,作者们针对多准则评价体系,提出了一种探索多维权重空间的可视分析方法。利用该方法,用户能够充分了解权重变化对最终决策的影响,并有针对性地调整权重、作出选择。

继续阅读 »