月度存档: 五月 2021 - 第2页

IEEE PacificVis 2021 机器学习和自动可视化专题(Machine Learning and Automated Visualization)

IEEE PacificVis 2021 机器学习和自动可视化专题(Machine Learning and Automated Visualization)以及可视化遇到AI专题(Visualization Meets AI)共报告五个工作,分别是关于将机器学习运用到图布局偏好预测、自动可视化问答、单元可视化的滚动叙述生成、基于图标检测训练对信息图进行解析和总结,以及使用文档嵌入和降维展示主题演变。其中,来自北京大学可视化与可视分析实验室的自动可视化工作ADVISor的具体介绍在http://vis.pku.edu.cn/blog/advisor/

继续阅读 »

IEEE PacificVis 2021 视觉感知和评估专题(Visual Perception & Evaluation)

IEEE PacificVis 2021 视觉感知和评估专题(Visual Perception & Evaluation)共报告三个工作,分别是关于城市数据可视化、动态网络用户研究以及集合可视化的可读性评估。

继续阅读 »

从自然语言查询到数据可视化分析规范的工具包(NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from Natural Language Queries)

自然语言界面(natural language interface)使人们能够灵活地与可视化进行交互,大大降低了可视化构建及交互门槛。过去十余年,有许多工作致力于利用自然语言进行可视化的构建和交互[2,3,4,5,6,7,8]。然而之前的工作通常将自然语言对应到特定的系统中的操作,缺乏被复用的通用性。IEEE VIS 2020 发表的论文NL4DV[1]提出一个与特定可视化界面无关的通用的自然语言界面工具组件。

继续阅读 »

ADVISOR: 表格数据自然语言问询的自动可视化回答(ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data)

近年来,人们对数据分析的需求不断增长。而生成可视化是展示、分析数据特征的重要手段。无论是学术论文还是数据新闻,可视化在对数据的分析中都扮演着重要角色。由于其广泛的需求,一些商业工具如PowerBI 等可以根据用户在数据表格中指定特定的行或者列以生成可视化结果。然而,构造相应的可视化需要用户在数据和可视化方面具有一定的专业知识以决定选择相应的数据和可视化的类型。

这些工具依赖于用户具有的数据或者可视化的一定门槛。不同于编程或者使用特定可视化构建工具固有的学习成本,人类用户天然掌握一种低门槛的交流方式——自然语言。利用自然语言来表述用户的数据分析需求天然地降低了用户的使用门槛。基于此,北京大学可视化与可视分析研究组刘灿、韩云等 [1] 提出了一种从自然语言问题和表格出发,构建可视化及附加高亮为结果的方法。该方法全文发表于2021 IEEE 太平洋可视化会议(IEEE Pacific Visualization Symposium)。

继续阅读 »