作者存档: 刘 灿

通过协同语义推理与深度学习模型可视交互(Visual Interaction with Deep Learning Models through Collaborative Semantic Inference)

深度学习模型近年来扮演着重要的角色。它能够拟合非常复杂的函数从而实现许多任务。但是训练过程、训练的结果往往只是扮演了黑盒的角色——用户无法对其进行解释、也难以操纵训练的结果。如果用户对模型的输出不满意,很难设置模型以达到用户想要的结果。

近年来有许多文章对深度学习模型进行交互探索以打开深度模型。以往的方法中通常是观察模型产生的结果或者是探索输入与模型参数之间的关系。这类方法可以帮助用户找到输入数据中有问题的数据,以重新指导训练过程。但是对于如何对模型改进产生满意的结果鲜有涉及。Gehrmann 等人[1]在IEEE TVCG 2020(VAST 2019)发表了一篇通过协同语义推理(Collaborative Semantic Inference, CSI)与深度学习模型进行可视交互的文章。这篇文章介绍了协同语义推理的优越性——可以对模型产生直接的影响。

继续阅读 »

北京大学可视化与可视分析研究组三篇长文论文被IEEE VIS 2019 接收

IEEE VIS 是由电气电子工程师学会(IEEE)计算机协会可视化和图形学技术委员会(VGTC)主办的可视化领域的顶级会议。IEEE VIS 包括科学可视化(Scientific Visualization)、信息可视化和(Information Visualization)可视分析(Visual Analytics Science and Technology)三个子会议。IEEE VIS 会议的正式录用结果于7月9日正式发布。北京大学可视化与可视分析研究组在袁晓如研究员指导下三篇全文论文被 IEEE VIS 2019 接收,均同时被领域顶级期刊 IEEE TVCG 收录。

继续阅读 »

第六届中国可视化与可视分析大会(ChinaVis 2019)Day 0

第六届中国可视化与可视分析大会于2019年7月21日至24日于成都龙之梦酒店会议中心进行。北京大学可视化与可视分析研究组袁晓如研究员与三十余名学生参加此次会议。7.21日是正式会议的前一天,与大会相关的若干活动在这天进行,包括第三届中日可视化研讨会、两个可视化相关课程以及 CSIG 可视化专委会会在会议中心进行。众多国内外可视化领域专家学者参加这些活动。

继续阅读 »

适用可扩展链接可视化的平衡交互级延迟及像素敏感性的系统(Falcon: Balancing Interactive Latency and Resolution Sensitivity for Scalable Linked Visualizations )

在ACM SIGCHI 2019 会议上,美国华盛顿大学交互数据实验室的 Moritz 等人(Jeffrey Heer 组)发表了关于针对大规模链接可视化的低延迟系统的文章。文章提出的系统 Falcon 可以平衡交互延迟和像素精度。结合数据索引,数据预取和渐进式交互等方法,Falcon 可以从查询和界面系统两方面一体式地对多视图链接可视化进行优化。

继续阅读 »

PacificVis 2019 – Day 3

4月25日,PacificVis 2019 进入第二天的日程。当日上午,香港科技大学的屈华民教授主旨报告;接着是文本分析和可视化的论文环节。当日下午,首先进行了科学可视化和模拟数据的论文session;接着进行了海报和故事叙述竞赛的展示环节。当日晚上,与会人员参与了宴会。

继续阅读 »

深度神经网络支持下的交互式体数据可视化(DNN-VolVis: Interactive Volume Visualization Supported by Deep Neural Network)

体数据在医学、科学模拟数据中具有广泛运用。直接可视化(DVR)是重要的体数据可视化方法。其中关键是设计合适的传递函数。传递函数是将体数据中体素的值映射成为颜色-透明度值。本质上是将体素进行分类,识别其中的特征并给予不同的颜色透明度属性。在传统体渲染中,给定传递函数,选定视角参数之后就可以合成、计算渲染结果的每个像素的值。

然而,有时用户想要探索已有的可视化结果,但原始的传递函数并未公开。或者探索过程中,用户不满足于调整传递函数来获取结果,在传递函数基础上,他们想要直接对渲染结果进行一些修改。但是从渲染结果到传递函数难度巨大:一方面传递函数的设计空间巨大不可能暴力遍历,另一方面渲染结果中像素和传递函数之间也没有解析表达,细小的传递函数的差异可能导致巨大的结果差异。为解决这类问题,本工作[1]提出了基于深度学习网络的更直接的处理方式。本工作中的神经网络可以接受用户想要探索的可视化结果作为输入,随着用户的交互,可以直接合成在其他视角参数下的“渲染结果”。我们合成的结果可以和真实的渲染结果相媲美。

继续阅读 »

动态体数据线:通过空间填充曲线的三维体数据视觉比较 (Dynamic Volume Lines: Visual Comparison of 3D Volumes through Space-filling Curves)

集合数据的成员之间的比较是一项繁琐而易出错的工作,这由体数据的微妙差别导致。本工作提出了动态体数据线(Dynamic Volume Lines)以实现对一组体数据的交互可视分析。利用希尔伯特(Hilbert)空间填充曲线将三维数组线形化,希尔伯特曲线展开的过程很好地保持了空间局部性。利用此基于强度的变化绘制非线形的线图:在变化幅度的区域,通常是值得关注的区域,而变化幅度较小的区域一般为不重要的区域如背景。通过实验结果,本方法被验证了其可以识别局部的强度变化。

继续阅读 »

基于深度生成建模的数字墨水可编辑化研究(DeepWriting: Making Digital Ink Editable via Deep Generative Modeling)

数字墨水有望结合手写的灵活性和美感,并且可以处理、搜索和编辑数字文本。在已有的工作中,字符识别将手写文本转换为数字表示,这将会损失个性化特征。同样的文字在不同人的笔触下会产生不同的结果,这些结果蕴含了用户的书写风格。此工作提出了一种新的神经网络架构,将内容和风格进行分离。从而使得书写结果可以在机器上得到编辑:包括改变书写风格或者内容。

对一个手工书写可以分解为两部分,内容和风格。如上图所示,手工书写表示成为x,可以分解成为风格z和内容π,如果可以对其进行划分,就可以将一个书写的风格和另一个书写的内容相结合构成新的书写。这样就达到的可编辑的目的。

继续阅读 »

喷气机引擎模拟数据之原位预测驱动特征分析(In Situ Prediction Driven Feature Analysis In Jet Engine Simulations)

在喷气机发动机转子中,局部气流不稳可能会对发动机产生不可逆的损坏,这种局部气流不稳称为滞障(Stall)。发动机运行过程中,相关领域的专家希望观察气流滞障的产生过程以及实时观测探究不同参数设置对滞障产生过程的影响。本工作主要探究的参数设置为矫正块流率(CMFcorrected mass flow rate)。

滞障没有明确定义及解析表达,判断某区域是否处于滞障状态只能依靠专家的经验知识。而依靠人力进行判断在大规模数据多时间步实时探究的要求下不可行。因此本工作提出了预测驱动的特征分析。在此预测驱动是指通过机器学习方法,学习专家对滞障状态的解析表达的判断。

继续阅读 »