
12月27日下午,来自美国宾夕法尼亚州州立大学的张小龙教授为大家带来了题为《从认知和设计的角度看可视分析的研究方法和理论》的讲座。
大量的移动数据集以源 – 目的地(OD)形式表示,例如出租车旅行,移动电话位置等。作为可视化OD数据的常用方法,流图(flow map)经常因为大量的遮挡和交叉问题而难以发现移动的模式。过滤,聚类和边捆绑都可以减少流图的视觉混乱,但是OD流之间的相关性经常被忽略,这使得简化的OD流图呈现很少的语义信息。该工作[1]将OD流表征为单词和语句后通过Word2Vec模型来向量化处理。然后采用t-SNE对转换的高维向量进行降维,并设计了迭代的多目标采样方案以在矢量化表示空间中选择OD流。为了增强采样后OD流图的可读性,作者设计了抽象的流图以及flow wheel等呈现OD流的相互作用,并且整合了一组定量比较技术来评估样本流。基于真实数据集的案例研究和领域专家的访谈证明了该系统在减少视觉混乱和增强OD流量相关性方面的有效性。
数据总结(summary)允许分析人员探索太复杂或数据量太大而无法可视化其细节的数据集。在可视化分析系统中使用总结时,设计人员需要面对大量的设计选择。虽然这些选择会影响所得到的系统的效用,但使用这些总结技术并没有明确的指导原则。在本文中[1],作者将总结用法编入现有系统中,以确定总结可视化设计的关键因素。他们使用定量内容分析系统地调查可视分析系统的示例,并列举这些设计因素在数据总结中的使用。通过这一分析,作者揭示了设计考虑因素,可视化系统中数据总结策略之间的关系,以及不同总结方法如何影响系统支持的分析。作者利用这些结果综合了现实世界中使用总结可视化的常见模式,并强调了这些模式为设计有效系统所提供的开放挑战和机遇。这项工作为总结可视化的设计实践提供了更原则性的理解,并提供对于未充分利用方法的洞察。
时序数据在历史,气象,金融,地理,运动等许多领域都很普遍。文献中有许多在2D路径上进行时间和/或速度编码的研究,经常使用的视觉变量有大小,色彩亮度和段长度等。 然而到目前为止还没有研究来评估这些可视编码的相对可解释性。该工作[1]实验性地评估了人们在2D路径上感知非恒定时间和速度的程度。 在该图形感知研究中,作者评估了文献中所存在的关于直线和曲线路径上映射时间和/或速度的九种编码。 当x和y轴已经编码其他数据维度时,例如位置信息,在此基础上可视化时间和速度信息是一个挑战。 该研究成果为InfoVis设计人员提供了在2D路径上进行时间和/或速度编码的指导方针。其中,作者建议尽可能使用颜色值来编码速度和路径的分段长度来编码时间。
通过GPS或其他技术收集的移动数据越来越普遍,但是这种数据由于在二维地图上轨迹的遮挡问题而变得难以可视化出来。另一个挑战是提取原始移动数据中有用的更抽象的特征信息(例如相遇事件)。作者展示了MovementSlicer[1]的设计研究,一个可视化个人访问地点和行为的工具,同时展示多个参与者之间的相遇事件。作者首先提出运动数据可视化的分类,然后在分析运动数据,特别是多个参与者的相遇事件支持的任务。他们认为甘特图对于理解小团体的运动和相遇事件有很多好处,并且提出了一个甘特图的设计,甘特图可以把人物嵌入地点信息或地点嵌入人物信息展现在Y轴,并沿水平方向x轴显示时间轴。甘特图的行可以按照活动级别进行排序,并且可以使用显示人们之间相遇次数的加权邻接矩阵进行过滤。甘特图中的没有记录信息的时间间隔可以自动折叠,从而产生多焦点视图。作者使用多个案例研究证明了MovementSlicer的实用性。
多属性时间序列数据在许多不同的领域,如经济学,传感器网络和生物学中都起着至关重要的作用。理解这些数据的一个重要任务是为用户提供一个总览,帮助用户识别随着时间的推移显示出有趣的绝对和相对变化的数据项。但是,现有的可视化技术并不能很好地支持这一点。为了解决这个问题,作者提出了ThermalPlot[1],把多个属性随着时间的推移变化映射到空间中位置的变化。ThermalPlot中的x位置是基于用户定义的兴趣度Degree-of-interest(DoI)函数,该函数通过加权综合了多个属性数值。 y位置由用户指定时间窗口内DoI值(DDoI)的相对变化决定。通过一个移动的时间窗口对这个映射进行动画处理会导致数据项的位置随着时间做环形的移动,就像热系统一样,因此使用暖气流的隐喻。作者通过OECD国家经济合作和发展数据和股票市场数据两种使用场景来展示ThermalPlot技术的有效性。
Origin-destination (OD)移动数据没有具体的描述移动的轨迹,而是仅具有起点,目的地,开始和结束时间以及其他属性。为了研究大规模移动数据的时空模式和趋势,常常把单个轨迹通过时间间隔聚合成流。时变的OD流数据为可视化和分析提出了两个难题。首先,流可以连接任意位置,从而形成的具有许多边缘交叉遮挡的难以理解的表达。第二个挑战是需要分析长时间序列的多个空间状态。这篇文章[1]提出一种方法,通过空间和时间抽象来促进对长时间序列流数据的探索。它通过一种特殊的数据聚合方式,允许通过图表而不是流图来表示空间状态,从而减少流图所具有的交叉和遮挡问题。聚合数据用于通过空间状态的相似性对时间间隔进行聚类。聚类结果的时间和空间可视化表达有助于发现大规模移动行为的周期性模式和长期趋势。
近期评论