作者存档: Chufan Lai

Pattern Trails: 对子空间中数据变化的可视分析(Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces)

在高维数据中,任意维度的组合都形成一个子空间,数据关系则因维度考量的不同而发生改变。举例来说,虎与狼在肉食性、体型、栖息地等方面相近,但在基因组成、群聚性上,虎与猫则更为相近。然而,维度的组合极其繁多,其数量随维度的增多而呈指数级增长。对于如此大量的子空间,我们该如何发掘其中数据关系的变化呢?针对该问题,这篇发表于IEEE VAST 2017的文章[1]提出了Pattern Trails,一种基于可视化的交互式分析方法。

继续阅读 »

DSPCP:在平行坐标中展现复杂数据关系(DSPCP: A Data Scalable Approach for Identifying Relationships in Parallel Coordinates)

DSPCP:在平行坐标中展现复杂数据关系

平行坐标是一种高效而常用的、展现高维数据分布的可视化方法。其形式简洁、可扩展性强,有着同类方法难以比拟的优势。然而,平行坐标也存在不少缺点,形式不直观便是其中重要的一项。用户通过观察折线分布,仅能感知两个维度之间的线性相关性,而且往往会高估其中的正相关关系[2]。这篇发表在2017年TVCG上的文章[1],则巧妙地利用了平行坐标的点线对称性,增强了平行坐标表现复杂数据关系的能力与准确性。

继续阅读 »

通过可视化分析地理因素对多变量聚类的影响(Visualizing the Impact of Geographical Variations on Multivariate Clustering)

通过可视化分析地理因素对多变量聚类的影响

多变量地理空间数据是一种十分常见的数据类型,例如对各大城市的人口状况统计、世界各国的国力评判指标等等。如何分析地理因素(如地域的位置、范围、方向等)对多变量数据的影响,一直是地理信息、可视分析等领域的重要课题。另一方面,聚类是简化多变量分析的常用方法,它能够挖掘相似数据、总结数据特征、并消除变量增长所带来的负担。然而,当下的聚类分析方法并没有考虑地理因素的影响。这篇发表于2016年EuroVis会议的文章[1],就探讨了如何通过可视化分析地理因素对多变量聚类的影响。

继续阅读 »

IEEE Pacific Visualization Symposium 2017 – Day 0

国际可视化盛会之一的IEEE PacificVis 2017,于4月18日到21日在韩国首尔大学举行。会议首日是PacificVAST研讨会,邀请了众多可视化领域的著名专家学者前来作报告。会议内容共包含两个主题报告(Keynote Talk)、四个邀请报告(Invited Talk),以及一个讨论环节(Panel Discussion)。

继续阅读 »

WeightLifter:多准则权重空间的可视探索(WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making)

WeightLifter:多准则权重空间的可视探索

人们在做选择的时候,往往会综合考虑事物的多个方面。譬如在选择住房时,有的人注重装修,有的人看重便利的交通,有的人则更偏好良好的社区环境等等。当多个准则并存,我们常常赋予它们不同的权重,并选择综合得分最高的作为最佳选项。然而,人对权重的把握总是模糊的,如果略微改变权重设定,得到的“最佳选项”是否会不一样呢?在这篇文章[1]中,作者们针对多准则评价体系,提出了一种探索多维权重空间的可视分析方法。利用该方法,用户能够充分了解权重变化对最终决策的影响,并有针对性地调整权重、作出选择。

继续阅读 »

从边际投影中重构类别型联合分布的可视分析方法(A Visual Analytics Approach for Categorical Joint Distribution Reconstruction from Marginal Projections)

联合分布重构的可视分析方法

所谓边际投影,指的是多维数据在少数几个维度上的数量累积,例如两份病患统计数据,分别展示病人在年龄和性别上的一维分布。然而仅凭这些数据,我们无法确定不同性别的病患在各个年龄段上的二维分布,因为边际投影重构出的联合分布并不唯一。传统的自动算法能够给出重构分布的少数“可行解”,却无法结合用户的先验知识、也不一定符合现实情况。在这篇文章中[1],作者提出了一种可视分析方法,通过高维可视化手段、重构并展示大量潜在的联合分布,以帮助用户识别其中符合事实或预期的、有价值的分布。

继续阅读 »

AxiSketcher: 基于用户绘制的非线性数轴映射

Axis Sketcher用户界面

线性建模是一类典型的高维数据分析方法,它假设数据服从线性分布,并寻求拟合度最优的线性模型。然而在现实世界中,大多数数据分布都是非线性的,如对数分布、幂律分布,甚至是难以描述的高维流形分布。我们对事物的认知,往往也只能通过非线性模型来解释,但这些模型却通常难以获得,且需要借助大量的机器学习方法。那么,有没有可能通过简单交互,快速产生贴合用户认知的非线性模型呢?这篇InfoVis 2016的文章[1]给出了一种可行的思路。

继续阅读 »

IEEE Pacific Visualization 2016 Day 4

图6. 明年的IEEE Pacific Vis会议将在韩国首尔举行

今天是IEEE Pacific Vis 2016会议的最后一天,会议内容包括两个Paper Session,之后便迎来了闭幕式。

继续阅读 »

多尺度、跨地域的多变量数据可视化(Visualizing Multiple Variables Across Scale and Geography )

多尺度、跨地域的多变量符号矩阵

多变量数据往往伴随着其他数据形式而出现,譬如时变多变量数据、空间多变量数据等等。多变量可视化如平行坐标、散点图矩阵等已经被广泛熟知和应用,却鲜有方法能够同时表现伴随的时空或层次信息。这篇文章 [1] 以地理空间多变量数据为核心,提出了一种新颖的可视化形式,以呈现多尺度、跨地域的数据分布与联系。

继续阅读 »

时间曲线: 通过折叠时间轴来表现时序数据的演化特征 (Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data)

时间曲线示意图

在一个时序数据中,不同时间点的数据之间往往有一定的联系,譬如气温达到了近年来的最低,音乐旋律回到了最初的主题等等。而传统的线性时间轴,虽然能展示连续的数值变化,却无法表达这种具有时间跨度的数据关联。本文提出了一种直观通用的可视化方法,即所谓的时间曲线[1],通过折叠时间轴的方式来反映数据中的自相关性(self-similarity),以此来发掘数据演变的规律。

继续阅读 »