作者存档: Ma, Nan

Squares: 支持多类别分类器的交互式分析展示(Squares: Supporting Interactive Performance Analysis for Multiclass Classifiers)

对于机器学习来说,对分类器的表现进行分析是很关键的,因为它会影响到应用模型的人的产出。例如,应用模型的人在决定使用哪个参数之前,总是比较不同模型通过不同算法参数产生结果的表现。现在比较流行的工具有两种,第一种是统计学上的总结,例如准确度、精确度、召回率或对数的损失;第二种是混淆矩阵。

但当前的这两种工具也存在一些问题,第一是与原始数据缺乏关联;第二是会掩盖数据中的重要信息,例如分数的分布;第三是对于多分类分类器的支持是很重要的,而现有工具不具备这个功能。

继续阅读 »