作者存档: Peihao An

IGAL可视化讲习班-5:针对元数据和质量管理的可视分析 – 刘世霞

可视化前沿讲习班第二天上午的第一个课程来自清华大学软件学院的刘世霞老师。她曾先后就职于IBM中国研究研究院与微软亚洲研究院,是ACM CHI,IEEE VIS等会议的项目委员。她的近期工作主要集中在文本可视化与可解释机器学习(XAI)。本次课程她结合自己的工作探讨如何有效利用可视分析来解释隐藏知识,为同学们带来了精彩的演讲。

继续阅读 »

IDMVis: 针对1型糖尿病治疗决策支持的时间事件序列可视化(IDMVis: Temporal Event Sequence Visualization for Type 1 Diabetes Treatment Decision Support)

1型糖尿病是一种慢性,无法治愈的自身免疫性疾病,影响的人群广泛,它导致身体停止产生胰岛素和血糖水平升高。强化糖尿病管理的目标是通过频繁调整胰岛素协议,饮食和行为来降低平均血糖。手动日志和医疗设备数据由患者收集,但是这些多个来源以不同的可视化设计呈现给临床医生,这使得时间推断变得困难。本文[1]作者进行了为期18个月的设计研究,与临床医生共同进行了强化糖尿病管理。本文的主要贡献在于(1)为该域提供了数据抽象和新颖的分层任务抽象;(2)提供IDMVis:一种用于时间事件序列的可视化工具,具有多维,相互关联的数据。IDMVis提供一种新技术,可以通过一对标记事件来折叠和对齐记录,并以此缩放中间时间线。本文的设计决策根据文中的领域抽象,最佳实践以及与六位临床医生的定性评估来进行。这项研究的结果表明,IDMVis准确地反映了临床医生的工作流程。使用IDMVis,临床医生能够识别数据质量问题,例如数据丢失或冲突,在数据丢失时重建患者记录,区分具有不同模式的日期,并在识别出差异后促进干预。

继续阅读 »

SwiftTuna: 对大规模高维数据的快速响应的增量式可视化探索 (SwiftTuna: Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data )

对于大规模数据的交互式探索,经常使用预处理方案(例如,数据立方体)来概括数据并提供低延迟响应然而,这种方案由于查询涉及更多维度而遭受过大量的内存占用,并且在查询之前必须从数据构建特定数据结构的强大先决条件。在本文[1]中,我们介绍了SwiftTuna,这是一个整体系统,简化了大规模多维数据的视觉信息搜索过程。SwiftTuna利用内存计算引擎Apache Spark来实现可扩展性和性能,而无需构建预先计算的数据结构。该论文还提出了一种新颖的交互式可视化技术,即尾部图表,以促进大规模的多维数据探索。为了支持对大规模数据的响应式查询,SwiftTuna利用增量处理方法,提供即时低保真响应(即快速响应)以及延迟的高保真响应(即增量响应)。性能评估表明,SwiftTuna允许对具有40亿条记录的真实数据集进行数据探索,同时在几秒钟内保留增量响应之间的延迟。

继续阅读 »

2018年北京大学可视化暑期学校 – Day 6(2018年7月22日)

可视化暑期学校的第六天授课的老师是来自来自加拿大蒙特利尔École de Technologie Supérieure (ETS)的Michael Mcguffin和来自清华大学的刘世霞教授。

继续阅读 »