作者存档: Shuai Chen

SetCoLa: 高层次限制的图布局语言(High-Level Constraints for Graph Layout)

有效的图布局可以帮助人们分析网络的拓扑结构,已有的许多工具,比如Gephi,D3都能够完成图布局的任务。计算图布局的时候,通常只考虑节点的拓扑信息,而对于特定领域的图,比如生物信息网络,布局时候还要考虑节点的属性信息。针对这样的特定领域(Domain-specific)图数据,虽然已有特定的布局方法,但是这些方法只能限定在该领域里使用,而不具有推广性。使用一般的布局方式,比如力导向布局来处理这些图数据,为了反映网络的特定结构,还需要对布局后的结果进一步调整,耗时耗力。本文[1]提出了一种更高层次的布局语言SetCoLa,可以有效结合结合图数据本身特点,对于布局的结构进行限制。

继续阅读 »

CrowdLayout: Crowdsourced Design and Evaluation of Biological Network Visualizations

生物学家经常会用网络来分析实验中的现象,比如细胞内分子的交互,电信号在神经元之间的传递,但是创建一个能够有效表现生物学信息的网络扔存在挑战。尽管有大量的自动图布局算法,但是这些算法没有利用网络中生物学信息,生成的布局效果没有实际意义;专家通常会利用自己的专业知识通过手动的方式对这样的网络布局,但是这样的布局方式效率太低,难以短时间内对大量网络数据生成有效布局。所以这篇文章通过众包的方式让普通用户在一定的准则下,帮助专家创建、评估网络数据的布局[1]。 继续阅读 »

IEEE Pacific Visualization Symposium 2018 – Day 2

今天是IEEE PacificVis正式会议的第二天,包括一个主题演讲,三个论文分享环节,以及海报展示与互动环节。Keynote讲者是来自莫纳什大学的Tim Dwyer教授,他报告的主题是《Immersive Analytics: Interactive Data Analysis Using the Surfaces and Spaces around Us》。近些年沉浸式头戴设备(head-mounted displays)的普及使得身临其境的立体可视化环境成为可能,然而在沉浸式环境下的可视化也带来了一系列的挑战。

继续阅读 »

IEEE Pacific Visualization Symposium 2018 – Day 0

PacificVis 2018于4月10日在日本神户大学正式召开。会议首日是PacificVAST研讨会。不同于之前几年PacificVAST会邀请可视化领域的著名专家学者前来介绍可视化前沿工作,今年PacificVAST开始接受论文投稿,被接收的论文会被邀请到会议现场进行报告,并推荐到Journal of Visual Informatics期刊发表。会上来自日本庆应义塾大学的Issei Fujishiro教授和韩国首尔国立大学的Jinwook Seo教授介绍了今年PacificVAST的投稿情况。本次会议一共收到了24篇投稿,并在其中接收了来自于美国,中国,日本,德国和韩国等国家的一共9篇论文,所有9篇论文分成四个session进行报告。 继续阅读 »

IEEE Pacific Visualization Symposium 2018 – 前瞻

PacificVis是可视化领域三个重要国际会议之一,每年吸引全球百余位可视化前沿研究学者和工业界高级研究人员热情参与。作为以亚太区域为主要承办国家和地区的可视化盛事,PacificVis是国内可视化研究人员交流和分享的重要平台,每年都有来自国内高校、研究院所和相关企业的可视化研究人员参与。

继续阅读 »

Map-based Graph Visualization

地图形式的图可视化方式指将图中的社群用一段连续的区域表示,不同的社群构成了地图上不同的“国家”。这样的可视化方式既可以提高可视化美观度,吸引用户花更多的时间探索数据[1];又可以增强用户的对可视化内容的记忆,更准确回忆自己的发现结果[2]。

继续阅读 »

在异步协同式意义构建场景下使用知识传输图传递知识(Supporting Handoff in Asynchronous Collaborative Sensemaking Using Knowledge-Transfer Graphs)

在数据分析中,将知识和发现通过可视化的方式展现出来可以帮助分析者追踪、组织、综合自己的发现和问题。当分析者互相合作时,通过互相交流,这些可视化形式能够帮助分析者互相理解自己的发现,这被称为协同式意义构建(Collaborative Sensemaking)。然而在复杂场景下,如何在合作者之间明确的传递知识(Tranfer of Knowledge/Handoff) 仍然是一个挑战。在异步合作场景下,分析者由于时空限制或者隐私考虑等不能够直接见面或者交流,前一个分析者需要将自己的发现传递给下一个分析者,但是少有的分析系统能够满足这样的需求。本文提出了一系列可视化加护技术帮助异步合作者之间有效传递发现、知识。

继续阅读 »

Orko: 使用多模交互方式探索分析图可视化(Orko: Facilitating Multimodal Interactions for Visual Exploration and Analysis of Networks)

现有的可视化系统往往是在桌面环境下设计交互方式,越来越多的研究者开始考虑如何在大屏幕、平板等设备上设计交互方式。一部分工作利用可穿戴设备、VR/AR等设备检测人的手势、肢体动作实现与大屏幕的交互,还有一部分工作将自然语言作为交互输入方式。这项工作[1]尝试在可视化中利用多模输入(multimodal)的方式,将触摸(touch)和语音输入结合作为图可视化的交互方式,并且分析在多模输入环境下的用户交互行为特点。

继续阅读 »

VIGOR: 交互式探索图查询结果(Interactive Visual Exploration of Graph Query Results)

当领域专家需要寻找大图中满足特定条件的子图时,图查询操作是一种重要的方法。比如在金融交易网络,分析者想要发现洗钱行为,可以查询商人和银行家构成的环状网络。尽管有许多工作研究如何构建查询语句、数据库管理、图匹配算法,但是少有工作帮助分析者理解子图的结构以及属性特征。这项工作[1]设计了一个原创可视分析系统,帮助用户探索、理解子图查询的结果。

继续阅读 »

GRASP: 结合移动设备和大屏幕与图可视化交互(GRASP: Combining Spatially-aware Mobile Devices and a Display Wall for Graph Visualization and Interaction)

除了传统的桌面显示环境,研究者们也在思考用其它的显示设备和更自然的交互方式设计可视化。这篇工作[1]将可被检测位置的移动设备和大屏幕结合起来支持图可视化的交互和分析;作者设计了一套全面的交互模型支持对图的交互、分析任务,包括选择、展示细节、焦点转换、交互式透镜、数据编辑等。 继续阅读 »