分类存档: 论文报告

对交通流的可视化、过滤与分析(Visualization, Selection, and Analysis of Traffic Flows)

移动物体(Moving objects)例如车辆、船舶、飞机等不是随机地运动,而是有一定的功能性的关系,例如飞机的有相同的目的地。这时我们把这类轨迹的集合成为交通流(Traffic flows)。然而这些轨迹通常数目多而且具有重叠。交通流通常会有一定的行为模式(Patterns),但是这些模式很难挖掘到。因此可视化交通流面临许多挑战: 继续阅读 »

用于文本相似性检测的可构造可视分析(Constructive Visual Analytics for Text Similarity Detection)

检测文本之间的相似性是一种很常见的文本挖掘任务。由于文本相似性的衡量方式很多,而且很多衡量方式对于不同的语料集的敏感性不同,所以通常使用机器学习等检测器难以根据特定的语义环境来平衡不同的度量方式。因此,为了促进文本相似性检测的准确性,把相关领域的专家加入到检测过程中,自主的设计对应的衡量方法时检测结果更佳。

继续阅读 »

对于机器分析和人类分析在分类中的解析 (An Analysis of Machine- and Human-Analytics in Classification)

这项工作跟踪在两个可视化分析应用中的技术和认知过程,并归纳为一个应用软知识的共同理论模型,可以添加到建立一个决策树模型的可视化的分析过程中。 继续阅读 »

DeepEyes: 用于深度神经网络设计的递进式可视分析系统 (DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks)

深度神经网络,在模式识别问题上,取得非常不错的效果。但设计一个性能好的神经网络,需要反复尝试,是个非常耗时的过程。这个工作[1]实现了用于深度神经网络设计的可视分析系统,DeepEyes。该系统可以在DNNs训练过程中,提取数据,从网络整体效果,神经层和神经元角度,分析神经网络运行状态,进而协助用户更新DNNs。

继续阅读 »

具有时空误差控制的交互式渐进可视化 (Interactive Progressive Visualization with Space-Time Error Control)

在体可视化中,光线追踪算法是一种常用的算法。不过,由于对每条光线而言都需要进行大量的采样,其计算代价是非常大的。这时候往往可以使用渐进可视化的方法,即一边展示一些早期近似计算得到的绘制结果,一边持续对该结果进行优化精炼。但是,图片往往需要一个比较长的绘制时间才能达到高的质量(即空间误差随时间不断减小),而当视角和传递函数改变时,比较长的响应时间会延迟图片图片帧的替换(即时间误差越来越大)。因此,这里面需要做适当的权衡。传统的方法使用静态的采样率和帧率,但是如何选择一个好的静态设置并在交互式可视化中得到保持是非常困难的。2014年SciVis的这篇文章[1]提出的一种基于空间和时间误差估计的动态自适应帧控制的方法,很好地解决了这个问题。如图1所示示例,该方法在静态的采样率和帧率之间做到了很好的平衡。

继续阅读 »

从事件序列中提取和可视化子模式(CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences)

时间事件序列,如应用程序日志数据和Web访问者点击流,有助我们理解用户行为和做相应的决策。事件序列数据的可视化和分析是一个备受关注的研究领域,但仍然是一个尚未解决的问题。序列数据集可以包含数千个或多个不同的序列。这些序列中的每一个都可能由数百个有序事件组成。独特事件的数量可以是成百上千。巨大的数量和复杂性使得传统的可视化技术不适用。即使我们将事件聚合为较少的类别,仍然很难提供一个很好的概览。

继续阅读 »

时变集合模拟数据中的趋势特征可视分析 (Visual Trends Analysis in Time-Varying Ensembles)

图3:趋势图的构建

集合模拟数据是现今科学可视化领域中的重要挑战之一。对于同一个物理现象,使用多个物理模型或者同一模型多组不同参数进行模拟,产生的一组模拟结果就称之为集合模拟数据,每个单独的结果称之为集合成员。对集合模拟数据的研究,一方面可以对各个结果之间的相似性和相异性进行分析,另一方面可以用于进行模型参数的优化。而这个工作主要关注的对应两个问题就是:时变集合模拟数据中趋势特征和异常成员的识别,以及和参数空间的结合探索。

继续阅读 »

Screenit: 对细胞筛选的可视分析 (Screenit: Visual Analysis of Cellular Screens)

本文介绍了针对生物制药中一种多维多层次数据——筛选数据的可视分析系统。这个系统连接了现有的支持大量数据但是层次较高的系统和支持细节层次但是数据量支持有限的系统。

继续阅读 »

草图的语义:时间序列可视查询系统的灵活性 (The Semantics of Sketch: Flexibility In Visual Query Systems For Time Series Data)

草图允许分析者指定复杂和自由的兴趣模式。可视化查询系统可以利用草图在大型数据集中找到这些感兴趣的模式。然而,草图是不明确的:同一张图可能代表大量潜在的查询。在这项工作中,我们调查了这些含糊之处,因为它们适用于可视查询系统的时间序列数据。我们定义了一类“不变量”——分析者在执行基于草图的查询时希望忽略的时间序列的属性。我们提出了一个众包的研究结果,表明这些不变量是人们如何评价草图和目标之间的匹配强度的关键组成部分。我们采用了一些时间序列匹配算法来支持草图中的不变量。最后,依赖于这些不变量,我们提出了一个基于Web部署的草图可视化查询系统原型。我们将原型应用于金融、数字人文和政治科学的数据。

继续阅读 »

信息可视化中的吸引效应(The Attraction Effect in Information Visualization)

吸引效应是人在两个选择之间的决定会被第三个不相关的选择所影响,这在心理学中是一个被广泛研究的问题。可视化是支持用户的决策的重要方式,比如当我们选择一个要购买的房子或者选择一个要雇佣的雇员,可视化可以帮助用户选择最优的决策方案,然而系统所导致的偏差会产生非常重要的影响。吸引效应所造成的认知偏差,目前仅仅在三个选择中被验证,并且仅仅使用表格,文本,图片的形式,但是其所造成认知偏差同样出现在可视化中。本文为了研究吸引效应在可视化中的存在情况,设计并完成了两个用户调研,在第一个众包的实验中,本文实际上重复了吸引效应的经典实验并且将其拓展到可视化中,并且发现在可视化中具有同样的用户认知偏差;第二个实验主要针对的是吸引效应是否可以被扩展到更大的数据集上,这一类的数据集因为数量的原因难以使用数据表格进行展现。实验结果同样表明,吸引效应所导致的偏差大规模数据集的散点图中同样存在。[1]

继续阅读 »