分类存档: 研究

IEEE Pacific Visualization Symposium 2018 – Day 2

今天是IEEE PacificVis正式会议的第二天,包括一个主题演讲,三个论文分享环节,以及海报展示与互动环节。Keynote讲者是来自莫纳什大学的Tim Dwyer教授,他报告的主题是《Immersive Analytics: Interactive Data Analysis Using the Surfaces and Spaces around Us》。近些年沉浸式头戴设备(head-mounted displays)的普及使得身临其境的立体可视化环境成为可能,然而在沉浸式环境下的可视化也带来了一系列的挑战。

继续阅读 »

Map-based Graph Visualization

地图形式的图可视化方式指将图中的社群用一段连续的区域表示,不同的社群构成了地图上不同的“国家”。这样的可视化方式既可以提高可视化美观度,吸引用户花更多的时间探索数据[1];又可以增强用户的对可视化内容的记忆,更准确回忆自己的发现结果[2]。

继续阅读 »

并行粒子追踪中使用基于带有约束的k-d树分解的动态负载平衡方法 (Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing)

粒子追踪是流场可视化中的一种非常基础的技术。很多应用,从最基本的流线,迹线的计算,到源汇分析和FTLE(有限时间李雅普诺夫指数)的计算,都需要追踪大量的粒子。粒子追踪本身计算量大,加之流场数据的规模往往也比较大,我们需要对其并行化处理。但是,无论是数据并行(对数据进行静态划分和分配)还是任务并行(对粒子进行静态分配),由于很难确保每个进程分配到均等的工作负载,并行粒子追踪往往存在着严重的负载不均问题。究其本质,造成这一问题的原因是在追踪过程中粒子的分布随时间变化,并且很可能分布非常不均。以图1(a)为例,粒子在追踪过程中的分布变化非常大,甚至在一段时间后有些进程(或数据)没有粒子。

继续阅读 »

对兴奋网络拓扑结构的可视分析 (Visual Analysis of Governing Topological Structures in Excitable Network Dynamics)

在计算生物学和神经学领域,了解不同拓扑结构如何影响兴奋网络(Excitable Network)中的动力学传播是一个重要的问题。本文通过可视分析的手段,利用多个关联视图,帮助用户探索不同网络结构在兴奋网络动力学传播中的角色。

继续阅读 »

时变总览图:一个通过交互生成和放置注释的叙述可视化方法(Temporal Summary Images: An Approach to Narrative Visualization via Interactive Annotation Generation and Placement)

可视化既可以用来探索、分析数据,也可以作为解释性工具,与别人分享自己的发现。尽管研究人员已经提出了许多可视分析方法,但是很少能够支持叙述可视化(narrative visualization)。当面对大规模、复杂、多维、异构数据时,手动地筛选、识别、高亮出图表或者图中的关键部分会变得非常耗时耗力。这篇文章[1]设计了一种创建叙述可视化的框架(Temporal Summary Images,TSI) ,通过自动生成、放置注释帮助用户分析数据,展示自己的发现。

继续阅读 »

日本庆应大学吴湘筠博士访问北京大学

2016年10月7-14日,受袁晓如研究员邀请,来自日本庆应大学计算机图形与可视化研究组(Computer Graphics and Visualization Group, Keio University)的吴湘筠项目助理教授访问了北京大学可视化与可视分析实验室。吴湘筠博士的主要研究方向包括信息可视化中的地理可视化(Geographic Visualization)、图绘制(Graph Drawing)和多变量数据可视化(Multivariate Data Visualization)等方面的工作。
继续阅读 »

IEEE VAST Challenge 2016

国际可视化年会IEEE VIS是可视化领域最顶级的学术会议,而IEEE VIS中的IEEE VAST Challenge是可视化与可视分析领域最重要、规模最大的竞赛。每年VAST Challenge提供的数据的故事背景各异,有生化恐怖袭击、流行病、武器走私、社会骚动、网络攻击等。竞赛题目覆盖可视分析最重要与前沿的研究领域,例如网络安全可视分析、时空数据可视分析与人际关系网络可视分析等。

北京大学可视化与可视分析研究组近4年都参与了VAST Challenge,每年都获有奖项,在今年获得了Outstanding Comprehensive Solution Award。
继续阅读 »

基于高阶访问依赖的高效非定常流场可视化 (Efficient Unsteady Flow Visualization with High-Order Access Dependencies)

在流场可视化中,场线追踪是一种很基础的技术,很多应用包括流面计算、FTLE计算以及源汇分析等都需要追踪大量的场线。然而,由于巨大的I/O和内存需求,场线的计算是非常昂贵的。特别是I/O开销,往往能占据整个计算时间的90%。解决I/O负担的一个方法是将数据访问模式结合到场线计算中。数据访问模式由流场数据的特征隐式地决定,其记录了场线轨迹的数据访问情况。我们可以将其提取出来,并在之后的场线应用中预测数据访问。在已有的方法中,马尔可夫链被用来对数据访问模式进行建模,其思想是通过当前的数据访问预测下一个可能的数据访问。这种访问模式也被称为数据块之间的一阶访问依赖。不过,由于每个数据块可能与多个其他的数据块有访问依赖关系,因此很难得到比较准确和可靠的访问预测。
继续阅读 »

“可视化推动大数据平民化”位列2016年大数据发展趋势首位

在近期CCF大数据专家委员会发布的《中国大数据技术与产业发展白皮书(2015)》中,对2016年大数据发展趋势进行了预测。可视化推动大数据平民化被参加投票的大数据专家委员会专家和产业联盟成员列为2016年最重要的技术发展趋势。

 ​1.可视化推动大数据平民化

densitymap3 继续阅读 »

对于稀疏采样的带有地理标签的社交媒体数据的交互式可视分析与探索 – Interactive Visual Discovering of Movement Patterns from Sparsely Sampled Geo-tagged Social Media Data

‘社交媒体’这个词现大家并不陌生,每天成千上万的人在使用着微博之类的社交媒体软件,各种新闻、心情、信息等都在网络上传播。随着智能手机的普及,发送带有GPS定位的微博数据变得更为容易,大量的带有地理标签的微博被发送、传播。它提供了一个丰富、广阔的可探索的信息空间 — 这对于以前以用户调研(Survey)为主要研究手段的人群移动研究,提供了一个前所未有的空间。今天我们就北京大学可视化与可视分析研究组在今年可视化顶级会议IEEE VIS 2015 发表的一篇可视分析方面的文章进行详细介绍 [1]。

继续阅读 »