Pattern Trails: 对子空间中数据变化的可视分析(Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces)

在高维数据中,任意维度的组合都形成一个子空间,数据关系则因维度考量的不同而发生改变。举例来说,虎与狼在肉食性、体型、栖息地等方面相近,但在基因组成、群聚性上,虎与猫则更为相近。然而,维度的组合极其繁多,其数量随维度的增多而呈指数级增长。对于如此大量的子空间,我们该如何发掘其中数据关系的变化呢?针对该问题,这篇发表于IEEE VAST 2017的文章[1]提出了Pattern Trails,一种基于可视化的交互式分析方法。

继续阅读 »

将视频和移动数据结合来增强体育运动分析(Bring it to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis)

对体育比赛进行分析,可以观察球员或球队的战略和战术行为。当前的分析工作流通常基于人工观看比赛视频分析。但是观看视频通常是一个耗时的过程,分析人员需要记住和注释场景。这项工作将球队视频与轨迹数据的抽象可视化相结合来帮组我们理解 [1]。

继续阅读 »

LSTMVis:一个递归神经网络中隐含状态动态变化的可视分析工具 (LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks)

图3:LSTMVis的用户界面

深度神经网络已经在计算视觉、自然语言处理等许多领域中取得了卓越的性能表现。深度神经网络能够自动地学习输入数据的隐含特征表示,用于相关任务。之所以称之为“隐含”特征表示,是因为这些特征表示难以以原始输入数据的形式表示出来,从而让使用者难以理解深度神经网络到底学习到了数据的什么信息。现有的研究中,有许多深度神经网络被广泛应用:标准的前馈神经网络、用于图片任务的卷积神经网络、以及用于对序列数据建模的递归神经网络等等。本文主要关注一类递归神经网络——长短期记忆(Long Short-Term Memory, LSTM)模型中隐含状态表示的可视化。

继续阅读 »

TOPKUBE: 一种支持实时时空数据探索的序敏感数据立方体 (TOPKUBE: A Rank-Aware Data Cube for Real-Time Exploration of Spatiotemporal Data)

针对时空数据的查询中一类关于前k相关客体的查询,该论文[1]提出了能达到交互性要求的数据结构及相应算法,解决了相关工作没有关注此类查询或者没有关注可交互性的问题。

继续阅读 »

用故事曲线可视化非线性的叙述(Visualizing Nonlinear Narratives with Story Curves)

叙述说明了故事中的事件被讲述的方式。非线性叙述是一个跳出以时间先后顺序来描述事件的叙述技巧。例如,叙述可以隐瞒一些信息来保持神秘感。最终,叙述可以闪回到故事的开端,来释放紧张感。这种非线性叙述技巧被广泛的应用于多种讲述故事的体裁中,包括文学、戏剧、电影、小说和电子游戏。

继续阅读 »

通过对OD数据的空间时间抽象来揭示大规模移动数据的模式和趋势(Revealing Patterns and Trends of Mass Mobility Through Spatial and Temporal Abstraction of Origin-Destination Movement Data)

Origin-destination (OD)移动数据没有具体的描述移动的轨迹,而是仅具有起点,目的地,开始和结束时间以及其他属性。为了研究大规模移动数据的时空模式和趋势,常常把单个轨迹通过时间间隔聚合成流。时变的OD流数据为可视化和分析提出了两个难题。首先,流可以连接任意位置,从而形成的具有许多边缘交叉遮挡的难以理解的表达。第二个挑战是需要分析长时间序列的多个空间状态。这篇文章[1]提出一种方法,通过空间和时间抽象来促进对长时间序列流数据的探索。它通过一种特殊的数据聚合方式,允许通过图表而不是流图来表示空间状态,从而减少流图所具有的交叉和遮挡问题。聚合数据用于通过空间状态的相似性对时间间隔进行聚类。聚类结果的时间和空间可视化表达有助于发现大规模移动行为的周期性模式和长期趋势。

继续阅读 »

cite2vec: 基于词嵌入模型的引用文档研究 (cite2vec: Citation-Driven Document Exploration via Word Embeddings)

目前而言,对于文档集的探究,主要有以下三个方面的目标:

  1. 对文档集的概览,了解文档集中的主题等。
  2. 能够让用户探究感兴趣的文档集。
  3. 提供对于文档之间的比较功能。

然而,在进行文档集探究之前,我们首先需要选择一个适当的方式来“表示”文档集,这对于文档探究是十分重要的。在之前的文档集探究方法中,大多致力于将文档可视化来说明文档集是什么,也就是通过可视化的方式了解文档的内容。然而,这篇文章[1]从一个全新的视角,通过文档间的引用关系来将文档可视化,进而说明文档集的用途。

继续阅读 »

无轨迹信息时空统计数据的数据流分析与可视化(Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information)

地理可视化研究使用多种技术来表示和探索时空数据。这些技术的目标是使用户能够在空间和时间上探索事件和交互,以便于发现数据中的模式、异常和关系。然而,对于没有轨迹信息的非方向性统计数据,很难提取和可视化数据流模式。在本文[1]中,我们开发了一种新的流分析技术,以提取、表示和分析无方向时空数据流图,而不受轨迹信息的影响。我们估计这些事件在空间和时间上的连续分布,并利用重力模型提取空间和时间变化的流场。然后,我们使用流可视化技术可视化数据中的时空模式。用户在地图上呈现地理参考离散事件的时间趋势。因此,整体的时空数据流模式帮助用户分析地理时空的事件,如疾病暴发,犯罪模式,等来验证我们的模型,我们丢弃的轨迹信息在OD数据集和应用我们的技术数据和比较得出的轨迹和源。最后,我们提出了包括推特数据统计数据的时空趋势分析、海上搜救事件和症状监测案例。

继续阅读 »

美国雪城大学艺术学院访问北京大学

 

2017年9月23日下午,美国雪城大学艺术学院的Michael Tick教授、Reige Xu副教授、Sam Van Aken副教授到访可视化与可视分析实验室,并就艺术可视化相关知识进行分享。

继续阅读 »

悉尼科技大学Jie Lu教授访问北京大学

2017年9月19日下午,悉尼科技大学的Jie Lu教授访问北大可视化与可视分析实验室。Jie Lu教授是一位国际知名的,在模糊迁移学习、决策支持系统、推荐系统、预测和提早警示系统方面的有卓越贡献的科学家。她担任悉尼科技大学Engineering and Information Technology院Research Excellence的副主任,她还是Centre for Artificial Intelligence (CAI)的负责人。她出版过6部研究性的书籍,在学术期刊和会议中发表过400余篇论文。在过去的15年中,她获得过8次Australian Research Council (ARC)的探索津贴和10次其他研究津贴。

继续阅读 »