标签存档: 可视分析

Hashedcubes: 对于大数据的简洁,低存耗,实时的可视探索 (Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data)

交互式可视化系统的设计者现在正面对着大规模、多维度的数据的挑战。这一工作为以下问题提供了一个肯定的答案:是否存在一个简单的数据结构为一个更成熟的索引提供更丰富的性能,同时使空间消耗相对较低、执行方法较为简便?

继续阅读 »

用于文本相似性检测的可构造可视分析(Constructive Visual Analytics for Text Similarity Detection)

检测文本之间的相似性是一种很常见的文本挖掘任务。由于文本相似性的衡量方式很多,而且很多衡量方式对于不同的语料集的敏感性不同,所以通常使用机器学习等检测器难以根据特定的语义环境来平衡不同的度量方式。因此,为了促进文本相似性检测的准确性,把相关领域的专家加入到检测过程中,自主的设计对应的衡量方法时检测结果更佳。

继续阅读 »

对于机器分析和人类分析在分类中的解析 (An Analysis of Machine- and Human-Analytics in Classification)

这项工作跟踪在两个可视化分析应用中的技术和认知过程,并归纳为一个应用软知识的共同理论模型,可以添加到建立一个决策树模型的可视化的分析过程中。 继续阅读 »

通过可视化分析地理因素对多变量聚类的影响(Visualizing the Impact of Geographical Variations on Multivariate Clustering)

通过可视化分析地理因素对多变量聚类的影响

多变量地理空间数据是一种十分常见的数据类型,例如对各大城市的人口状况统计、世界各国的国力评判指标等等。如何分析地理因素(如地域的位置、范围、方向等)对多变量数据的影响,一直是地理信息、可视分析等领域的重要课题。另一方面,聚类是简化多变量分析的常用方法,它能够挖掘相似数据、总结数据特征、并消除变量增长所带来的负担。然而,当下的聚类分析方法并没有考虑地理因素的影响。这篇发表于2016年EuroVis会议的文章[1],就探讨了如何通过可视化分析地理因素对多变量聚类的影响。

继续阅读 »

北京大学2017年校园开放日实验室成果演示

2017年5月20日是北京大学校园开放日,实验室安排了在可视化与可视分析方面的最新成果向公众演示,包括湍流可视化,交通数据、微博数据可视分析,伪基站数据可视分析等科研项目。此次开放日实验室接待的参观者包括来自中小学生及其家长等百余人。实验室成员陈思明,洪帆,张江,赖楚凡,叶唐陟,陈帅,李国政,刘强强,冯璐,张宇,施悦凝等多位同学参与了本次开放日演示工作,向参观者介绍相关的工作,并面对面解答参观者的各种问题。今年校园开放日,实验室增加了HoloLens沉浸式可视化等项目,让参观者亲自体验可视化的乐趣。可视化能将复杂的数据转换为更容易理解的方式传递给受众,本次活动,很好地向公众普及了可视化的最新进展,受到参观者的好评。

继续阅读 »

流式文本的在线可视分析(Online Visual Analytics of Text Streams)

现如今的互联网上有大量的流式文档,一个很普遍的问题就是如何检测和跟踪这种文本流中的新兴事件。目前在挖掘和可视化文本流方面已经取得了很大的进步。然而,大多数现有的方法都是离线方法。离线的方法是基于所有文档来计算结果的。每次当新文件流入时,这些方法都会先将新文档与旧文档合并,然后重新计算模型。目前使用的这些离线方法存在两个主要的问题:
1. 重新计算模型时间消耗太大;
2. 由于模型被重新计算,结果在一定程度上发生了变化,这对用户来说可能是难以理解的。
这篇文章[1]提出了一种在线的可视化分析方法,帮助用户探索和了解大量流式文档中的层次主题演化。

继续阅读 »

TextTile:给结构化数据和无结构文本提供无缝探索性分析的交互式可视化工具 (TextTile: An Interactive Visualization Tool for Seamless Exploratory Analysis of Structured Data and Unstructured Text)

在实际的很多应用中,数据集由无结构文本和结构化数据组合而成。比如购物网站上,顾客会给商品的质量、物流服务质量、商家态度等条目打分,也可以写一段关于商品的评论。前者就是结构化数据,后者则是无结构文本数据。分析者面对这些数据时,往往需要同时分析二者。既可能先指定结构化数据字段的过滤条件(如对于北京的餐馆),总结文本信息(如,用户评价这类餐馆时最经常使用哪些关键词);也可能先指定无结构文本(如用户评价中含有“非常满意”),再观察这些数据在结构化数据字段的分布(如,这样的评论的地理分布)。然而,分析者面对这类数据时,面临两大问题:(1)没有一种系统的方式来组织和连接这些操作;(2)缺少完整地集成了这些操作的可视化系统,能够支持用户灵活地进行分析。 继续阅读 »

IEEE Pacific Visualization Symposium 2017 – Day 1

Bongshin Lee对PacificVis近十年的情况进行了可视化与总结

今天是IEEE PacificVis会议正式日程的第一天。首先进行的是大会的开幕式。大会主席Bongshin Lee和Jinwook Seo欢迎各位与会者,并介绍了这次会议的参与情况。今年共有来自19个国家的133人参与,其中来自大陆的可视化研究者有22名。接着,论文、短论文、海报张贴与storytelling竞赛的主席分别对各自部分的参与、评审以及接收情况进行了介绍。本次会议共接受论文29篇,分数均在3.5及以上。我们实验室陆旻同学的论文《Interaction+: Interaction Enhancement for Web-based Visualizations》被全文接收。图可视化主题在今年所接受论文、海报张贴中都有着很大的比例。

继续阅读 »

IEEE Pacific Visualization Symposium 2017 – Day 0

国际可视化盛会之一的IEEE PacificVis 2017,于4月18日到21日在韩国首尔大学举行。会议首日是PacificVAST研讨会,邀请了众多可视化领域的著名专家学者前来作报告。会议内容共包含两个主题报告(Keynote Talk)、四个邀请报告(Invited Talk),以及一个讨论环节(Panel Discussion)。

继续阅读 »

WeightLifter:多准则权重空间的可视探索(WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making)

WeightLifter:多准则权重空间的可视探索

人们在做选择的时候,往往会综合考虑事物的多个方面。譬如在选择住房时,有的人注重装修,有的人看重便利的交通,有的人则更偏好良好的社区环境等等。当多个准则并存,我们常常赋予它们不同的权重,并选择综合得分最高的作为最佳选项。然而,人对权重的把握总是模糊的,如果略微改变权重设定,得到的“最佳选项”是否会不一样呢?在这篇文章[1]中,作者们针对多准则评价体系,提出了一种探索多维权重空间的可视分析方法。利用该方法,用户能够充分了解权重变化对最终决策的影响,并有针对性地调整权重、作出选择。

继续阅读 »