
金融机构需要为他们的客户确保安全和质量,如银行需要及时识别和阻止有害的交易。 为了检测欺诈操作,通常使用数据挖掘技术和客户画像分析,但是这些方法目前还没有得到可视分析的支持。 然而可视分析技术可以帮助增强知识发现的过程,并提高欺诈事件探测系统检测和预测的准确性。因此,这篇文章提出了EVA,一种用于欺诈交易的可视化分析方法,将自动算法与可视分析相结合,提高系统检测的准确性。
地理可视化研究使用多种技术来表示和探索时空数据。这些技术的目标是使用户能够在空间和时间上探索事件和交互,以便于发现数据中的模式、异常和关系。然而,对于没有轨迹信息的非方向性统计数据,很难提取和可视化数据流模式。在本文[1]中,我们开发了一种新的流分析技术,以提取、表示和分析无方向时空数据流图,而不受轨迹信息的影响。我们估计这些事件在空间和时间上的连续分布,并利用重力模型提取空间和时间变化的流场。然后,我们使用流可视化技术可视化数据中的时空模式。用户在地图上呈现地理参考离散事件的时间趋势。因此,整体的时空数据流模式帮助用户分析地理时空的事件,如疾病暴发,犯罪模式,等来验证我们的模型,我们丢弃的轨迹信息在OD数据集和应用我们的技术数据和比较得出的轨迹和源。最后,我们提出了包括推特数据统计数据的时空趋势分析、海上搜救事件和症状监测案例。
这项工作跟踪在两个可视化分析应用中的技术和认知过程,并归纳为一个应用软知识的共同理论模型,可以添加到建立一个决策树模型的可视化的分析过程中。 继续阅读 »
2017年5月20日是北京大学校园开放日,实验室安排了在可视化与可视分析方面的最新成果向公众演示,包括湍流可视化,交通数据、微博数据可视分析,伪基站数据可视分析等科研项目。此次开放日实验室接待的参观者包括来自中小学生及其家长等百余人。实验室成员陈思明,洪帆,张江,赖楚凡,叶唐陟,陈帅,李国政,刘强强,冯璐,张宇,施悦凝等多位同学参与了本次开放日演示工作,向参观者介绍相关的工作,并面对面解答参观者的各种问题。今年校园开放日,实验室增加了HoloLens沉浸式可视化等项目,让参观者亲自体验可视化的乐趣。可视化能将复杂的数据转换为更容易理解的方式传递给受众,本次活动,很好地向公众普及了可视化的最新进展,受到参观者的好评。
近期评论