
集合可视化是信息可视化的一个重要研究领域。对于抽象集合系统的可视化,一种常用的方法是欧拉图,但是它通常侧重于集合关系而不关注其中的单个元素。来自德国波恩大学和维也纳技术大学的研究人员提出了MosaicSets [1],一种将给定的集合系统嵌入到规定的网格图中的可视化方法。如图1所示,该可视化包括基本地图(Base map)和覆盖(Overlay)两部分组成,基本地图中的相同颜色的节点属于同一个集合,覆盖中由一种颜色的边框包围的节点属于同一个集合。
继续阅读 »集合可视化是信息可视化的一个重要研究领域。对于抽象集合系统的可视化,一种常用的方法是欧拉图,但是它通常侧重于集合关系而不关注其中的单个元素。来自德国波恩大学和维也纳技术大学的研究人员提出了MosaicSets [1],一种将给定的集合系统嵌入到规定的网格图中的可视化方法。如图1所示,该可视化包括基本地图(Base map)和覆盖(Overlay)两部分组成,基本地图中的相同颜色的节点属于同一个集合,覆盖中由一种颜色的边框包围的节点属于同一个集合。
继续阅读 »网络数据是日常生活中常见的数据类型,如社会网络、论文引用网络和生物网络。如图1所示,在网络可视化的方法中,节点-链接图(Node-link Diagram)和邻接矩阵(Ajacency Matrix)是最常用的。另一种二部图布局方法(Bipartite Layout)首先被用于二部图上,之后也被扩展到普通静态图的可视化,在二部图布局中,节点被复制并放置在两个平行轴上,再用边将他们连接起来。每种方法在网络上的不同任务中都有其优势和不足之处。来自斯图加特大学的Daniel Weiskopf等人[1]进行了一项用户研究,以评估这三种网络可视化方法,并给出了使用准则。
继续阅读 »在图可视化中,地铁图可视化是一个经典的可视化方法,将图中节点尽量均匀地排布在空间中,同时尽可能保持边的且尽可能保持最终布局的拓扑结构与图节点的原始。 同时,在实际的图布局中,除了要提高图的可读性,有时还需要将一些特定的动机(motif)嵌入到图中,这能提高图布局的艺术效果,也可能可以提升用户对该布局的认知能力。
在论文《Shape-Guided Mixed Metro Map Layout》[1]中,维也纳工业大学的Tobias Batik等人提出了一种结合地铁图布局与形状嵌入的混合布局方法(图1),能够支持在保证将用户定义的形状嵌入最终图布局的同时,将整体图布局以地铁图的标准进行优化。
继续阅读 »矩阵可视化可以突出图数据中的局部结构。为了使这些结构表现为明显的视觉模式,人们提出了各种矩阵重排的方法来对矩阵的行和列进行适当排序。 但是,图数据可能不是孤立出现的,而是属于共享一组顶点的图集合的一部分。在这种情况下,已有的一种方法是选择一个图进行矩阵重排,然后推广到所有的图上;另一种方法是对所有图进行加权的合并,然后对合并后的图进行重排。然而这些方法都会损失信息,来自荷兰埃因霍芬理工大学的Beusekom等人 [1] 提出了一种考虑整个图集合的重排算法,如图1所示,可以同时对图集合中的所有图数据得到较好的矩阵重排结果。
继续阅读 »节点链接图是一个用于显示网络中关系的有效工具。 来自美国东北大学的DiBartolomeo等人提出了STRATISFIMAL LAYOUT [2],关注于计算网络的分层布局,在这种布局中,节点被排列在一组平行的轴上,来更好地展示层次或顺序关系。通常基于启发式的布局方法 [1] 可以得到可读的,但不是最优的可视化结果,该工作提出了一种模块化优化模型来计算最优的节点布局。
继续阅读 »2021年7月21日,暑期学校第7天,来自高等技术学院(ETS)的Michael McGuffin教授和来自爱丁堡大学的Benjamin Bach教授进行了报告,内容包括多维多变量可视化、图可视化和Data-Driven Storytelling with Data Comics 。
继续阅读 »今天(2021年7月19日)的课程是由来自马里兰大学的Zhicheng Liu教授带来的主题为可视化设计中的概念、方法与工具,来自蒙纳士大学Tim Dwyer教授讲授的图可视化和来自塔夫茨大学的Remco Chang教授关于用户分析和交互式机器学习的内容。
继续阅读 »
近期评论