
信息可视化传统上以2维的图形来展示。近些年3D显示器和沉浸式头戴设备(head-mounted displays)的普及,使得身临其境的立体可视化环境成为可能。这种沉浸式环境的技术已被广泛地用于科学可视化等领域,相比之下,很少有人将其应用到信息可视化领域。这篇工作[1]的作者关注了信息可视化中的一个重要部分:图可视化,介绍了他们对于3维图可视化的布局、渲染、以及在沉浸式环境中的交互方法。
社交网络是高度密集的小世界网络图。在小世界网络中,大部分节点不直接的连接,但是它们从任一其他节点经少数几步就可到达。采用已有的图布局算法布局小世界网络图,总是会得到一个类似毛团的视图。比如说,力导向算法针对网状结构的数据,总是可以得到不错的布局。但是,当数据是个小世界网络时,其效果也不好。这篇文章提出一个预处理方法,自动地选择最佳阈值,过滤掉小世界网络中不重要的边,得到最优的图骨架。最优的图骨架指其内部的图结构信息展示的最清晰。 继续阅读 »
微博在当代的网络生活中非常盛行,人们在上面议论着各种话题并发表他们的意见,其中蕴含的信息对社会学、媒体学等许多学科而言都是巨大的宝库。如何有效地发掘微博里的信息成为了一个重要的课题。而在以往的工作[2]中,信息检索都是以单条微博(post)为主体,其他因素如博主(user)和话题标签(hashtag)等都被看作过滤条件,来对微博进行筛选。但事实上,博主的受欢迎程度、话题热度等都会影响一条微博的重要性。只考虑微博相关性的检索往往无法满足用户的需求。另外,微博信息纷繁复杂,通过过滤器来改善检索结果往往十分低效。本文[1]提出了一种考虑不确定性的微博信息检索方法。该方法能结合多种因素改善检索结果,并通过不确定性的呈现,让用户能够在交互中有效地提高信息的质量。
网络结构的节点间有关联,如何评估和理解网络内部关联和分组的行为,是分析网络的核心任务之一。若网络中存在不止一种类型的关联,则称之为多重网络。比如,一个包含若干新闻数据的文档集合,文档之间的关联可以是新闻内容相关、新闻提及的地点相关、或者是人物相关、作者相关等等。这些不同相关类型使文档之间存在不同类型的关联,文档和文档之间可能存在不只一种关联性。所以,多重网络的节点之间关联性会有重叠,这使对多重网络内部分组行为的分析变得更困难。在今年欧洲可视化会议EuroVis2015上,一篇文章提出了Detangler系统,支持对多重网络中凝聚的节点组的可视分析。
继续阅读 »
在高维数据集中,数据之间的关系大致可分为两种,即显性关系和隐性关系。其中前者指的是直接包含两个对象的具体的联系(connection),而后者指的是对象之间的共同点(comment point),是相对抽象的联系。譬如两国之间,航线连接是其显性关系,而两国具有相同的气候类型则是一种隐性关系。由于隐性关系只能通过特定的数据查询来发现,多数的可视化方法都只表现了数据的显性关系。Jian Zhao等人[1] 提出了结合图(Node-link Graph)和动态查询(Dynamic Query)的可视化系统PivotSlice,通过在图布局中展现查询结果,并辅以灵活完善的交互功能,来辅助用户同时探索数据的显性和隐性关系。
传统的社交网络分析(Social network analysis,SNA)[1] 主要研究结点和边的关系,所有的结点都是同一类型的数据。但是,有的网络结点可能是不同类型的,比如论文合作关系,既有作者结点,又有论文结点,还可能有会议结点,机构结点等。这些所有的结点混在一起组成的社交网络,每一类结点我们称为一种模式(Mode),用传统的图分析方法就很难研究模式间的关系。研究这类社交网络的方法称为多态社交网络分析(Multimodal social network analysis,mSNA)。这篇来自IEEE VAST 2013的文章[2] 通过与社会学家合作,设计了一套针对多态社交网络的可视分析方法,首先针对mSNA抽象出来问题模型,然后设计了可视分析系统MMGraph,最后根据社会学家的反馈总结了研究人员如何和领域专家进行合作的流程。
继续阅读 »
近期评论