标签存档: 图简化

根据局部群簇信息自适应的解开小世界网络中的纠结 (Adaptive Disentanglement based on Local Clustering in Small-World Network Visualization)

社交网络是高度密集的小世界网络图。在小世界网络中,大部分节点不直接的连接,但是它们从任一其他节点经少数几步就可到达。采用已有的图布局算法布局小世界网络图,总是会得到一个类似毛团的视图。比如说,力导向算法针对网状结构的数据,总是可以得到不错的布局。但是,当数据是个小世界网络时,其效果也不好。这篇文章提出一个预处理方法,自动地选择最佳阈值,过滤掉小世界网络中不重要的边,得到最优的图骨架。最优的图骨架指其内部的图结构信息展示的最清晰。 继续阅读 »

用于理解时变体数据的图挖掘 (Mining Graphs for Understanding Time-Varying Volumetric Data)

在科学可视化中,利用graph等抽象视图来展示数据是近年来一中比较流行的趋势。通过将数据和它们之间的关系映射到一个低维的空间,用户往往可以探索更复杂的数据关系,并且更好地理解数据的特性。但是,这些基于graph的方法大多数都缺乏足够的对用户探索的引导,导致用户常常只能够依赖于一些低级的视觉提示(例如结点和边的大小和密度等)和简单的刷选链接等交互,在使用的时候会感到费时费力。当面对规模比较大数据关系比较复杂的情况时,这些方法更是表现出了很大的不足。针对这些问题,这篇文章提出了一种图挖掘的方法,包含了图简化(graph simplification),社区检测(community detection)和视觉推荐(visual recommendation)等三种技术,能够自动提取时变数据的特征[1]。

继续阅读 »