标签存档: 增量学习

时变数据分析中基于分布的特征提取和追踪 (Distribution driven extraction and tracking of features for time-varying data analysis)

特征的提取和追踪是流场可视化中一种非常重要的技术,可以让科学家们直观地理解模拟数据的特性,从而发现有意义的物理现象。大多数已有的特征追踪技术都会通过设置阈值或查询范围等方式事先定义特征,然后再对具体的特征进行提取和可视化。但是,随着数据变得越来越复杂,科学家们经常只能够模糊地定义感兴趣的特征,例如涡旋中心和地震冲击波等。此时包含特征的区域不能通过精确地定义来描述,因此科学家们需要运用新的算法来有效地提取和追踪这类模糊的特征。去年的IEEE SciVis上就有一篇文章提出了基于分布的方法,使用高斯混合模型(GMM)对目标特征区域进行表示[1]。该方法对每个数据块在初始时间步进行GMM建模,然后使用增量学习的机制更新数据块GMM在每个时间步的参数。与此同时,对每个数据块在每个时间步计算两种概率,包括该数据块有潜在特征运动的概率和有指定特征存在的概率。将这两种概率进行线性结合,建立新的特征分类场(feature-aware classification field),然后就可以进行特征的提取和追踪。下面将详细介绍这个工作。

继续阅读 »