标签存档: 时变数据可视化

多空间分辨率的时变气候集合模拟数据可视化 (Visualization of Time-Varying Weather Ensembles Across Multiple Resolutions)

系统的可视化界面

在气象相关的集合模拟中,量化模型中的不确定性是领域科学家们十分关心的问题,其对在现实世界中做出决策有十分重要的意义。现如今,随着计算能力的飞速提高,已有的模型模拟已经能够产生出时变的多分辨率的集合模拟数据集。因此而产生了领域科学家十分关心的两个问题:一是输入参数的敏感度信息,二是模型在不同分辨率下的精确程度。根据输入参数的敏感度信息,可以将更多的计算资源倾斜到那些对输出有更高影响上的输入变量上。同时,了解模型在不同分辨率下的精确程度,也能在节省存储和计算代价的前提下,得到足够优秀的模型输出结果。本文就针对WRF (Weather Research and Forecasting) 模型,根据其在不同参数不同分辨率下的输出,并在真实数据的辅助下,研究参数敏感度和空间分辨率精确度的关系。

继续阅读 »

在平行坐标图中集成时间序列图 (Time-Series Plots Integrated in Parallel-Coordinates Displays)

图3:探索两变量间变化的延迟的关系

时变的高维数据是一类十分复杂的数据。例如,在模型模拟数据中,通常会预先设置一些(非时变的)输入参数的数值,然后模型模拟会产生一些输出属性,其中有些是非时变的,而有些是时变的。在这些数据中,领域专家通常需要研究输入参数与输出参数、输出参数之间的关系。此时,对时变高维数据进行可视化就变得非常重要了。本篇工作中提出了一种基于平行坐标图的焦点+上下文的可视化方式,通过在平行坐标图的相邻轴之间插入时间序列图来展示时变信息。

继续阅读 »

公共交通数据中途经限制的OD模式可视分析 (Visualizing Waypoints-Constrained Origin-Destination Patterns for Massive Transportation Data)

屏幕快照 2016-06-17 下午12.10.24

在交通领域,对OD模式的研究能够帮助交通领域的专家研究城市交通的动态规律以及移动行为。但是大多数OD模式的研究多集中于对全局OD模式的探索,而很少针对具有一定限制的OD模式分析。基于这个需求,本文[1]提出公共交通数据中途经限制的OD可视分析方法,通过交互式过滤满足途经限制的轨迹,并提出新颖的可视化设计,帮助领域专家分析对应的OD模式。

继续阅读 »

PieceStack: 更好理解堆叠图 (PieceStack: Toward Better Understanding of Stacked Graphs)

屏幕快照 2016-05-06 下午5.48.45

对于多条时变数据的可视化与分析有多种方法,包括了多折线图、堆叠图、折线图的Small Multiples布局等。作为一种直观的多时序数据可视化方法,堆叠图因其直观形象的可视化表达被广泛使用。但同时由于存在着比较困难、当时序数据数量增加时可伸缩性差等缺点,被谨慎地用于可视分析中。本文[1]提出一种基于堆叠图的可视化设计,PieceStack,更好地理解和使用堆叠图进行时序数据的分析。

继续阅读 »

时变集合模拟数据的有效可视化 (Effective Visualization of Temporal Ensembles)

图1:对于单个时间步粒子形态的可视化。左图包含八叉树的完整结构,右图仅包含八叉树中第四层的结构。

随着计算能力的不断提高,集合模拟 (ensemble) 数据已经被广泛应用于各类科学模拟中。从定义来说,一个集合模拟数据是一组紧密相关数据集的集合,每个数据集被称作“成员”,它们来自于同一次模拟或同一次试验的多次运行结果。通常集合模拟数据的分析难度巨大,既因为其数据量庞大,也因为其具有时变、高维、以及多变量的多重复杂性。本文提出了一系列的可视化分析方法来研究这类具有时变特征的集合模拟数据,尤其是其关注其所包含特征在各成员间的异同及演变过程。

继续阅读 »

用于理解时变体数据的图挖掘 (Mining Graphs for Understanding Time-Varying Volumetric Data)

图简化。(a)扇形; (b)连接体; (c)小集团。

在科学可视化中,利用graph等抽象视图来展示数据是近年来一中比较流行的趋势。通过将数据和它们之间的关系映射到一个低维的空间,用户往往可以探索更复杂的数据关系,并且更好地理解数据的特性。但是,这些基于graph的方法大多数都缺乏足够的对用户探索的引导,导致用户常常只能够依赖于一些低级的视觉提示(例如结点和边的大小和密度等)和简单的刷选链接等交互,在使用的时候会感到费时费力。当面对规模比较大数据关系比较复杂的情况时,这些方法更是表现出了很大的不足。针对这些问题,这篇文章提出了一种图挖掘的方法,包含了图简化(graph simplification),社区检测(community detection)和视觉推荐(visual recommendation)等三种技术,能够自动提取时变数据的特征[1]。

继续阅读 »