标签存档: 时变数据

LSTMVis:一个递归神经网络中隐含状态动态变化的可视分析工具 (LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks)

图3:LSTMVis的用户界面

深度神经网络已经在计算视觉、自然语言处理等许多领域中取得了卓越的性能表现。深度神经网络能够自动地学习输入数据的隐含特征表示,用于相关任务。之所以称之为“隐含”特征表示,是因为这些特征表示难以以原始输入数据的形式表示出来,从而让使用者难以理解深度神经网络到底学习到了数据的什么信息。现有的研究中,有许多深度神经网络被广泛应用:标准的前馈神经网络、用于图片任务的卷积神经网络、以及用于对序列数据建模的递归神经网络等等。本文主要关注一类递归神经网络——长短期记忆(Long Short-Term Memory, LSTM)模型中隐含状态表示的可视化。

继续阅读 »

时变集合模拟数据中的趋势特征可视分析 (Visual Trends Analysis in Time-Varying Ensembles)

图3:趋势图的构建

集合模拟数据是现今科学可视化领域中的重要挑战之一。对于同一个物理现象,使用多个物理模型或者同一模型多组不同参数进行模拟,产生的一组模拟结果就称之为集合模拟数据,每个单独的结果称之为集合成员。对集合模拟数据的研究,一方面可以对各个结果之间的相似性和相异性进行分析,另一方面可以用于进行模型参数的优化。而这个工作主要关注的对应两个问题就是:时变集合模拟数据中趋势特征和异常成员的识别,以及和参数空间的结合探索。

继续阅读 »

针对天气预报集合数据的时间层次聚类和可视化 (Time-hierarchical Clustering and Visualization of Weather Forecast Ensembles)

集合(ensemble)模拟数据可视化是科学可视化的一个重要研究方向,特别是针对气象学这一特定领域。通过扰动初始条件或者使用不同的预测模型公式,集合方法会生成代表大气未来可能状态的一些数据成员。分析集合预报中的时间演化和可变性是这类问题的一个重要的任务。在已有的方法中,spaghetti plots (意大利面条图)是一种比较常用的分析气象标量场集合数据中等高线(iso-contour)的变化的方法。具体来讲,对于每个时间步,都有一个spaghetti plot展示某一iso-value下所有集合成员的等高线,这些spaghetti plots往往并列放置。如果需要看其动态演变,则需要通过动画的方式。但是,由于用户需要感知大量的视觉信息,动画很难建立连续时间步下等高线之间的关联。针对这一问题,今年的SciVis上提出了一种新的方法,可以分析集合天气预报数据中等高线的时空演变[1]。

继续阅读 »