标签存档: 模型可解释性

The What-If Tool: 机器学习模型的交互式探测(The What-If Tool: Interactive Probing of Machine Learning Models)

在这个可解释的机器学习时代,仅仅进行模型训练并从中获得预测的结果已经无法让人感到信服。 为了能够真正获得良好的结果,我们还应该能够探究我们的模型。探究一个模型需要问很多问题,例如探测模型中的问题和矛盾,这样的任务通常是复杂的并且需要编写大量的自定义代码。What-If Tool [1] 这个工具能够轻松、准确地解决这个问题,使它更容易为平常的用户来探究、评估和调试他们的机器学习系统。

继续阅读 »