标签存档: 比较可视化

TextTile:给结构化数据和无结构文本提供无缝探索性分析的交互式可视化工具 (TextTile: An Interactive Visualization Tool for Seamless Exploratory Analysis of Structured Data and Unstructured Text)

在实际的很多应用中,数据集由无结构文本和结构化数据组合而成。比如购物网站上,顾客会给商品的质量、物流服务质量、商家态度等条目打分,也可以写一段关于商品的评论。前者就是结构化数据,后者则是无结构文本数据。分析者面对这些数据时,往往需要同时分析二者。既可能先指定结构化数据字段的过滤条件(如对于北京的餐馆),总结文本信息(如,用户评价这类餐馆时最经常使用哪些关键词);也可能先指定无结构文本(如用户评价中含有“非常满意”),再观察这些数据在结构化数据字段的分布(如,这样的评论的地理分布)。然而,分析者面对这类数据时,面临两大问题:(1)没有一种系统的方式来组织和连接这些操作;(2)缺少完整地集成了这些操作的可视化系统,能够支持用户灵活地进行分析。 继续阅读 »

对参数相关的无序移动的特征驱动可视分析(Feature-Driven Visual Analytics of Chaotic Parameter-Dependent Movement)

在生物、气象等相关领域,科学家常常通过建立计算模型以观察和研究相关现象。例如,在系统生物学中,对生物现象进行抽象建立生物反应过程的模型。科学家通过输入不同的参数,分析和比较不同的模拟结果,发现参数与现象之间的相关性,建立和验证假设。本文[1]所做的工作针对系统生物学中的蛋白质与脂筏在细胞表面的运动模拟模型,提出特征驱动的可视分析系统,以帮助领域科学家分析比较不同参数下的运动模型。

继续阅读 »

相似性探索:针对多角度气候模型的比较可视化工具 (SimilarityExplorer: A Visual Inter-Comparison Tool for Multifaceted Climate Data)

在气候数据分析中,相似性比较对研究不同气候模型之间存在共识和差异很重要。陆地生物圈模型等气候模型模拟了生态系统在时间和空间上的变化,比如光和作用,呼吸作用等。众所周知,交互可视化方法可以让研究者们更方便地浏览数据,从不同角度和粒度下对数据进行分析。但目前并不存在一个特别针对气候模型数据比较的可视化工具。在今天的EuroVis2014会议上,美国纽约大学的学者针对气候数据提出他们的工作SimilarityExplorer[1]。作者首先提出了针对气候数据不同角度下模型相似度的四种可视化分析需求,之后从这些需求出发,作者设计了满足这些需求的四种可视化任务设计指导。最后基于这些设计指导,作者开发了一个可视分析工具SimilarityExplorer,它结合了矩阵、散点图投影技术、平行坐标等多种可视化技术,重点从空间和时间这两个角度出发,对气候模型之间相似度做比较。由于这些设计指导和开发的系统都是基于与气候领域专家讨论的基础上得出的,所以这个系统的实用性和有效性都得到很好的验证。

继续阅读 »

Small Multiple显示中多类别的结构化比较模型(A Model for Structure-Based Comparison of Many Categories in Small-Multiple Displays)

不同类别间的相互比较是可视化中的一个基本任务。以船舶轨迹数据为例,人们需要比较船舶在一周不同天和一天不同时刻的线路。对于这类任务,一种通常的可视化策略是Small Multiple显示,而Pivot Table就是相应的一种可视化形式。那么,用Pivot Table到底可以完成哪些比较人物呢?如何设计Pivot Table以支持这些比较任务呢?

继续阅读 »