标签存档: 聚类分析

Clustrophile 2:可视化指导聚类分析

聚类是探索性数据分析中一种流行的无监督学习方法。聚类算法通过基于相似性的度量将数据划分为子集,为分析人员提供了探索数据结构和变化的有力手段。然而,由不同算法、算法参数、数据子集和属性子集所决定的聚类空间是巨大的,如何引导用户高效地探索空间而不是漫无目的地尝试依然是一个巨大的挑战。为解决上述挑战,本文[1]提出了一种用于引导聚类分析的新型交互式工具Chustrophile 2。它指导用户进行基于聚类的探索性分析,适应用户反馈以改进用户指导,促进聚类的解释,并帮助用户快速推理聚类之间的差异。除此之外,Clustrophile 2还提供了一个新颖的功能,the Clustering Tour,根据用户的分析目标和期望选择聚类参数并推断不同聚类结果的质量。

继续阅读 »