标签存档: 聚类

时变集合模拟数据中的趋势特征可视分析 (Visual Trends Analysis in Time-Varying Ensembles)

图3:趋势图的构建

集合模拟数据是现今科学可视化领域中的重要挑战之一。对于同一个物理现象,使用多个物理模型或者同一模型多组不同参数进行模拟,产生的一组模拟结果就称之为集合模拟数据,每个单独的结果称之为集合成员。对集合模拟数据的研究,一方面可以对各个结果之间的相似性和相异性进行分析,另一方面可以用于进行模型参数的优化。而这个工作主要关注的对应两个问题就是:时变集合模拟数据中趋势特征和异常成员的识别,以及和参数空间的结合探索。

继续阅读 »

针对天气预报集合数据的时间层次聚类和可视化 (Time-hierarchical Clustering and Visualization of Weather Forecast Ensembles)

集合(ensemble)模拟数据可视化是科学可视化的一个重要研究方向,特别是针对气象学这一特定领域。通过扰动初始条件或者使用不同的预测模型公式,集合方法会生成代表大气未来可能状态的一些数据成员。分析集合预报中的时间演化和可变性是这类问题的一个重要的任务。在已有的方法中,spaghetti plots (意大利面条图)是一种比较常用的分析气象标量场集合数据中等高线(iso-contour)的变化的方法。具体来讲,对于每个时间步,都有一个spaghetti plot展示某一iso-value下所有集合成员的等高线,这些spaghetti plots往往并列放置。如果需要看其动态演变,则需要通过动画的方式。但是,由于用户需要感知大量的视觉信息,动画很难建立连续时间步下等高线之间的关联。针对这一问题,今年的SciVis上提出了一种新的方法,可以分析集合天气预报数据中等高线的时空演变[1]。

继续阅读 »

基于二部图的双聚类可视分析 (Interactive Visual Co-Cluster Analysis of Bipartite Graphs)

二部图(Bipartite Graph)是图论中的一种模型,图的顶点集V可以分割成两个互不相交的子集,图中每条边两端的顶点都属于不同的两个子集,并且同一个子集中的顶点不相邻。二部图出现在不少实际情况中,例如研究者和研究课题可以看做是两个不相交的子集,而研究者和研究课题间可以形成联系;议员与议案之间也存在类似的关系。双聚类(Co-Clustering)可以对二部图的两个子集同时进行聚类。

继续阅读 »

向量场k-Means:通过多向量场拟合对轨迹数据聚类(Vector Field k-Means: Clustering Trajectories by Fitting Multiple Vector Fields)

hurricane_cluster

运动是这个世界的本质,而运动轨迹则是描述运动的重要方式之一。轨迹数据被人们研究了数百年,研究的对象从战争中的行军路线,船舶航行路线,到鸟类迁徙路线,以及如今GPS技术普及之后的出租车、自行车行驶路线等等。面对轨迹数据,一种常见的做法是对轨迹数据进行聚类,将相似的轨迹数据聚到一起,便于研究者发现内在的模式。来自纽约大学与AT&T实验室的学者Nivan Ferreira等人在今年的EuroVis上提出了一种新颖的基于向量场拟合的向量场k-Means算法。

继续阅读 »