
降维方法常用于多维数据的分析和可视化。然而,由于(1)高计算复杂度,(2)无法在不同时间步的降维结果中保留用户的心理地图和(3)无法处理数据包含不同维数的情况这三个挑战,降维方法无法直接应用到流式多维数据中。本文[1]介绍了一种增量式降维方法来解决这些挑战,使得用户能够实时可视化和分析流式多维数据。
聚类是探索性数据分析中一种流行的无监督学习方法。聚类算法通过基于相似性的度量将数据划分为子集,为分析人员提供了探索数据结构和变化的有力手段。然而,由不同算法、算法参数、数据子集和属性子集所决定的聚类空间是巨大的,如何引导用户高效地探索空间而不是漫无目的地尝试依然是一个巨大的挑战。为解决上述挑战,本文[1]提出了一种用于引导聚类分析的新型交互式工具Chustrophile 2。它指导用户进行基于聚类的探索性分析,适应用户反馈以改进用户指导,促进聚类的解释,并帮助用户快速推理聚类之间的差异。除此之外,Clustrophile 2还提供了一个新颖的功能,the Clustering Tour,根据用户的分析目标和期望选择聚类参数并推断不同聚类结果的质量。
互动排名技术大大提高了分析师根据多种标准有效做出明智和明智决策的能力。然而,现有技术不能令人满意地支持对大规模空间替代品进行排序所涉及的分析任务,例如为连锁店选择最佳位置,其中所涉及的复杂空间背景对于决策过程是必不可少的。在将排名与空间背景相结合的先前尝试中观察到的局限性促使我们开发上下文集成的视觉排序技术。基于我们通过与领域专家合作总结的一组通用设计要求,本文[1] 提出了SRVis,一种新颖的空间排序可视化技术,通过解决上述环境集成中的三个主要挑战,即支持高效的空间多标准决策过程,即a)空间排名和背景的呈现,b)排名的可视化表示的可扩展性,以及c)对上下文整合的空间排名的分析。具体来说,我们使用可扩展的基于矩阵的可视化和基于新型两阶段优化框架的堆叠条形图来编码大量排名及其原因,该框架可最大限度地减少信息丢失,并采用灵活的空间过滤和直观的比较分析来实现 深入评估排名并帮助用户选择最佳空间替代方案。通过对优化方法,两个案例研究和专家访谈的实证研究,对所提出技术的有效性进行了评估和论证。
在经典的降维技术中,维度(attributes)一般被视作输入而数据(observations)作为输出,用户通过与数据投影进行交互来了解数据与维度之间的关联。但在许多分析场景中,两者地位平等、相互影响、密不可分。通过分析数据之间的关系,能够揭示维度的重要性与价值,反之亦然。例如在区分西瓜与梨子时,“尺寸”是十分重要的因素。又如在强调糖分与水分的相关性时,“西瓜”便比“糖葫芦”更有说服力。为了帮助用户进行数据与维度的双向关联性分析,这篇发表于IEEE VIS 2018的文章[1]提出了SIRIUS(Symmetric Interactive Representations In a Unified System):即同一系统下的交互性对称双向降维技术。
近期评论