标签存档: particle data

大规模粒子数据的计算属性上的交互选择 (Interactive Selection on Calculated Attributes of Large-Scale Particle Data)

在大规模的粒子数据中,有些属性需要在模拟过程中才能获得,比如温度、表面张力等。我们需要这些属性用来选择感兴趣区域的粒子,比如热点区域或者局部极值区域等,并在之后的模拟中观察粒子的变化情况。为了使用这些属性,我们可以首先运行一遍模拟过程,并把计算得到的属性保存下来,接着在系统中加载这些提前计算好的属性。然而,保存这些属性需要大量的磁盘空间,而且如果需要其他的属性,还需要再进行模拟以保存属性。另一种使用计算属性进行选择的方法是在模拟过程中实时计算并根据属性选择粒子,然而如果计算所有粒子的属性,模拟时需要分配更多的内存空间并使用更长的时间。本文结合3D视图刷选,提出了一种数据驱动的基于延迟计算的选择扩展方法[1]。

继续阅读 »