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Figure 1: A CT scan of a hand explored and visualized using our Local WYSIWYG Volume Visualization System. (a) The initial rendering of the
raw data; (b) the dense outer part of the volume removed with eraser tool; (c) the vessels are painted with different colors; (d) the bones and the
skin are painted with colors; (e) the rendering style of a metacarpal is transferred from another bone by sketching; (f) the brightness of the bones
in the previous operations are adjusted by painting; (g) the vessels are selected and moved to create a ghost view with annotations.

ABSTRACT

In this paper, we propose a novel volume visualization system en-
abling local transfer function specification through direct painting
or sketching on the rendered image, in a WYSIWYG style. Lo-
calized transfer functions are defined on scalar topology regions
specified by the user. Intelligent and fast feature inference algo-
rithms have been developed to convert user’s input to the region
specification and to achieve desirable feature styles with the local
transfer functions. In our system, users can not only manipulate the
color appearance of the object volume, but also apply style trans-
fer and generate various illustration styles with a unified input ges-
ture. Without manual transfer function editing and without param-
eter specification, our system is capable of generating informative
illustrations that intuitively highlight user specified local features.
Keywords: Volume visualization, Local transfer functions, WYSI-
WYG, Scalar field topology, Sketch-based user interface.

1 INTRODUCTION

For understanding and gaining insight into sophisticated volumetric
scalar fields, volume visualization has been widely applied in many
areas, ranging from medicine and engineering to physics and bi-
ology. Effective interactive visual exploration of volumetric scalar
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fields is essential for successful volume visualization. As graphics
hardware is advancing and new rendering algorithms have being
developed, modern volume rendering software is more and more
able to produce high quality images at sufficiently high frame rates
for moderately sized data sets. Furthermore, over the last decade
volume rendering techniques are been developed to a high degree
of sophistication. Despite all this progression, there still remains
a need for well designed visualization systems that fully support
intuitive and flexible volume data exploration.

Transfer functions map voxel values to visual properties such as
colors and opacities. Essentially, they give a classification of the
features in the volume data. Their design is crucial to obtain ef-
fective volume visualization results and is one of the aspects that
researchers have been devoted to support. However, assigning dif-
ferent voxels to corresponding colors and opacities, according to
their structure and characteristics in the data, is not trivial. A com-
mon practice of transfer function design is to create a color/alpha
value lookup table from a density curve. Real-time feedback from
the rendered volume images gives visual hints for further adjusting
this transfer function. However, such straightforward classification
fails to distinguish features, whose distributions overlap with other
components in the density range. More recently, derivatives, such
as gradient magnitude [20], curvatures [18], and ambient occlu-
sion [7], have been exploited to improve classification in transfer
function design. Nevertheless, it is still challenging to build one-
to-one mappings from all actual components to the feature space,
even with state-of-the-art transfer function design technologies. An
improvement for classification in transfer function design is to con-



sider a voxel’s 3D spatial position. However, it is commonly con-
sidered to be a difficult task to interact with complex objects in 3D.

Furthermore, in volume visualization, there is a need to distin-
guish different functional structures with similar material proper-
ties. One example is formed by vessels in medical volumetric data.
Veins and arteries take different roles in the blood transportation.
Consequently, they are labeled with different colors in most med-
ical textbook illustrations. One way to solve both aforementioned
problems in transfer function design is to replace a globally defined
transfer function with several localized ones. However, associat-
ing the location information in transfer function classification is not
trivial and often requires intensive manual intervention from do-
main users. Before a good visualization result can be manually ob-
tained, the users tune the transfer function by trial and error, while
mentally building the mapping from the feature space to the visual
components. This traditional way of designing a transfer function
is unintuitive and increases the design complexity even more.

In our recent paper, we proposed WYSIWYG volume visual-
ization [13], which allows intuitive direct operations on volume
rendered image instead of transfer function tuning. The effects of
the brushing operations are applied to similar features in the global
scope of the whole volume. In this work, we further develop a
new transfer function design system which takes advantage of the
spatial information for classification. In our system, the spatial in-
formation awareness is achieved by allowing the users to operate
directly on the rendered images of the volume data with sketching
and brushing, and in a WYSIWYG style [13]. In addition, the color,
transparency, as well as the brightness of the local features can be
interactively changed by painting on the image by different tools. In
the paradigm of local transfer function, features with indistinguish-
able density distribution, can be classified differently due to their
spatial location and connectivity. The contour topology [2] and its
simplification [23] are general-purposed and mathematically sound
in scalar field analysis and are used to subdivide the volumetric
data in a preprocessing stage, and later on to assist in feature lo-
cation specification. The main contributions of this work can be
summarized as follows:

• We propose a novel WYSIWYG local transfer function design
which allowing users to apply effects on topological local fea-
tures;

• Flexible painting, sketching, combined with gesture user in-
teractions are designed to help users explore and operate on
local features effectively.

Compared to the previous global WYSIWYG volume visualiza-
tion [13], the fundamental difference is the introduction of locality.
On one hand, introducing locality can not only distinguish more
meaningful features, but also reduce the confusion in user interac-
tion. The local brushed region can exclusively associate the local
features in the volume data, without affecting all similar features in
the global scope. On the other hand, designing local transfer func-
tions also needs intuitive WYSIWYG approach without resorting
to the complex parameter space.

In the remainder of the paper, Section 2 summarizes the related
work in several aspects. After an overview in Section 3, Section 4
introduces the user interaction tools the system provides. The data
pre-processing, which mainly involves scalar field topology extrac-
tion, is described in Section 5, and then detailed run-time algo-
rithms are presented in Section 6. Conclusions are drawn in Sec-
tion 8 before results and discussion in Section 7.

2 RELATED WORK

In this section, we survey the recent developments in transfer func-
tion design, and briefly review the closely-related literature in the
field of sketch-based user interface, and illustrative volume visual-
ization.

Transfer Function Design has become one of the central topics
in volume visualization research. The main effort in transfer func-
tion design research is to make better correspondences between the
visible feature space, on which the user can directly operate, and the
real volume characteristics. The two major categories in transfer
function design are formed by image-based and data-centric meth-
ods [24].

Data-centric methods use the scalar value as well as the deriva-
tives to classify the voxels and generate informative visualization
results. The most straightforward mapping of a transfer function
is a one dimensional lookup table to convert scalar values into col-
ors and opacities [1]. In such design, all volume regions with the
same density value will be colored the same and are visually in-
distinguishable. Adding more dimensions to the transfer function
feature space can often improve the classification capability. For
example, if the gradient magnitude of a scalar field is considered
in 2D transfer functions [20], boundaries of the materials are high-
lighted. Higher order gradients are also used for multi-dimensional
transfer function design [17, 19]. In addition, curvature [18], fea-
ture size [6], and ambient occlusion of samples [7] are proposed
to enhance transfer function design. LH histograms [29] that de-
fine L and H values as the local extremes derived from every voxel,
are proposed to highlight certain boundaries by specifying trans-
fer functions in the LH histogram space. Instead of directly using
the scalar value and the derivatives, topology information of the
volume data can also guide transfer function design [11, 31]. The
transfer function design can also be localized to each topology re-
gion [33]. Zhou and Takatsuka [36] further proposed a method to
automatically specify localized transfer functions based on scalar
field topology. In this work, both numerical properties and topol-
ogy information are utilized in local transfer function specification,
so that spatially disconnected features with similar properties can
be distinguished.

On the other hand, image-based transfer function design is goal-
oriented. A few image-based methods were developed early on in
volume visualization. A user-guided visual optimization approach
is proposed by He et al. [15], based on the rendering results of
stochastically generated transfer functions. Design galleries [22]
layout all available volume rendered images with randomly gener-
ated transfer functions for user selection and configuration. Trans-
fer function design can also be defined as a sequence of 3D image
processing routines, which aim at achieving a visualization goal,
e.g. boundary enhancement, set by the users [10]. However, it is
still difficult and unintuitive for users to control the results with
image-based method interactively.

In order to make transfer function design more intuitive and prac-
tical for users, the community has contributed various techniques
to overcome the problems. Semantic-based transfer functions [27]
were proposed to bridge the gap between the parameter space and
the semantic components. Semantic models are abstracted and de-
fined based on the reference data. Illustrative visual styles can
also be defined by semantics [25]. Besides by the explicit defini-
tion of semantics, transfer functions can also be specified by ex-
amples [21]. Another approach to simplify transfer function de-
sign exploits machine learning techniques. Tzeng et al. proposed a
framework that converts stroke input into multi-dimensional trans-
fer functions using a neural network [32]. More recently, several
methods have been proposed to make transfer function design more
straightforward by introducing direct operations on volume ren-
dered images. Wu and Qu [34] proposed a technique to fuse fea-
tures from multiple volume rendered results. Users can add or re-
move features by drawing strokes on the image. Semantics can be
defined by users by brushing interaction on the rendered image, in
order to assign parameters for visual mappings [12]. Stroke-based
transfer function design [28] also allows users to extract and define
layers in volume data by specifying foreground and background on



rendered images. In WYSIWYG volume visualization [13], users
can directly manipulate the volume rendered images by painting on
the results, and the system gives real-time image feedback to the
users. In this work, we further enable users to operate on local fea-
tures.

Sketch-based User Interface is intuitive and user-friendly, and
it has been widely used in different tasks and applications. Design-
ers can also stylize non-photorealistic effects on three-dimensional
models by directly annotating strokes [16]. In volume graphics,
sketch-based user interfaces are also helpful. Volume data can be
interactively edited by interactive sketching [4]. In volume seg-
mentation, the segmentation results can be edited and optimized by
a sketch-based user interface on rendered images [35].

Illustrative Volume Visualization can further convey the details
in volume data in an informative way [9]. Such effects can also be
configured with transfer functions [26]. Two-level volume render-
ing [14] was provided to render different parts of a volume with
corresponding different techniques. Svaknine et al. [30] proposed
a goal-oriented user interface to create illustrations with different
motifs. In VolumeShop [3], cutaway and ghosting illustrations can
be interactively generated with a straightforward user interface. In
our system, such illustration effects can be naturally achieved, using
location specification by sketching strokes.

3 OVERVIEW

The main design goal of the system is to allow users to specify lo-
cal transfer functions by flexible user interactions in rendered image
space. In order to achieve this goal, there are two major problems
to solve, including the design of local transfer function space and
user interaction. One of the practical ways to add location informa-
tion into transfer function is to apply pre-segmentation, which often
relies on domain-specific algorithms and intensive human interven-
tion. We notice that users often want to discriminate disconnected
structures, which are often with similar properties. Thus, we can
use contour topology analysis, which is a general and powerful tool
to abstract the features and define transfer functions. To handle
local transfer function design, in our WYSIWYG user interaction
design, local features in the rendered images can be colorized, en-
hanced, removed, or brightened using the provided tool set by direct
painting and sketching. Grouping and locking functions are avail-
able for convenient editing. Users can select to work on a local,
group or global scope to control the locality of operations.

The pipeline of the system is shown in Figure 2. In a pre-
processing stage, the abstract topology information of the raw vol-
ume data is extracted, and the volume data is partitioned into differ-
ent topological regions. During run-time, volume rendered images
are generated from the pre-processed data with localized transfer
functions. The results of volume rendering can be interactively
changed by a user through either painting with different tools or
drawing strokes. The system incrementally converts the user input
into local transfer functions by feature inference. Volume rendering
results are updated instantly for feedback to the users.

4 USER INTERACTION DESIGN

In this section we describe the user interaction design in our sys-
tem, including sketching and painting, operation scopes, and other
interactive tools for changing visual effects. Operations, such as
grouping and locking, are triggered by traditional hot keys, buttons
or menus. Also, standard 3D visualization operations, such as ro-
tating, panning, and zooming are supported.

4.1 Painting and Sketching

In the volume rendering view, users can switch between two inter-
action modes, painting and sketching. In these modes users can
apply several visual effects and operations.
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Figure 2: The system pipeline with both data pre-processing and
run-time algorithms.

Painting updates the rendered results in real-time as a user
moves a brush over the image. Users can stop painting at any time
when the visual effects are satisfying. Figure 3 (a)-(c) shows an
initially black blob being painted orange.

Sketching allows users to define single or multiple operations
by gestures, a combination of strokes with semantics. After the
last stroke completes, the system automatically recognizes the in-
put gesture and applies the corresponding effects. For example, in
Figure 3 (d)-(f), after placing an orange stroke on the black blob,
the target volume is instantly rendered orange. With such gestures,
both simple actions (e.g. colorization) and compound operations
(e.g. style transfer) can be defined and applied.

4.2 Operation Scopes

Desired effects can be applied to different operation scopes. As
shown in Figure 4, there are three operation scopes currently sup-
ported in the system: local, group and global. By default, if no
groups are defined, user operations only take effect on the local
scope, that is, other topological regions will not be affected. Op-
positely, the appearance of all similar features will be modified if
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Figure 3: Interaction modes: (a)-(c) painting mode; (e)-(f) sketching
mode.

(a) (b) (c)

Figure 4: Three different operation scopes: painting scope is (a) lo-
cal; (b) group; and (c) global.

global scope is selected, similarly as in WYSIWYG volume visu-
alization [13]. In the group scope, the features in the defined group
will be simultaneously operated on. The group scope is often handy
to use when topological regions are fragmented.

Selecting, grouping and locking tools are provided to apply op-
erations on several features simultaneously, users can select and
group features. By default, the current selection will be cleared
when new selections or empty selection are made. Users can also
add or remove from the selection by pressing keyboard modifiers,
similar to the operations in image editing software. When features
are selected, the boundaries are highlighted with Photoshop-like
dashed lines in the image. A locking function is also provided to
prevent accidental modifications on already fine tuned features.

The system also provides drilling down and rolling up operations
to enable effective volume data exploration. In the drilling down
operation, the volume features that are not in the selection are hid-
den and locked. Users will only view and operate on the selected
volume features and be able to focus on a local region (Figure 5).
Drilling down and its inverse rolling up are triggered by sketching.
These functions can be used to create focus+context illustrations.

4.3 Visual Effects and Interactive Tools

A full set of interactive tools is provided to modify the appearance
of the visualization results, eventually enabling the users to discover
new insights in the data set through interactive exploration. The
provided interactive tools are categorized in different modes and
listed in Table 1. The tools can also be categorized by their visual
effects.

Appearance Changing The color, transparency, and silhouette
parameters can be either directly or indirectly changed. Specif-
ically, the color of the features can be edited by either the col-
orization painting tool or colorization strokes in sketching mode
(Figure 1(b) and (c)). The transparency can be increased or de-
creased by applying the eraser painting tool. The pigtail stroke

1
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2

Figure 5: Drilling down and rolling up. In ➀, a selected region is
extracted for drilling down; in ➁, the focused region is painted with
a different color; in ➂, the focused region is restored to the original
view by rolling up.
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Group Group the current selection

Lock Lock the current selection

Unlock the current selectionUnlock
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Pigtail

Colorize the corresponding features with the line colorColored Lines

Write annotation
Annotation1
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Create ghost view
Arrow
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Transfer style from one region (group) to another

Style Transfer

1

2

3 4

Hide the regions that are not selected

Focuse on the selection
Drilling Down

Undo drilling downRolling Up

Table 1: The user interaction tool set of the proposed Local WYSI-
WYG Volume Visualization system.

((Figure 6(d)), a stroke which self-intersects several times, can
fully remove corresponding features by making them fully trans-
parent. The Brightness painting tool can make the features brighter



or darker. Users can also add silhouettes by painting along the cor-
responding silhouette boundary locations of the surfaces in the vol-
ume rendered images.

Style Transfer The style (appearance) of a certain region can be
transferred to another region (or group) by the style transfer tool.
Style transfer is triggered by an arrow gesture (Figure 1(d)). Two
additional strokes are required to specify the source and the desti-
nation of the transfer. It is more straightforward to assign visual
properties from existing examples than starting fresh with coloriza-
tion or eraser tools.

Ghost View Users can directly generate a ghost view from the
current selection by arrow gestures. The new ghost view can be ro-
tated, panned, and zoomed independently. The current ghost view
can also be recovered by the rolling up gesture. Figure 1(g) is an
example of a ghost view, which clearly illustrates the detailed struc-
tures of ghosting components in a focus+context manner.

Annotation Annotations through sketching can be naturally
added into a rendered image to make the illustrations more informa-
tive and insightful. There are two components in each annotation,
namely a position and a string.

5 DATA PRE-PROCESSING

In the pre-processing process, contour topology information is used
to measure and describe local features and to achieve local appear-
ance specification. As shown in Figure 2, there are three major
steps in the pre-processing phase. First, a contour tree is computed
from the raw volume data. Second, a (simplified) branch decom-
position is computed based on the contour tree. Third, the branch
decomposition is used to segment the data in a labeled volume.

A contour of a continuous scalar field f : Mn → R on a contin-
uous n-dimensional manifold M

n is defined as a connected compo-
nent of a level set L(h) = {x| f (x) = h}, where h is an iso-value.
While varying h from the global minimum fmin to the global max-
imum fmax, the contours join, split, or disappear at critical points,
thus the topology of the isosurfaces changes as h varies. Since there
are no holes in the simplex M

n, the change of the contours can be
tracked as a contour tree [2]. A contour tree is capable of rep-
resenting the topological structures for scalar fields defined on a
simplex. Due to the sensitivity to noise, contour trees are often too
large to manage. Consequently, simplification methods are needed
to make describing features more practical [5]. Branch decomposi-
tion [23] is an alternative way to present a contour tree. Each branch
in branch decomposition represents a monotone path traversing a
series of nodes in the contour tree.

In our implementation, we use branch decomposition instead of
original contour trees for reasons. On one hand, branch decompo-
sition provides a native multi-resolution representation of the con-
tour tree, which is consequently straightforward to simplify. On
the other hand, based on branch decomposition data structures,
high-quality topology-controlled volume rendered image can be ob-
tained [33].

In the pre-processing pipeline, a labeled volume is obtained by
topology-guided segmentation [33]. The labels are the indices of
the branches in the branch decomposition tree. Currently, the fil-
tering threshold and the max number of branches for the tree sim-
plification is fixed in run-time, due to the performance and storage
limitation on the graphics card. The raw volume, together with the
branch decomposition tree and the labeled volume, form the input
for the run-time processing.

6 RUN-TIME ALGORITHM DETAILS

In this section, we introduce the run-time algorithms of the pro-
posed framework in detail. There are two major problems to be
solved in the pipeline. First, the sketching and painting inputs need
to be converted into the feature descriptions desired by the users.

(b)(a) (c) (d)
Figure 6: Stroke types: (a) painting strokes (invisible); (b) ordi-
nary strokes; (c) functional strokes; (d) hybrid strokes. In (d), the
smoothed strokes (in dashed lines) are derived from hybrid strokes.

Second, the rendering parameters need to be changed accordingly,
before the updated rendering results are fed back to the users.

Based on the pre-processed data, the local regions in the system
are defined as the branches of the branch decomposition tree. As
shown in Figure 2, the user input strokes are first converted into
(smoothed) strokes, then the seed pixels for ray traversal are derived
from the (smoothed) strokes. After ray traversal and data clustering,
the working branch set B which defines the operation region can be
obtained. There are also other branch sets in the system. The lock
set L contains the branches whose appearance cannot be edited.
The current selection is defined by the selection set S. In addition,
groups Gi can be defined to synchronize the selection behavior and
visual appearance changes.

6.1 Stroke Processing and Image Space Analysis

In this step, the local image patches are derived from the input
strokes. In painting mode, each input point is also treated as a sam-
ple point on an invisible stroke. In sketching mode, there are three
stroke types: ordinary, functional, and hybrid (Figure 6). Ordinary
strokes indicate the desired positions and can be used directly as
the seed for image space analysis. Functional strokes are recog-
nized as gestures for the desired operation. For example, the arrow
gestures indicate the style transfer operation. Hybrid strokes simul-
taneously define gesture and positional information. For positional
information, the hybrid strokes are converted to ordinary strokes by
straightening the lines before any further processing.

In the next step, the seed pixels in the image space are computed
by propagating from the pixels covered by the smoothed strokes.
The assumption here is that the seed pixels are similar to the pixels
that are covered by the strokes [13]. Foreground and background
patches are labeled by a two-pass Graph Cut algorithm. The fore-
ground pixels, which are close to the pixels hit by the strokes, are
the seeds for ray traversal and further analysis.

6.2 Ray Traversal and Feature Inference

In order to interactively change appearance and apply other opera-
tions in runtime, the system needs to know which branches to work
on, namely the working branch set B. Besides, the numerical distri-
bution of the features, indicated by the user strokes, should also be
derived for further local transfer function modification. We collect
multi-variate samples along the rays that start from the seed pixels
in the image space. Several properties are collected at each sam-
ple point x during ray traversal, including scalar value s(x), trans-
parency, visibility V (x), depth, and branch index b. The visibil-
ity V (x) represents the visual significance at sample point x [8].
The working branch is determined by choosing the branch with the
highest score, which is defined by the average visibility of a branch.
If a branch belongs to the locked branch set L, it will not be se-
lected. The working branch set B is further supplemented by adding
other branches which are in the same group G, or all branches in
the data set when in global scope.

The collected samples whose branch indices belong to the work-
ing branch set are further clustered to evaluate the numerical dis-
tributions. In order to give users real-time feedback, especially in



painting mode, light-weight and hardware accelerated clustering al-
gorithms are used [13].

6.3 Semantic Realization

Semantic realization process takes effect on the rendered image
according to the feature inference result. After determination of
working branches and evaluation of numerical distributions, differ-
ent operations can be applied by modifying the local transfer func-
tions, updating the locking and grouping status, transferring styles,
and creating and updating ghost views. Without loss of generality,
a local transfer function Tb for branch b is defined as

Tb =
n

∑
s=1

cb,sfs = CT
b F, (1)

where the tuples cb,s contain color and opacity values, and fs is

a component in feature space F = (f1, f2, . . . , fn)
T . Compared to

the global transfer function form [13], each branch in our system
has a specific transfer function. In this framework, each component
corresponds to a scalar value, and cb,s is specified to the scalar value

s. Thus, CT
b is a 1D lookup table data structure.

6.3.1 Style Transfer

Style transfer copies the style of a source branch to a destination
branch. Styles can cover many visual parameters, including colors,
shadings, etc. The transfer of color is tricky, so we focus on trans-
fer of color. Our implementation is based on the method proposed
by Lu and Ebert [21], which maps the mean and standard deviation
to each color channel. A statistical analysis is used to impose the
color style of one branch to another branch or a group of branches.
We define the color transfer as the color distribution transfer from
the source branch to the destination branch. Assuming that the fea-
ture distribution and color distribution of the branches are simple, a
Gaussian function is fit onto each opacity-weighted color channel.

6.3.2 Direct Visual Appearance Editing

Three basic visual parameters can be modified with the user in-
terface, namely color, opacity, and silhouette intensity. Changing
brightness is done by changing the color. In the painting mode, an
incremental local transfer function ∆Tb updates the current transfer
function at each new stroke position and is defined for a branch b
by

∆Tb = λ∆CT
b F. (2)

where ∆CT
b is a color and opacity lookup table for the incremen-

tal change of the local transfer function for branch b, and λ is the
time rate constant that controls the speed of change. At each new

stroke sample, the new local transfer function T
′

b is a combination
of the previous local transfer function Tb and the incremental local
transfer function:

T
′

b = Tb ⊕∆Tb, (3)

where operator ⊕ blends two colors in CIE L∗a∗b∗ color space. In
the sketching mode, an operation is applied only at the end of a
stroke. We regard such operation as a style transfer from a solid
color to the working branch set B.

6.3.3 Selection Making

Selection making operation makes the current working branch set
B equal to the selection set S. The working branch set is decided by
ray traversal and feature inference when users paint on the image.
During the working branch selection, branches in the lock set L are
also allowed to be selected. Groups can be further made by copying
the current selection set S to a new group G′. Branches can also be
locked in order to prevent further appearance changes.

Dataset Size Nb Tpre Tr Ti

Hand 244×124×257 128 16.8 0.134 0.307

Chest 3842 ×240 128 64.9 0.148 0.170

Vorticity 1283 128 5.8 0.094 0.117

Combustion 480×720×120 160 112.9 0.271 0.309

Table 2: The timings of the system. Nb is the number of branches;
Tpre, Tr, and Ti are the average timings of pre-processing, rendering,
and feature inference in seconds.

Figure 7: The rendering results for the CT chest data with a ghost
view of the lungs. A global eraser operation is applied first to remove
the outer part. Then the colors of different structures in the volume
are changed with a colorization tool. To reveal detailed features of
the lungs, a ghost view is created in the last stage.

7 RESULTS AND DISCUSSION

We have tested the proposed system on several data sets of differ-
ent types, and invited domain experts to use the system and give
feedback.

7.1 Implementation and Performance

The system is implemented in C++ and uses OpenGL and CUDA.
Volume data with topology information and the transfer functions
are transferred to the video memory, and the resulting images are
returned and rendered on an OpenGL buffer. The local transfer
functions are stored as a 2D lookup table in the video memory.
When transfer functions for several branches are modified, the cor-
responding rows of the lookup table are updated respectively.

We performed a timing test (Table 2) on a Dell T3500 work-
station with an Intel Xeon W3503 2.40GHz CPU, 8GB RAM, and
an NVidia GTX560 graphics card with 1GB video memory. The
rendered image resolution is fixed at 800× 600, and the step size
of raycasting is 0.5 voxel. Full shading is applied during the ren-
dering. From the table, we can see that the system is interactive
during the run-time interaction, although the pre-processing takes
relatively a long time. The rendering performance is also related to
different rendering states and viewpoints.

7.2 Case Studies

We apply the proposed tool on several datasets as listed in Table 2.
The hand data and the chest data are from CT scans, and the com-
bustion data is from a simulation.

Figure 1 demonstrates the interactive operation sequence on the
CT scan of a human hand. If the data set is visualized with tradi-
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Figure 8: The rendering results for the combustion dataset at
timestep 66 with a global transfer function (a) and local transfer func-
tions (b). The structures in the data field are clearly highlighted with
local transfer functions.

tional global transfer functions, it is difficult to specify visual pa-
rameters at such granularity. For example, the density distribution
of the vessels overlaps with that of the bone. In previous work, by
using a segmented volume [14], the classification becomes clear,
but their data segmentation often requires intensive manual inter-
vention. In our framework, the raw data set is partitioned with
contour topology information, which is lightweight and often rea-
sonable. The visual appearance of each topological zone can be
modified in multiple flexible ways.

In Figure 7, a CT chest data is shown. Compared to the vertical
transfer function editor for unique topological zones [33], the man-
ual mapping between the branches and the corresponding regions is
avoided. For example, when users would like to change the color of
a specific rib, they would have to find out which branch corresponds
to this rib first, before the local transfer function could be modified.
In our framework, users do not need to access these visualization
parameters directly, but can directly start editing.

To present how the proposed method performs on simulation
data, we apply the system on timestep 54 of the vorticity data (Fig-
ure 5) and the combustion data (Figure 8). Traditionally, global
transfer functions are favored for simulation data, because the spa-
tial numerical distribution is important. However, global transfer
functions may lead to severe visual interference between nearby
features. Our method provides a solution to highlight the structural
insights of the data set, and also may conveniently generate volume
visualization in illustration style.

We invited experts from medical and fluid dynamic backgrounds
to try our system and give feedback. The user from medical re-
search rated the system as excellent after trial use. Without any
prior experiences in volume visualization, he can use the system
to explore medical volume data without difficulty after a very brief
introduction on the system. It is straightforward to identify impor-
tant features, and generate an illustration in high quality. Com-
pared with tuning parameter lines in the tradition of transfer func-
tion design methods he also tried, he gave strong preference on our
way. The user from fluid dynamic research also gave positive com-
ments. With localized transfer function and intuitive tools, interest-
ing structures can be revealed and illustrated effectively. From user
perspectives, they can set different appearances for spatially dis-
connected components, so they do not even have to know contour
topology and the branches in the data explicitly.

7.3 Discussions

From the above cases, we can see that the proposed method can be
effective to generate insightful volume visualizations by emphasiz-
ing local features. Since contour topology is general for volume
data analysis, our tool is applicable to a variety of data, not lim-
ited to CT scan and turbulence data. Traditional transfer functions,
however, which are defined in the global domain, are not likely to
be able to adjust local appearances in most practical data sets. On
the other hand, even if localized transfer functions would be used,
the manual specification of the huge parameter space remains hard
for users to handle.
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Table 3: Comparison to previous work which supports 2D interaction
on volume rendered images. The plus means that the method is ca-
pable of applying a certain kind of functions, while minus means that
it does not apply. Plus in brackets indicates that the corresponding
technique has the potential to support the certain function.

We compare our tool to existing work that supports 2D inter-
action on rendered images (Table 3). Our tool is the first to com-
bine the transfer function design and localized operations in a sin-
gle framework. Illustration effects are readily incorporated. Poten-
tially, the volume editing functions could be added into the system
for finer granularity tuning.

Compared with the previous WYSIWYG volume visualiza-
tion [13] work, there are multiple benefits introduced by local trans-
fer function design. From the classification aspect, local transfer
function is much better than global mapping. Disconnected fea-
tures in with similar numerical properties can now distinguished by
their locations, so the global transfer function limitation in the pre-
vious work is eliminated by introducing the local transfer functions
defined on topology regions. Take the hand data for example, the
vessels are in the same region in the 1D feature space, so it is not
possible to change the appearance of specific vessels, without in-
fluencing other ones. From user perspectives, our tool provides an
implicit and intuitive interface to sophisticated local transfer func-
tions. Without extensive practice, users can handle the tool and
create insightful results. In WYSIWYG design, the localized oper-
ations are also important. The user painting region can exclusively
take effect on the local features, instead of all similar features in
the global scope. Thus, local operations make user interaction less
confusing, and more flexible. In addition, we also introduce sketch-
and gesture-based user interaction, which makes the system full-
functioned and self-consistent, especially for local operations. Il-
lustrative visualization can also be created with components like
ghost views and annotations.

There are several limitations in our work, and some factors may
influence the user experience and the exploration process. Since the
locality is based on contour topology, restrictions apply depending
on the circumstances. First, contour trees are quite vulnerable to
noises, so data sets with lower noise may perform better. For exam-
ple, the contour tree of the fMRI data is very hard to describe clear
features due to noise, so our method may not be as good as ex-
pected. Second, the number of branches, which controls the num-
ber of local topological regions, may affect the granularity of the
operations. Currently, we only support static number of branches
in run-time due to storage and performance issues. If the number
of branches is too low, local features may be submerged into other
components. Otherwise, users need to combine small features into
meaningful components during the interaction if the number is too
large (the theoretically complexity is O(n)). Dynamic branching
may be supported in future implementation with rational algorithms
and user interaction design. Third, the initial parameters e.g. trans-
fer function and camera configuration may also influence the explo-
ration process.

8 CONCLUSIONS AND FUTURE WORK

In this work, we present a volume visualization system called Lo-
cal WYSIWYG Volume Visualization, which is capable to assign



local transfer functions through direct sketching or painting on the
volume rendered image. Our user interaction design serves two pur-
poses. It not only provides the user with an intuitive WYSIWYG
style interaction to specify target volume objects for assigning col-
ors and opacities, but also provides spatial locality to achieve local
specification of transfer functions. Such design lowers the threshold
for using transfer function in volume data exploration.

In the future, several improvements may enhance the system.
Without too much additional effort, our system can support volume
editing. A formal user study will be conducted to further validate
the effectiveness of the system. We are also going to apply our
method to datasets from different domains. The proposed method
can also be generalized to time-varying volume data, by extracting
the topological structures over time evolution of the data. Currently
the system only works on scalar field data. We would like to extend
our interaction metaphor to support vector fields or multi-variate
volume data.
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