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Abstract—In this paper, we propose using timelines for 2D
trajectory comparison. Trajectories directly rendered on a map
do not show temporal information well, and are cluttered and
unaligned. This make them difficult to compare. We convert
trajectories to timelines, which naturally shows time, and are
more compact and easy to align. In addition to simply showing
how an attribute varies along the time, we further propose some
novel timelines to show spatial-temporal features. We provide
some use cases to show the benefit of our method.

I. INTRODUCTION

With the advances of sensing technology, the trajectory data
is pervasive now. Taxis, ships, airplanes, hurricanes, cell phone
users and animals are all leaving trajectory data record. This
gives us the opportunity to explore and understand complex
social, economical and scientific phenomena. However, we
face the challenge to effectively analyze this data, and extract
knowledge from it. Trajectory visualization is one important
strategy for such analysis. It is able to provide us with an
intuitive overview of various aspect of the trajectories, help
validate what is known and reveal what is unknown.

Trajectory visualization usually consists of three different
but related aspects: space, time and attribute. The focus in
this paper is the temporal aspect. It is hard to visualize and
analyze, especially when the number of trajectory is over
several hundreds. We explore the timeline visualization of
trajectories. Timeline is a widely used visual metaphor for
temporal visualization. When used in trajectory visualization,
it has the following advantages:

• It intuitively and effectively show the temporal infor-
mation, easy for navigation

• It can be packed side by side, therefore do not have
visual cluttering

• It is convenient for analysis: compare, sort, cluster and
align are easy

Our method will be restricted to 2D trajectories. That is,
trajectories without height information. In order to apply our
method to 3D trajectories, we can first transform them to 2D
by dropping the height information. This is reasonable in many
cases.

In this paper, we show how to construct a set of timelines
from one trajectory, based on different criteria. Our timelines
are not limited to those showing how an attribute change with
time. We also design timelines to show the change of spatial

features, such as curvature, straightness, turns and stops. This
is one attempt to combine the spatial and temporal aspect in
one visualization, which is usually considered important yet
difficult. We arrange the timelines in a 2D heatmap view and
a 3D terrain view. Besides, we link our timeline visualizations
to other spatial and attribute visualization, and make some real
analysis. Our major contributions are:

• Design some new forms of timeline visualization of
2D trajectory, such as turn-plot and stop-plot

• Build a system, and use timelines to analyze real
trajectories

We will first review the related works. After that, we will
present the timeline construction and interaction. We then show
the interface of our system, and provide with some results on
real data. Finally it’s the discussion and conclusion.

II. RELATED WORK

Timeline is a widely used visualization technique for
temporal data visualization. Some researchers adopt time-
line directly for trajectory data visualization, some use other
metaphor to show the temporal information. There are still a
few line representation techniques, which can produce results
similar to timeline.

A. Timeline Visualization

The most popoulat visualization method for temporal data
is arguably timeline visualization. Each object or event is
visualized as a line, showing its start and end time [18]. In
addition, attribute values can be depicted on the timeline to
show how the attribute change over time. Interactive query
and filtering are supported [13]. Timeline visualization usually
works well when the number of time series data is small. As
long as the number goes large, cluttering occurs and features
are hidden. Aggregation [22] can be used to give an overview,
but mainly start, end time and time duration. The trend of
attribute change are hard to summarize. Without aggregation,
one strategy to avoid this is to use focus+context [17] tech-
nique. Line plots are shown only when there’s enough space,
but it does not give a good overview. Another way is to use
height [15] or color [7] to show the attribute value. We use
height in our 3D terrain view, and color in our 2D heatmap
view.



Fig. 1. Interface of our trajectory visualization system. (a) Timelines as 2D heatmap, visualizing trajectory curvature change over time; (b) Timelines as 3D
terrain, visualizing trajectory curvature change over time; (c) ThemeRiver showing the temporal distribution of trajectories in a day; (d) Map view giving the
spatial information of trajectories; (e) MDS projection view showing proximity of trajectories in attribute space; (f) Scatterplot matrix view showing trajectory
attributes; (g) Color palette for group tagging. In this picture, 492 taxi trajectories are visualized. They are running from a railway station (labeled START) to an
airport (labeled END), with passengers inside. Color on the right of the 2D heatmap timeline view (a) and color on of the 3D terrain view (b) encodes timeline
value (curvature value here), red is for strong right turning, and blue is for strong left turning. On the left bar of the 2D heatmap view, and on other views (c-f),
color encodes group belonging. Here 3 groups are tagged, assigned with color yellow, green and magenta.

B. Temporal Visualization of Trajectories

Most of the trajectory visualization focus on the spatial
information, but there are still a few on the temporal infor-
mation. Andrienko [2] et. al. have explored using timeline
for trajectory visualization, but their result is rather simple,
just basic ordering and alignment. Proximity visualization [8]
looks similar to timeline. It projects the trajectory into an
abstract space, defined by the distance to some critical spots.
Especially, it can produce a time line representation, showing
the distance change. However, it requires that the trajectories
be in the same region, and some critical spots be predefined.
Cluttering is serious when there are many trajectories.

Space time cube [11], [14], [4] draws the time as z-axis
perpendicular to map. It precisely encodes the spatial and tem-
poral information. However, similar to other 3D representation,
it’s hard for user to precisely decode the information. Besides,
as the trajectories are just drawn as they were, visual clutter-
ing becomes a serious problem, and comparison is difficult.
Stacking [20] can show temporal ordering information on a
spatial context. When trajectories are similar, visual cluttering
is not that series. Some visualization use aggregation [3], [20],
[10], [16] to give an overview of the temporal distribution of
trajectories, or positions of trajectories at different time [19].
Our method shows individuals.

C. Line Representation

Line representation is easy for navigation and comparison,
and is not cluttered. Therefore, many data are visualized as
lines, even if their original forms are not lines. Most of
them use deformation technique. Wu et. al. [23] adapt the

metro map layout to make the user queried route straight.
This makes navigation easier. Angelelli et.al. [5] straighten
the flows in tubular structure for easy comparison. Potentially,
trajectories can also be deformed to a line representation
similar to timeline. One related work is route deformation [1].
Although its result is not a line, but this strategy can be used
to indeed convert route into lines. Currently, our efforts are on
timeline representation. We do not consider these deformation
techniques.

III. DESIGN

In this section, we first explain the design goal of trajectory
timeline. After that, we show how we construct and interact
with the timelines.

A. Design Requirements and Decisions

We expect our visualization to fulfill the following design
requirements:

• (R0: Time) We hope to see temporal information of
the trajectories. For the best we should have a time
axis or time ordering axis.

• (R1: Navigable) We hope that a trajectory can be
followed from start to end easily. This requires the
general shape of each representation be simple and
the representation be monotonous in some sense.

• (R2: Interpretable) We hope the representation is read-
able by human. Therefore we cannot calculate or train
feature vectors as in machine learning and directly
show it.



• (R3: Comparable) We hope that hundreds of trajec-
tories can be compared. Therefore the representation
must be simple and aligned.

Timeline naturally shows time with the x axis as time axis.
Its linear form is easy to navigate and compare. The attribute
value change is Interpretable as long as the attribute calcula-
tion is meaningful. Another promising method is deforming
trajectories into line. In that case, the local shape is more
meaningful than the position of the baseline. If we would like
to have a time axis to make the time information clear, this
will have conflict with the meaning of local shape. We think
this is difficult, therefore we use timeline. One argument is
that deformation may better preserve the spatial information
than timeline conversion. However, to our observation, when
a trajectory is strongly deformed to a line form, the spatial
information are almost lost.

B. Timeline Construction

We describe five types of timeline attribute calculation.
Each one will give a set of timelines. The former two types
are naively showing some attribute, while the latter three are
showing spatial features. Figure 2 shows different timelines
for one trajectory. The line representations all have time as x
axis, but with different y: velocity (a point attribute), segment
average velocity (a segment attribute), curvature, straightness,
significance of turn, significance of stop. Some critical points
are labeled on the map manually, with their corresponding time
one the left. From this figure we can see that only the stop-
plot gives signal at stop. Curvature plot and straightness plot
identify almost the same interesting time, but with different
peak shape. Their peaks and turn plot’s peaks correspond well
with the spatial feature. We now describe them in detail.

Fig. 2. Summary of different types of timeline construction.

1) Point/Segment Attribute Plot: We briefly call each tra-
jectory sampling point as point and each part between two
consecutive points segment. Both point and segment can have
attributes, such as point speed or segment average speed. Given
one point or segment attribute, we can show how it changes
with the time. This gives a timeline. For point attribute, which
is inherently associated with a time, this is direct. For segment
attribute, we will assign it to the point starting the segment.
For the last point, it will take the last segment attribute.

2) Curvature Plot and Straightness Plot: For each trajec-
tory, we can show how its curvature change with time, and how
its straightness change with time. This gives two timelines:
curvature-timeline and straightness-timeline. The conversion is

Fig. 3. Definition of the curvature and straightness.

also point-wise. For each trajectory point P, we get a point
A before it and a point B after it, and use A, P, B plus
the trajectory between A and B to do the calculation. As
figure 3 shows, the curvature is defined as the angle change
over the distance along the trajectory. The curvature has a
sign, positive for right turn and negative for left turn. The
larger the absolute value of curvature, the shaper the turn. The
straightness is defined as the distance along the trajectory over
the straight line distance. It always larger than one. The large
the straightness, the less straight it is. One thing to notice is
that while the object is static for a long time, the calculation
will be problematic. In this case, we will assign the point with
a default value, 0 for curvature, 1 for straightness. Then it
looks like that at this point there’s no signal.

3) Turn Plot: For each trajectory, we show how its “turn-
ing” significance change over time. The term “turning signifi-
cance” comes from the observation that, there’s different scales
of turns. Assume that we are studying a car. It can be a turning
of the overall big direction, or a turning due to route selection,
or a turn due to lane selection. We consider the former large
scale turns more significant, while the later small scale turns
less significant.

Fig. 4. Definition of the angleT in turning significance calculation.

We have designed an algorithm to calculate this signif-
icance value. In order to capture multiscale turns, we try
to get a multiscale representation of the trajectory geometry,
and assume that turns on high level representations are more
significant. We then calculate the turn value in a manner
called angleT (Figure 4). Here the angle calculation is slightly
different with the above curvature and straightness, but trying
to show the same property. The division by time is according
to the intuition that quick turns are more significant. After
that, we get the representation for each scale, finally combine



them back. Similar to curvature and straightness, if an object
have not moved for a long time, it will not produce any signal
remain a horizontal line.

Our algorithm includes six steps. In step 1 (Figure 5(a))
we split trajectory into trips: “stop”s and “move”s. These two
kinds of subtrajectories will be treated differently: “stop”s
will skip step 2 to 5 and be represented just as a straight
horizontal line, “move”s will go through step 2 to 5. In step
2 (Figure 5(b)), for each “move”, we make different scales of
simplifications by an modified Douglas-Peucker algorithm [9],
each level correspond to a different distance threshold. In step
3 (Figure 5(c)), for each trajectory, for each simplification
scale, we convert trip into line representation by the angleT
calculation (Figure 4). Fast turns with large angle will produce
strong signal. In step 4 (Figure 5(d)), we interpolate between
the control points with different strategy, the yellow rectangles
highlight their difference. Direct interpolation on the first line
between signal peaks can be problematic, because when no
sampling point is recorded, it is less likely to have turns.
Therefore it should produce very low signal. The lower two
lines use parabolic curves and trigonometric curves to do
the interpolation, which make the signal peaks more local.
In step 5 (Figure 5(e)), for each trip, all representations
from different scales of simplification are linearly combined,
giving representations of large scales higher weight. In step
6 (Figure 5(f)), representation of all trips, whether “stop”s or
“move”s are reconnected, forming the final representation.

Our angleT calculation has a sign, which result in positive
and negative values on the timeline. This is intuitive, since
left and right turns can be differentiated. However this can
be problematic due to combination of different scales of
representation at step 5. When positive peaks and negative
valleys are combined, both of them disappear. This is very
unfavorable. Therefore, we provide an option to turn off the
sign of angleT calculation. However, this lead to left and right
turns mixed together.

4) Stop Plot: From above we can see that stops are very
important. In this type of timeline, we show how significance
of stop change over time. By intuition, there are different scales
of stops. Assume again we are studying cars. Considering
temporal aspect, it can wait a red light for 2 minutes, can
stuck in a traffic jam for half an hour, can park a car for
half a day. Considering the spatial aspect, it can just stop
somewhere, or continuously moving around a small region.
Here we consider this issue. Our strategies are very similar to
above when we calculate the significance of turn, but in this
case we do not manually differentiate “move”s and “stop”s, we
treat them together. This is partially because now significance
of stop gives signal, so both “move” and “stop” give signal.
Therefore we do not need step 1 and step 6. Another difference
is in step 3. Now we do not calculate angleT for each point,
instead we calculate the reciprocal of average speed for each
segment, and the signal will be put at the middle time of the
segment. Therefore we can see peaks on “stop” segments. All
stop values are positive.

C. Timeline Interface

In order to show hundreds of timelines, we use a 2D
heatmap view (Figure 1(a)) and a 3D terrain view (Fig-
ure 1(b)). The 2D view use color to encode the timeline

(a) (b)

Fig. 6. Different styles of timeline rendering in 3D. (a) ”line” like rendering;
(b) ”wall” like renedring.

attribute value. This is perhaps the only solution, since position
encoding are used, and length encoding can not work in so
small area. We use a red to blue color scale, with red encode
positive value and blue encode negative value. The 3D view
use height to encode the timeline attribute value, which is very
natural. We have tested different styles of timeline rendering
in 3D. Figure 6 shows two of them, the “wall” like rendering
(b) gives better depth perception than the “line” like one (a),
but results in more occlusion. Outliers are especially like to
be occluded in the “wall” style. We use the “wall” like one by
default. Occlusion can be reduced by rotating the 3D scene. In
both views, the timelines can be sorted either by similarity, or
by general measures such as total distance or total time. The
sorting dramatically reveals patterns in the timelines, as shown
in Figure 7.

(a) (b)

(c) (d)

Fig. 7. Sorting by similarity greatly helps user to understand the general
distribution of the timelines, both in 2D view and in 3D view. (a)(c) before
sorting, (b)(d) after sorting.

IV. SYSTEM

The three aspect of trajectory visualization, time, space
and attribute are strongly related. Therefore, in order to really
use the timeline views, we build some other views for the
spatial and attribute aspect, and link them together. As Figure
1 shows, our system has some other components in addition
to the 2D heatmap (a) and 3D terrain (b) timeline views. In
order to show temporal distribution of trajectories, we use a
themeRiver [12] view (c). To show the exact spatial position
of trajectories, we have a map (d). Further, we calculate
some attribute for each trajectory and visualize the trajectories
as high dimensional data. Notice here the attributes are on
trajectory, while the attributes we are previously talking about
are on point. They are different. Our high dimensional data
views include an MDS projection view [21] (e) and a scatter
plot matrix view [6] (f). A color palette (g) is provided. Each
time user select a color from the palette, she can brush in other
components, to tag interesting trajectories with the selected
color. In our system, the color are implicitly used to show



(a) (b) (c)

(d) (e) (f)

Fig. 5. Algorithm to calculate the significance of turn.

grouping information. In order to comply with the color usage
for grouping, our 2D heatmap timeline view has a bar on the
left. Color on the bar is always the grouping color.

V. RESULTS

In this section, we provide some results on real dataset.
Our data consists of 492 taxis running from a railway station
to an airport. It is extracted from a real taxi trajectory database.
The data spans 24 days. The attributes associated with each
sampling points are speed, direction, passenger state (whether
there is a passenger inside the taxi). Our extraction only select
those trajectories with passengers inside, so that trajectories
have a clear destination. In this case, they will usually move
to destination as fast a they can, and they will not prefer to
drive randomly. We would like to compare them in terms of
stop, speed and straightness.

A. Stops

Fig. 8. Stops indeed result in long travel time, most of the stops happened
between 17:00 to 19:00.

Stop is one major reason for slow taxi movement. It usually
indicates traffic jams. In this case, we generate a stop-plot
to show change of the significance of stops. The x axis are
time. Timelines are sorted by similarity. Red color indicate
significant stops, while yellow color represent smooth travel.

We can see from Figure 8 that red color usually accompanies
long timeline length (long travel time). We select the reddest
ones on top with green color (see the color bar on the left of the
2D heatmap view), while the other unselected remain gray. We
can see from the themeRiver that their temporal distribution
is rather close, mostly between 17:00 to 19:00. This indicates
that the traffic condition at this time period is bad.

B. Speed

(a)

(b)

Fig. 9. Overall the speed is faster at the later half of the time. Trajectories
of different routes have different speed pattern.



Speed is another important factor for taxi movement, faster
speed is usually preferred. In this case, we generate a point
attribute plot to show the change of speed. The x axis is
time (in Figure 9(a)) or normalized time (in Figure 9(b)).
Timelines are sorted by similarity. Red color indicate high
speed (preferred), while yellow color represent low speed. We
can see from Figure 9 that red color usually comes at the
later half of the travel time, this is due to the fact that the
second part of the journey in on the airport express. We notice
that some trajectories are fast at the end, and we select them
with green color (Figure 9(a), see the color bar on the left of
the 2D heatmap view). The other unselected remain gray. We
can see that all these trajectories share the same route. This
encourage us to assign one group (simultaneously assigning
one color) to each route, then see if there are any difference
between different routes. The result is that there are apparent
difference (Figure 9(b)). The green trajectories indeed tend to
have high speed at the end, while blue trajectories have high
speed at middle. The dark yellow trajectories seem to consist
different patterns.

C. Straightness

Fig. 10. Straightness plot (bottomLeft) can be used to detect strange peaks,
which possibly indicates data error (topLeft, right).

Data error usually results in trajectories with strange shape,
such as jumps or peaks. This will produce a very high
straightness value, and therefore easy to be detected with
straightness plot (Figure 10). The x axis is time. Timelines
are sorted by total travel time. To view the outliers better, we
use ”line” like rendering in the 3D view. The strange peaks
are apparent.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied using timelines to make
temporal analysis of trajectories. We have proposed a few new
forms of trajectory timeline. We have built up a trajectory
visualization system, and made some case studies on real
dataset. The result shows that our method is promising. In
the future, we would like to explore more forms of trajectory
timeline, especially by deformation strategy. We would also
allow more interactions on the timeline, such as selecting
spatial positions from the timeline by brushing.
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