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Abstract Sensor networks composed of static and mobile sensors are applicable for situation monitoring. In
this paper, we propose SensorAware, an interactive system for visualizing and exploring spatial–temporal
data from static and mobile sensors. Our system follows the procedure starting with an overview, then zoom
and filter, and finally details-on-demand. We use pixel-based time-series visualization to show overall
readings from individual sensors, and the readings of mobile sensors are aggregated spatially to display the
distribution of sensor readings. SensorAware provides cross-filtering and details-on-demand interactions,
which allow users to investigate data at different levels of details from both spatial and temporal aspects.

Keywords Visual analytics � Spatial–temporal data � Sensor data � Situation awareness

1 Introduction

During this era of information, sensor networks have been deployed to collect data in a variety of fields such
as environmental monitoring, industrial process control, traffic surveillance and so on. These sensors are
deployed in regions of interest to collect data from their surroundings and extract information for situation
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awareness. Sensors could be deployed as either static or mobile. Static sensors are usually more stable and
reliable in measurements. However, the initial placement of static sensors requires prior knowledge to
guarantee complete coverage of locations of interest, and a static network might fail to adapt to the dynamic
environment (Rezazadeh 2012). Mobile sensors that could move over an extensive area and cope with rapid
changes are more versatile and accessible. For example, SenseMyCity (Rodrigues et al. 2014) was an
Internet of Things mobile urban sensor network using smartphone apps to allow individuals to collect and
share data. The integration of mobile and static sensors allows enhancement in the capability and flexibility
of a sensor network to monitor complex and dynamic situations (de Freitas et al. 2013). In such sensor
networks, a large amount of data from different kinds of sensors are acquired and combined together to
provide a comprehensive understanding of the situation.

Analysis of the data from sensor networks is a challenging task. The data from sensors are composed of
numerous time-varying readings and geographical locations. Discovering an interesting pattern might
require combining information from multiple sensors in both spatial and temporal dimensions. However,
most of the previous work only exploited either spatial or temporal correlation among sensors respectively
(Nguyen et al. 2016). In addition, there might be noises and data missing in a real scenario. Dealing with the
uncertainty in data from sensor networks and avoiding the use of wrong data in decision-making process is
of great importance. However, most of the traditional techniques aggregated data to get statistical features
for analysis (Xu et al. 2015) or built a reconstruction model to deal with sparsity (Li et al. 2017) rather than
analyzing single sensor behavior and data uncertainty. Thus, we need new approaches to perform levels-of-
detail analysis. Visualization technology can play an important role in the overall situation sense-making
and presenting details on demand by supporting interactive human–machine cooperated data exploration.
Nevertheless, due to limitations such as display space and visual channels, it is hard to display spatial
distribution and temporal evolution of the big data set at the same time (Andrienko et al. 2003).

In this paper, we propose SensorAware, which aims to support the exploration of spatiotemporal data
from both static and mobile sensors through computational and visualization techniques. In order to handle
the large size of data, SensorAware first aggregates multi-sensor measurements within spatial and temporal
windows to get data slices. The aggregated data slices with uncertainty measurement are then visualized as
pixels in a map, and the granularity of aggregation could be controlled by adjusting the pixel resolutions in
the visual interface. To simplify the representation of time series, event sequences are abstracted from
original sensor readings via event detection, which then is visualized as pixel arrays. SensorAware also
provides cross-filtering and detail-on-demand interactions, supporting user’s interactive exploration of how
the data distribute and correlate spatially and temporally and analysis of the sensory data on different
abstraction levels.

The main contributions of this work include:

1. We propose a visual analysis pipeline for spatiotemporal data from static and mobile sensors. Based on
data aggregation and pixel-based visualization, expressing a large amount of information in a limited
display space is achieved, complemented by interactive queries allowing users to explore details on
demand. Multiple visual designs and interaction techniques are developed to provide a highly usable
visual environment for iterative sensor behavior analysis and spatiotemporal pattern exploration.

2. Pixel-based visual approaches to spatiotemporal data are proposed. Data slices are obtained by
aggregations and event detection and then visualized as pixels. Adjusting the resolution of pixels results
in the change of the aggregation granularity, supporting semantic scaling and enhancing system
scalability. This pixel-based visual design is applicable to various forms of time series data and spatial
data.

3. A prototype system is implemented and applied to a practical problem to demonstrate SensorAware’s
usability in monitoring the overall situation, analyzing single-sensor behavior and identifying data
uncertainty.

2 Related work

In this section, two categories of work that are most relevant to our work are reviewed: visual analysis for
spatial and temporal data and pixel-based visualization techniques.
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2.1 Visual analysis for spatial and temporal sensor measurements

In our work, the analysis for sensor data includes both spatial and temporal dimensions. Spatiotemporal data
can be classified according to the aspect of changes (Andrienko et al. 2003); in our case, we concern about
the changes of thematic properties expressed through values of attributes instead of existential changes or
changes of spatial properties. There are different focuses on different spatiotemporal data. For spatiotem-
poral data in the traffic domain, people are often interested in the start location, destination and paths of
vehicles. For sensor data, we focus on the sensor measurements and their spatial and temporal patterns.

Sensor measurements can be considered as trajectory data, where the positions of static sensors are
constant, while those of mobile sensors change frequently. Andrienko et al. (2008) classify trajectory
visualization methods into three types based on the manipulation of data: direct depiction, summarization
and pattern extraction, and the corresponding works are discussed. Among them, direct depiction visual-
izations render the visual elements representing trajectories directly, while summarization and pattern
extraction visualizations are designed to avoid the problem of visual cluttering for large-scale trajectory
data. Due to the large amount of data, our work is main based on summarization and pattern extraction
visualizations.

A variety of techniques are used to represent and explore spatiotemporal data in order to facilitate the
discovery of patterns, anomalies and relationships in the data. VIS-STAMP (Guo et al. 2006) integrates
parallel coordinates, map matrix and pixel-based methods to help analysts investigate complex patterns
across various dimensions. Jiao et al. (2014) analyzed the characteristics of real-time sensor data, abstracted
them into real-time dynamic map symbols. However, these approaches have limitations on displaying a
large amount of data. Some researches worked on the efficient interactive exploring and retrieving data over
space and time. SeRAVi (Sazaki et al. 2014) divided the map into grids, which overlays a two-dimensional
histogram showing the spatial distribution of mobile sensor data in a selected period of time. The system
helps users grasp its spatiotemporal distribution and retrieve mobile sensor data in the interested region over
a period of time. However, SeRAVi only shows the count values in addition to the location and the time. On
the other hand, some works deal with the problem of enormous size of data via clustering and aggregation
techniques. Geo-H-SOM (Steiger et al. 2016) utilized a hierarchical self-organizing map to abstract and
cluster high-dimensional geospatial, temporal and semantic information from location-based social network
data. Zhou et al. (2017) also conducted hierarchical clustering and used multidimensional scaling to
transform spatiotemporal air-quality data from monitor stations into 2D space and obtain Voronoi diagrams.
GeoBrick (Park et al. 2019) grouped spatiotemporal data into regions and allow users to adjust the reso-
lution of data values and define classes of regions to identify temporal patterns.

In addition to the aforementioned static map-based approaches that visualized spatial and temporal
patterns in different views, other popular techniques for visualizing spatiotemporal information include
utilizing animation to describe temporal and spatial changes (Han 2018; Gonçalves et al. 2018) and utilizing
three-dimensional visualization to present spatial and temporal aspects in a single view (Tominski et al.
2012; Buschmann et al. 2016).

2.2 Pixel-based visualization

Pixel-based visualizations have been popular in various fields because of their capability of displaying a
large amount of data. ’’Pixel-based visualization’’ refers to a class of visualizations that use small rectangles
to encode one data item. Visual boosting of pixels could make information represented by pixels more
visually salient. The survey (Oelke et al. 2011) discussed a number of pixel boosting techniques including
boosting with halos, colors, distortion, hatching, shapes and so on. In our work, some of these boosting
approaches are applied. Pixel-based visualization methods are also popular in spatiotemporal visual anal-
ysis, for mapping each data item’s geographic coordinate to the pixel coordinates of the screen is natural and
intuitive. Growth Ring Maps (Bak et al. 2009) drawn a number of non-overlapping pixels placed in a
circular layout close to the sensor positions in a map to represent spatial data changing over time , in which
the spatial and temporal attributes were represented by color and gradient and the number of visits at a
sensor were encoded by the size of the Growth Ring. Some works dealt with the obscuration problem when
the density of data items is high; Panse et al. (2006) combined map distortion and local replacement
methods to avoid overlap and support exploration of dense spatial data sets.

In this paper, we propose an interactive visual analytic system for sensor data supporting cross-filtering
interactions to support investigating data from both spatial and temporal aspects with detail-on-demand
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queries. Pixel-based visualization techniques are utilized in both map and time series visualizations to reveal
patterns hidden in a large number of spatial and temporal data.

3 Data and requirements

Helping users to understand and utilize data from multiple sensors with different modality is the main goal
of our work. In this section, we discuss the characteristics of sensor data, challenges for developing a visual
analytic system for this type of data and its design requirements.

3.1 Data characteristics and challenge

To aid in the design of our visual analysis system, we summarize the characteristics of the data in several
aspects as follows:

• Noise The data from sensors can be noisy. Static and mobile sensors are with different noise levels. For
static sensors, there are fewer limitations on their size, power consumption, etc. They can achieve higher
accuracy than mobile sensors. Mobile sensors are subject to a variety of constraints, as a result, mobile
sensors tend to have a high level of noise. The noise is reflected not only in the measured value but also
in their location information.

• Number of records Sensors with a high sampling rate would generate a large amount of data. A typical
weather sensor that measures temperature and some other attributes can sample at 1 Hz (Scientific
2020). If we need to analyze the meteorological situation for one week, each sensor would produce about
600k records.

• Spatial distribution Although the measurement attributes of static and mobile sensors are the same, the
spatial distribution of the measurements is distinct. Mobile sensors cover many more locations than static
sensors. Meanwhile, the number of readings from each location is small. The spatial distribution of
sensor readings is very uneven.

• Temporal distribution For locations with static sensors placed, the readings are complete. In most areas
other than those, data are only available when a mobile sensor passes by, and the readings are
discontinuous. As a result, the temporal distribution of sensor readings varies greatly from region to
region.

These characteristics lead to significant challenges for the analysis of sensor data: information such as
changes in readings that are likely to be masked by noise; the visualization of a large number of recordings
requires huge display space, and as the visual analysis system needs to respond to user actions in real-time,
the implementation of the system needs to be efficient; how to properly represent the uneven distribution of
data in space and time is also a challenge.

Supporting combined analysis of the spatial and temporal aspects is also challenging. Users might need
to know how the measured value within a specific area changes over time, and spatiotemporal features like
the spreading of air pollution in the data cannot be found with just one aspect. However, showing both
spatial and temporal information is not easy due to the limit of display.

3.2 Design requirements

In response to the characteristics of the sensor data and potential user requirements, we have summarized the
following design requirements of the visual analytic system.

3.2.1 Sensor analysis

The status and accuracy of sensors are different. The readings from mobile sensors are usually less trust-
worthy than those from static ones; there are also often differences between mobile sensors. Some sensors
might be broken while still reporting values.

The system needs to support the viewing of individual sensor data, which allows the user to observe
trends in the measured values of that sensor and also facilitate the detection of abnormal sensors.

In addition to the sensor readings, the position of the moving sensor is constantly changing, and the
system needs to be able to show the trajectory of the sensor’s movement and how the measured value
changes with position.
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3.2.2 Area analysis

The system needs to support the analysis of measurements in a specific area, and here the area includes the
whole. The analysis consists of the following aspects:

• How high or low the measurement values are in different areas. For example, when the user wants to
know which areas are with high measured value.

• Measurement coverage in different areas when the user needs to know which area to deploy more
sensors.

• Measurement change over time in the same area. The system should support showing the trend of
measurement value in a specific area.

4 System

We developed SensorAware (Fig. 1) in response to the above requirements. In this section, we will
introduce the overview of our system, each of the views and the associated interactions.

4.1 Overview

The system consists of three views: the Spatial Measurement Map for showing the spatial distributions of
sensor readings, the Pixel-based Timeline for showing a temporal overview of individual sensors and the
Sensor Reading Plot for showing detailed readings upon users’ request.

Figure 2 shows the proposed analysis pipeline. Sensor data are firstly aggregated according to time and
space separately at the default resolution. The system aggregates the data by calculating statistical features
such as mean value, standard deviation and count of readings. The spatial results are shown in the Spatial
Measurement Map, and temporal results in the Pixel-based Timeline. The analysis process begins with the
two overview visualizations.

In the Pixel-based Timeline, users can specify a sensor to be plotted in the Sensor Reading Plot to see
more details, meanwhile, the trajectory of the sensor is displayed on the map. The Sensor Reading Plot
supports zooming along both axes for further analysis, and measurement locations will be highlighted
through mouse brushing in the plot. The user can specify the time range to analyze the sensor measurements
at different time scales.

Fig. 1 The user interface of SensorAware. a Spatial Measurement Map presents the spatial distribution of sensor
measurement. b Pixel-based Timeline shows an overview of all sensor data and the evolution of each sensor measurement with
time. c Sensor Reading Plot displays raw sensor readings
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In the Spatial Measurement Map, users can select an area so that readings within this area will be plotted.
The Spatial Measurement Map will be updated with the change of time range selection. Highlight of the
corresponding sensor and the time of passage by a location on the map is supported. The resolution of the
map can be adjusted for different analysis interests.

4.2 Spatial Measurement Map

In order to show the spatial distribution of sensor measurements, a map is essential. If the original mea-
surement record is plotted directly according to the coordinates, serious occlusion can arise. Therefore, we
choose to aggregate the adjacent measurement records and display the results on a pixel-based map. We
divide the longitude and latitude according to the same size to get equal blocks. For each block, the mean,
variance and number of measurement records located within are calculated to obtain the aggregated results
(Fig. 3). Due to the uneven spatial distribution of the measurements, we did not perform spatial interpolation
to obtain data in the blank areas.

Spatial Measurement Map (Fig. 1a) visualizes the spatial aggregation of sensor measurement. At each
location, two dimensions of the data can be represented through the size and color of the dot at the location.
Users can choose the attributes the two dimensions represent from mean value, standard deviation and count
of data. Showing different dimensions at the same time allows the user to observe the measured values while
also noticing the number of measurements or the difference between the measured records. And it avoids
misinterpretation of the results in areas where there are only a few measurements.

Users can also change the resolution of the map (Fig. 4). When changing the resolution, we will reslice
the area and calculate the results within each block. The higher the resolution, the smaller the data points
and the smaller the area each data point represents. Higher resolution may presents more details, while low
resolution allows large-scale spatial analysis. There is less noise when the resolution is low. In cases where
the data dimension is mapped using pixel size, the low-resolution mode is more conducive to observation.
Using pixel size for visual encoding and a high-resolution for the map at the same time is not recommended.
By adjusting the resolution, the user can switch between different analysis focuses and strike a balance
between noise and resolution. We assume that the area to be analyzed is not very large, and the zoom-in and
zoom-out feature is not introduced.

4.3 Pixel-based Timeline

It is needed to present an overview of the changes in sensor measurements over time. Similar to the Spatial
Measurement Map, due to the large number of measurement records, data need to be aggregated according
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Fig. 2 The visual analysis workflow with the proposed system. The system supports the analysis of both sensors and areas and
the interactions within facilitates the user’s exploration of the data
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to time to present as many sensors as possible in a limited display space. To further compress the space, a
pixel-based approach similar to Sect. 4.2 is adopted.

Pixel-based Timeline (Fig. 1b) serves to analyze the temporal evolution of readings from different
sensors separately and to compare different sensors. The horizontal axis of the timeline is the time, while
each row represents the data from a single sensor. Each row is composed of time pixels (Fig. 6) which
shows aggregated measurements of each time slice. The color represents the mean value of the sensor
measurements during the time range. The darker the color, the higher the measurement. The size of the
pixels is correlated with the uncertainty of the measurement from the sensor at the time. The larger the pixel,
the higher the uncertainty of the measurements.

The aggregation of sensor measurements over a period of time often contains other information in
addition to the mean and variance. We reserve the background color of the time pixel as a visual channel to
represent other information such as sensor status and measurement pattern (Fig. 5). In this case, an
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Fig. 3 Data processing for the Spatial Measurement Map. It begins by dividing the area into blocks in identical size and then
calculates the mean, standard deviation and count within the blocks

Low resolution High resolution

Constant size

Data encoded in pixel size

Fig. 4 The effect of different map resolutions. Resolution also determines the degree of data aggregation. The low resolution
facilitates overall observation and is more tolerant of other visual channels; the high resolution helps the user observe local
details
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additional webpage for showing the pattern represented by each background color will be provided. The
pattern recognition algorithm is data-dependent and can be either rule-based or data-driven. There is no limit
on whether the pattern is temporal, spatial or both. However, color encoding does limit the number of
different patterns.

As the mobile sensors are not moving all the time, we use violet underlines in the Pixel-based Timeline
to represent movement. If the sensor is moving during the time range of the pixel, the pixel would be
underlined. In this way, the users are able to explore the effect of motion on the sensor reading.

ConstantNormal Stripe Jump Missing

Fig. 5 After drawing scatterplots of measured values and time, we find that the sensor measurements exhibit several different
patterns, which is represented using different background colors in the Pixel-based Timeline and the Sensor Reading Plot

Background

Time pixel

Standard deviation

Average value

Purple line indicates 
sensor movement HighLow

HighLow

Time

Sensor 1
Sensor 2
Sensor 3

......

Fig. 6 Visual encodings of time pixels in the Pixel-based Timeline. The background color of the time pixel is reserved for a
different data channel
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4.4 Sensor Reading Plot

Aggregated data come with a loss of information, and it is not enough to show the aggregated data only. The
system also needs to show the raw data, especially the raw measurement values. The raw measurements are
time series data, and we chose to display them using scatterplot and line charts.

Considering noise in the data, we choose scatterplot as the default visualization to show detailed readings
from sensors. Users can switch to line chart when needed (Fig. 7).

Sensor Reading Plot (Fig. 1c) allows users to inspect the raw measurements from a single sensor in the
sensor mode or a chosen area in the area mode. In the plot, the horizontal axis indicates time, while the
vertical axis indicates the measured value. In the sensor mode, the user chooses the specific sensor to be
displayed in the Sensor Reading Plot from the Pixel-based Timeline. The violet lines on the time axis of the
Sensor Reading Plot serve the same purpose as those in Sect. 4.3.

Under area mode, the Sensor Reading Plot would show all the sensor readings in the area selected in the
Spatial Measurement Map. Data from different sensors are represented in different colors.

Sensors sometimes produce abnormal readings, and if the maximum measurement result is used directly
as the maximum for the axis, the mapping range may become too large for normal fluctuations to be
observed. Therefore, the maximum value of the coordinate axis is set to the 99% quantile, and the top 1%
measurement value will be outside the mapping range. If the user selects the scatterplot to draw the data,
these measurements will not be visible. To solve this problem, for measurements that are out of the mapped
range, we plot them at the top of the scatterplot, using the size of the points to represent the magnitude of
excess (Fig. 8). Users can change the mapping range by themselves.

Fig. 7 Sensor measurements over time are plotted as a scatterplot and a line chart. The line chart is more sensitive to noise,
with severe occlusion in the case of high noise level, but more pronounced when there are outliers
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4.5 Interactions

Interactive queries are indispensable in order for users to discover the spatiotemporal patterns contained in
the measurement results. On the basis of these three views, we add multiple interactions to make the
exploration and analysis of data more convenient.

4.5.1 Time range control

Users can brush the desired time range in the Pixel-based Timeline. The chosen time range would be
updated in the Sensor Reading Plot and the Spatial Measurement Map as well. This function would allow
users to observe the changes in measurement over a short period of time and compare the measurements
during different periods.

4.5.2 Location query

Users can know where the measurement was done through location queries. The following location query
interactions facilitate users to discover the relationship between the measured value and the measured
location.

• When the mouse hovers over the Pixel-based Timeline, the horizontal and vertical coordinates of the
mouse correspond to the measurement time and the sensor, respectively, and the measurement position is
displayed on the map. The user can observe the change of the sensor position as the mouse moves along
the time pixels of the sensor. It’s a lightweight location lookup method that the system provides real-time
feedback without user clicking.

• When the user clicks on the mobile sensor on the Pixel-based Timeline, the trajectory of the mobile
sensor is shown on the map and the time range is controlled by Sect. 4.5.1. In addition, the color
brightness of the trajectory line represents the measured value, and darker colors indicate larger values.

• Users can brush a range of time and measurement values in the Sensor Reading Plot. If the data in the
Sensor Reading Plot are from mobile sensors, the geographic location of the data in the selected range
would be highlighted in the map. This feature comes in handy when the user needs to locate where high
values were measured.

4.5.3 Measurement query

This section focuses on the interaction of specifying sensors or areas to obtain the measurement results.

• As described in Sect. 4.4, users can use a lasso to select an area on the map and the data from the area
would be shown in the area mode of the Sensor Reading Plot.

Fig. 8 Out-of-range values are plotted at the top when data are shown using the scatterplot, with the size of the point indicating
the magnitude of excess
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• When the user clicks on the sensor on the Pixel-based Timeline, the raw measurements from a single
sensor will be plotted in the Sensor Reading Plot.

• When the mouse is over a pixel with measurement reading on the map, passing by mobile sensors and
their corresponding time of passage would be highlighted in the pixel map with red circles. Raw
aggregation results of that pixel are also displayed. This function would allow users to find related
sensors when an anomaly is discovered.

• The measurements of abnormal sensors can be removed, and the map will be recalculated.

5 Case study

We apply the system to the sensor data from VAST Challenge 2019 Mini-Challenge 2 (Challenge 2020; Wei
et al. 2019). The data set contains one-dimensional radiation measurements from static and mobile sensors.

5.1 Data set and tasks

In VAST Challenge 2019 Mini-Challenge 2, the nuclear power plant in St. Himark suffered damage
resulting in a leak of radioactive contamination. There were 9 professional static sensors deployed by the
government and 50 lower-cost mobile sensors deployed by citizens attached to some citizens’ cars. These
sensors form a sensor network that covered almost the whole city, and they reported radiation measurement
every 5 seconds. During the 5-day period from April 6 to April 10, there were more than 4 million records
from the sensor network, each containing information on the time, the location of the sensor and the
radiation intensity. The large amount of data makes a visual analysis system necessary.

Our tasks are to help the emergency management team of St. Himark integrate data from static and
mobile sensors to understand the situations in the city and identify areas where the deployment of more
sensors, cleansing, or evacuation is needed.

5.2 Overall discoveries

Different sensor statuses of each time slice are classified by rule-based methods and encoded with
different colors (Fig. 5). Striped pattern is classified by discrete integer reading and jump pattern by
abnormal high standard deviation. Then, through observation of patterns in the Pixel-based Timeline, some
important time points are found. As shown in Fig. 9, at around 8:00 April 8, the striped pattern of data
(pixels with green grounding) from all mobile sensors disappeared. A group of sensors left the map at a
certain time and returned sometime later, leading to missing data from the sensors during certain periods.
From 18:40 on April 9 to 8:40 on April 10, high level of radiation (pixels with dark blue kernel) were
detected by more than one sensor (Fig. 9). These data points are marked for further analysis.

Besides those collective patterns, there are also some discoveries from the observation of a single sensor.
Some sensors reported a constant-valued measurement after the certain timestamp. The guess is that these
sensors broke. These pixels are marked with orange grounding. It is also worth noting that this timestamp
when sensors broke coincides with that of the disappearance of striped patterns in some sensor’s data.
Sensors that had larger kernels in their time pixel showed greater uncertainty and are also marked for further
analysis. Pixel with the red grounding, meaning acute changes in radiation detected, is another focus of
analysis.

The Spatial Measurement Map allows the user to mark out some areas with radiation over background.
We use the map of St. Himark as the background of Spatial Measurement Map to get the name of abnormal
locations. Jade bridge, Wilson Forest Highway, The Nuclear Plant and the area southwest to the Plant are
identified to have radiation over background after the earthquake happens.

In brief, by analyzing the Pixel-based Timeline, several time points, abnormal sensors readings and areas
with high radiation are identified for further analysis.

5.3 Detailed analysis

The location of sensors shown on the map explains some of the regular patterns of sensors. Sensors with
missing data that last showed at the edge of the map on the bridge or highway connecting the city and the
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mainland have exited the map, while those that last showed in somewhere in the city would have probably
broken down at the place. Extremely high level of radiation is detected at a certain point on Wilson Forest
Highway (Fig. 9), implying one or more polluted cars.

Further observation on the data from single sensors in the Sensor Reading Plot shows some other details,
listed below and shown in Fig. 10.

• Striped pattern Before 8:00 April 8, almost all the mobile sensors showed a striped pattern in their
reading. Most but not all of them are caused by the discrete property of integer reading. This pattern
disappeared in all mobile sensors after 8:00 on April 8, and the reading from the sensors turned
continuous.

• Constant-valued reading At the same time the striped pattern of all mobile data disappeared, data from
mobile sensors 1, 23, 26, 35 and 47 turned constant at different values. These sensors were possibly
broken after 8:00 April 8, and the data from these sensors after the turning point are not trustworthy.

• Extreme values Another difference between the static system and mobile system is that data from mobile
sensors include more extreme values. For example, data from mobile sensor 3 included extreme value
larger than 1000 cpm, while normal reading from this sensor was around 20 cpm. This kind of extreme
values added to the uncertainty of mobile sensors, but the trustworthiness of the data is not affected.

• Mobile Sensor 18 Data from mobile sensor 18 disappeared a few times after reaching a specific location
in St. Himark and then reappeared at the same location after some time. Shortly before the data
disappeared and after they reappeared, the reading ranged from 0 cpm to around 60 cpm.

• Fluctuation in measurement Several mobile sensors had obvious fluctuation in their measurement over
time even when they were not moving. Mobile sensors 40 and 41 are the two with most fluctuation

• Mobile Sensor 2 measurement continuously rising with constant gradient Measurement from mobile
sensor 2 was increasing with a constant gradient throughout the whole period. This pattern is different
from the general pattern discovered from other sensors, where radiation level increases after several
events. Thus, we categorize mobile sensor 2 as being unreliable.

Fig. 9 The change of background color in Pixel-based Timeline indicates that stripes pattern disappeared starting from 8:00 to
8:30 am on April 8
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As stated before, some sensors detected abnormal high level of radiation. When put together, these
anomalies points out a clear pattern. From Fig. 11, during April 8 16:15–17:00, static sensor 15 measured
several spiky jumps in radiation at the entrance of the nuclear plant. This signaled the time when several
contaminated cars left the nuclear plant. Shortly after anomalies were detected by static sensor 15, several

Fig. 10 Examples of abnormal patterns of sensor readings

Fig. 11 Spiky jumps in radiation were sequentially detected by several static sensors S15, S12, S13 and S14. This indicated
that several contaminated cars left the nuclear plant
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other static sensors (12, 13, 14) detected similar but less numbered spikes showing passage of contaminated
cars. Figure 12 illustrates how we estimated the number of contaminated cars by counting the spiky patterns
detected by the static sensor 15. From the spikes in S15 on April 8, we estimated that about 15 contaminated
cars left the nuclear plant. This spiky pattern corresponds to the time when mobile sensor 10 and static
sensor 12 detected rise in radiation at Jade Bridge (Fig. 13). Some of the contaminated cars drove to Jade
Bridge after coming out of the nuclear plant and was blocked on the bridge. From the count of spiky
patterns, we inferred that about 12 contaminated cars likely left the city through Jade Bridge. The

Fig. 12 We interpret the step-wise increase and decrease of radiation detected by static sensors as a sign of contaminated cars
coming and leaving. From the spikes in static sensor 15 on April 8, we estimated that about 15 contaminated cars left the
nuclear plant

Fig. 13 Static sensors 12 and mobile sensor 10 both detected contaminated cars on Jade Bridge
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accumulation of contaminated cars at the blockage caused the high reading detected by mobile sensor 10
and static sensor 12.

5.4 Uncertainty analysis

Other than analysis of the overall situation in the city, the uncertainty measurement is another essential issue
to evaluate. Further improvements to the sensor network can be designed based on the reliability of data
from different sensors and areas for the best result.

First, we compare the uncertainty of mobile and static sensors through comparing the standard deviation
of data from static and mobile sensors. In the Pixel-based Timeline, mobile sensors give pixels larger in size
compared to those of static sensors from the start of the recording period. Thus, the data from mobile sensors
had higher standard deviation than that from static sensors even before the leakage. After the earthquakes,
the increase in the noise of the data from mobile sensors is revealed by the increasing number of large
pixels. The increase in the uncertainty of static measurements is less obvious and can only be seen from the
scattering of data points in Sensor Reading Plot. Conclusively, the static sensors had lower uncertainty
compared to mobile sensors overall and were less affected by disturbances in environment.

Another focus of uncertainty analysis is areas with high uncertainty in radiation measurements (Fig. 14).
To identify target areas, we have pixel size represent standard deviation in Spatial Measurement Map and
identified locations with large dots. This method gives four main locations: the end of Jade Bridge, static
sensor 12, Palace Hill and Neighbourhood 19. Each of the areas showed high uncertainty for different
reasons. The end of Jade Bridge was where cars left the city, and the low density of data caused the
unreliability. The high uncertainty at static sensor 12 was caused by the discrepancy between reading of
mobile sensor 10 and static sensor 12, with mobile sensor 10 reporting measurement as high as 1370 cpm,
while static sensor 12 only gave 28 cpm. Maybe mobile sensor 10 itself was contaminated, which also
explains the increase in standard deviation of data from mobile sensors passing by the location after mobile
sensor 10 left. The anomaly at Palace Hill was caused by the uncertainty in the reading of a single sensor.
Lots of data in the region came from mobile sensor 2, the reading from which was increasing over time with
a constant gradient. As the trend of mobile sensor 2, probably broken, was different from all other sensors,
high uncertainty was detected. Finally, the discrepancy between background radiation measured by two
groups of sensors in Neighbourhood 19 leads to the high uncertainty there. The first group of sensors
(mobile sensor 45, 46) detected a radiation level at 40 cpm, while the other group (mobile sensor 24, 27, 28)
measured 25 cpm radiation.

6 Discussion

The case study shows that our system is able to support the user’s analysis of spatiotemporal sensor
measurement data. Our JavaScript-based system can support dealing with millions of records, but a small
number of operations (e.g. changing time ranges) takes several seconds for the system to respond, and
desirable response time can be achieved if only a tenth of the data is taken. As a result, our system has some
limitations when dealing with larger amounts of data. When targeting larger-scale data, we need to separate
the front and back ends and use more efficient algorithms to aggregate the data. Due to the limited temporal
and spatial scope of the data involved in the case study, we did not develop zoom in and out features for the
Spatial Measurement Map and Pixel-based Timeline. The zoom-in and zoom-out function is necessary for
data with a large spatial and temporal scope. In addition, our system is also capable of handling real-time
data but requires data cache and a prior understanding of the data for pattern recognition.

7 Conclusion

We developed SensorAware: an interactive system for visualizing and exploring spatiotemporal data from
sensor networks which provides an overview of the data and interactions that support exploration of details.
By aggregating data from both static and mobile sensors and presenting them in pixel-based visualizations,
we provide an overview of spatial and temporal information in limited display size. We also provide
additional interfaces for plotting raw data to compensate for information loss caused by aggregation.
Through interactive queries, users are able to explore data in detail from both spatial and temporal aspects.
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The case study shows that the system allows users to effectively discover the temporal and spatial distri-
bution of measured values, as well as spatiotemporal features. Users can easily spot anomalous sensors and
areas. Our system can be effectively used for situation awareness when there are multiple static and mobile
sensors deployed.
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