

Short plane support trees for hypergraphs

Citation for published version (APA):
Castermans, T., van Garderen, M., Meulemans, W., Nöllenburg, M., & Yuan, X. (2018). Short plane support
trees for hypergraphs. 35:1-35:6. Abstract from 34th European Workshop on Computational Geometry
(EuroCG2018), Berlin, Germany.

Document status and date:
Published: 21/03/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 16. Aug. 2019

https://research.tue.nl/en/publications/short-plane-support-trees-for-hypergraphs(34f97204-f39c-473d-a7c2-14081d29e0c5).html

Short Plane Support Trees for Hypergraphs∗

Thom Castermans1, Mereke van Garderen2, Wouter Meulemans1,

Martin Nöllenburg3, and Xiaoru Yuan4

1 Dept. of Mathematics and Computer Science, TU Eindhoven, the Netherlands

[t.h.a.castermans|w.meulemans]@tue.nl

2 Dept. of Computer and Information Sciences, Universität Konstanz, Germany

mereke.van.garderen@uni-konstanz.de

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria

noellenburg@ac.tuwien.ac.at

4 Peking University, Beijing, China

xiaoru.yuan@pku.edu.cn

Abstract

In many domains, the aggregation or classification of data elements leads to various intersecting

sets. To allow for intuitive exploration and analysis of such data, set visualization aims to

represent the elements and sets graphically. In more theoretical literature, such set systems are

often referred to as hypergraphs. A support graph is a notion for drawing such a hypergraph,

understood as a regular graph spanning the same vertices (elements), in which each hyperedge

(set) induces a connected subgraph.

In this paper, we investigate finding a support graph of a hypergraph with fixed vertex loca-

tions under various constraints. We focus on enforcing planarity using a straight-line embedding,

while minimizing the total length of the edges of the support graph, and consider the effect of

the additional requirement that the support graph is acyclic.

1 Introduction

Intersecting sets are used in many domains to model various ways of clustering, grouping or

aggregating measurements or data elements. To allow for effective exploration and analysis

of such set systems, visualization is often used. Indeed, set visualization is an active subfield

of information visualization; Alsallakh et al. [3] recently surveyed it. We focus on the case

where elements have fixed positions in the plane, arising e.g. from geospatial locations.

On the theoretical side, such a set system is often referred to as a hypergraph H = (V, S),

with a set of vertices V (elements) and hyperedges S (sets), where each hyperedge s ∈ S is

some nonempty subset of V . A support graph of a hypergraph H = (V, S) is a (regular) graph

G = (V, E) on the same vertex set such that every hyperedge s ∈ S induces a connected

subgraph in G [8]. In the remainder, we assume that V is a set of points in the plane and

that a support graph is embedded using straight-line edges.

Though there are various ways of visualizing sets, support graphs match to a popular

style in set visualization, namely that of connecting elements using colored links, such as

seen for example in Kelp-style diagrams [9, 13] (see also Fig. 1) or LineSets [2]. Finding

an embedded support graph that satisfies certain criteria therefore readily translates into a

good rendering of the corresponding set system. A “good” support graph should avoid edge

crossings, a standard quality criterion in the graph-drawing literature [14]. Moreover, as per

Tufte’s principle of ink minimization [15], it should have small total edge length.

∗ This work was started at Dagstuhl seminar 17332, Scalable Set Visualizations. T. Castermans is
supported by the Netherlands Organisation for Scientific Research (NWO, 314.99.117). W. Meulemans
is partially supported by the Netherlands eScience Centre (NLeSC, 027.015.G02).

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

T. Castermans, M. van Garderen, W. Meulemans, M. Nöllenburg and X. Yuan 35:3

each remaining point to its closest point in A. The resulting graph is obviously a tree since

we add only leaves to T , it is a support as every hyperedge induces a connected subgraph,

and it is plane as no edge crossings are created when connecting to the closest point in A.

◮ Observation 1. Consider a hypergraph H = (V, S) with no three vertices in V on a line,

such that
⋂

s∈S s 6= ∅. H has a plane support tree.

We note that in a support tree the subgraph induced by A must be a connected subtree

in order to satisfy the support property for all hyperedges. Next we show that using the

above idea to start with a minimum spanning tree of A, the length of the resulting support

tree cannot be bounded to be within a constant factor of the shortest plane support tree.

◮ Lemma 2.1. There is a family of n-vertex hypergraphs H = (V, S) with two hyperedges

S = {r, b} and A = r ∩ b 6= ∅ such that any plane support tree of H that includes a minimum

spanning tree of A is a factor O(n) longer than the shortest plane support tree.

Proof. The hypergraph family is illustrated in Fig. 2. The set A = {u, v, w} consists of

three vertices whose minimum spanning tree T has length ℓ + 1 and is indicated by the black

edges in Fig. 2(a). The remaining vertices in V \ A are indicated in red and blue (indicating

membership of r and b) and placed inside a disk of radius ε just left of the midpoint of edge

uv. The vertices alternate in colors from left to right and form two mirrored convex chains.

1

ℓ

ℓ/2

ε

w

u v

w

u v

(a) (b)

Figure 2 An n-point instance with approximation ratio O(n) if using a minimum spanning tree

on A. All edges are straight-line segments; curvature just emphasizes the effect of the convex chain.

Since edge uv of T splits the vertices in V \A and by their placement on convex chains, the

shortest extension of T into a plane support tree is to connect every vertex to u (Fig. 2(a)).

This yields a total length of the support tree of O(n) · ℓ. If, however, A is connected by

a slightly longer tree, the remaining vertices in V \ A can be joined by two comb-shaped

structures as shown in Fig. 2(b). The resulting plane support tree has length of O(1) · ℓ. ◭

The above result also holds if we allow a general plane support graph. By removing the

vertex w from the instance of Fig. 2 one can show in a similar fashion that a plane support

tree, which now necessarily includes the edge uv, is a factor O(n) longer than a shortest

nonplane support tree; this corollary does not immediately generalize to support graphs.

◮ Corollary 2.2. There is a family of n-vertex hypergraphs H = (V, S) with two hyperedges

S = {r, b} and A = r ∩ b 6= ∅ such that any plane support tree of H is a factor O(n) longer

than the shortest nonplane support tree.

3 Computing a shortest plane support graph is NP-hard

Let us now turn towards the computational problem of finding the shortest plane support

graph. Unfortunately, this problem and several restricted variants are NP-hard.

◮ Theorem 3.1. Let H = (V, S) be a hypergraph with vertices V having fixed locations in R
2

and with S containing two hyperedges r and b such that r ⊆ b. It is NP-hard to decide

whether H admits a plane support tree with length at most L for some L > 0.

EuroCG’18

35:4 Short Plane Support Trees for Hypergraphs

Proof. We use a reduction from (rectilinear) planar monotone 3-SAT [6]. Here, we are given

a 3-CNF formula φ with n variables v1, . . . , vn and m clauses c1, . . . , cm such that every

clause either has three positive literals or three negative literals. Moreover, we are given

an embedding of φ as a plane graph, with rectangular vertices for variables on a horizontal

line, and clauses as rectangles above or below the line (depending on whether the clause is

positive or negative). Vertical edges connect clauses to the variables of their literals. We

assume without loss of generality that the clauses are numbered according to their nesting:

that is, ci < cj if ci is closer to the line of vertices than cj in the embedding.

We must construct a hypergraph H = (V, {r, b}) such that r ⊆ b. In the remainder, we

assign vertices to either r (red) or b (blue), understanding that any red vertex is also in b.

First, we place 3(n+1) red vertices using coordinates (3i · (m+1), y) for integers i ∈ [0, n]

and integers y ∈ [−1, 1]. Furthermore, we place n · (3m + 2) blue vertices using coordinates

(3i(m + 1) + j, 0) for integers i ∈ [0, n − 1] and j ∈ [1, 3m + 2].

We now place additional blue vertices for each clause ca. We assume that this clause has

positive literals for variable vi, vj , and vk; the construction for clauses with negative literals

is symmetric, using negative y-coordinates instead. First, we place 3a + 1 blue vertices from

(3(i − 1)(m + 1) + 3p, 2) to (3(i − 1)(m + 1) + 3p, 2 + 3a) at unit distance, to represent the

incidence from ca to variable vi, using the given embedding to determine that ca is the pth

clause incident from above to vi. Analogously, we place the blue vertices for vj and vk. Now,

we place further blue vertices at unit distance with y-coordinate 2 + 3a from the leftmost to

the rightmost top vertex we just placed. The result is given in Fig. 3.

One clause requires at most 3(3m + 1) vertices for the variable incidence and less than

3n · (m + 1) for the horizontal line connecting these. We can now readily measure the length

of the minimum spanning tree on the blue vertices of one clause. We use La to denote this

length; note that La is an integer at most 3(3m + 1) + 3n · (m + 1).

The value of L that we select is 2(n + 1) + 3n · (m + 1) + n(3m + 2) + 2m +
∑

a∈[1,m] La.

This finalizes the construction. It is polynomial since we placed 3(n + 1) red vertices and

n · (3m − 2) blue vertices for the variables and at most m · (3(3m + 1) + 3n · (m + 1)) for

the clauses: this is O(nm2) vertices. Moreover, we claim that our constructed hypergraph

admits a plane support tree of length at most L, if and only if φ is satisfiable.

Assume we have a plane support tree of length at most L. First, we observe that all

(a)

(b)

Figure 3 Construction for φ = (v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ v4). Vertices in r and b

are red, vertices in b are blue. A plane support tree with length at most L is given in black lines.

(a) Representation of variable v1; the solution sets v1 to true. (b) Representation of the first clause.

T. Castermans, M. van Garderen, W. Meulemans, M. Nöllenburg and X. Yuan 35:5

points in r must be connected: the minimal way of doing so connects the three vertices with

the same x-coordinate and uses one horizontal line to connect one triplet to the next. This

has exactly length 2(n + 1) + 3n · (m + 1), corresponding to the first two terms defining L.

The minimal way of connecting the lines inside the variables to the red tree takes length

n(3m + 2) in total: this is the third term defining L. Finally, to connect the clause vertices,

we need length at least La per clause, the last term of L. We note that any solution must

use these constructions on the blue vertices, since all vertices are at unit distance; other blue

vertices are at distance at least 2. However, the support tree is connected: thus it must still

have connections from each gadget to either a red vertex or a blue vertex of a variable. The

budget we have for this is 2m in total. Since each clause needs a connection of length at least

2, all clauses use exactly length 2. The only vertices within distance 2 of a clause are the

three blue vertices of the variables with y-coordinate zero (one of each literal of the clause).

Thus, each clause must have exactly one length-2 edge to one of these variable vertices. Since

the support tree is plane, this cannot cross the horizontal links used to connect the red

vertices. We can now readily obtain a satisfying assignment for φ, by looking at which of the

two horizontal lines is used to connect the red vertices: if the one at the top is used, that

variable is set to false; it is set to true otherwise.

To prove the converse, assume that we have a satisfying assignment. Using the same

reasoning as above, we can construct the plane support tree by picking the connecting

horizontal lines for the red vertices according to the satisfying assignment: this readily leads

us to conclude that we can connect each clause using a length-2 connection that does not

intersect the horizontal lines for the red vertices. ◭

We observe that the above proof readily implies that finding the shortest plane support

graph is also NP-hard, as is the case that r is not a subset of b. Moreover, the proof can be

easily adapted to show the other special case of disjoint r and b: this needs slightly more

spacing such that we can add a few extra blue vertices that can be used to connect all the

blue vertices of the variables into a single component using only length-1 edges.

4 Integer linear program

We showed in Section 3 that finding the shortest plane support is NP-hard, and so are several

restricted versions of that problem. It is however possible to formulate these problems as

integer linear programs (ILP), allowing us to leverage effective ILP solvers. Below, we briefly

sketch how to obtain an ILP for a hypergraph H = (V, S).

We introduce variables eu,v ∈ {0, 1}, indicating whether edge uv is selected for the support

graph. This readily allows us to represent a graph with fixed vertices. Because the vertex

locations are fixed, we can precompute edge lengths du,v as well as which pairs of edges

intersect. This gives the following basic program

minimize
∑

u,v∈V du,v · eu,v

subject to eu,v + ew,x ≤ 1 for all u, v, w, x ∈ V if edges uv and wx intersect.

What remains is to ensure that the graph is also a support: we need additional constraints

that imply that each hyperedge in S induces a connected subgraph. To this end, we construct

a flow tree for each hyperedge s. We pick an arbitrary sink for the hyperedge, σs ∈ s, that

may receive flow, and let the remaining vertices in s generate one unit of flow. To formalize

this, we introduce variables fs,u,v ∈ {0, 1, . . . , |s| − 1} for each s ∈ S and u, v ∈ s with u 6= v.

We now need the following constraints: (a) the incoming flow at σs is exactly |s| − 1; (b)

EuroCG’18

35:6 Short Plane Support Trees for Hypergraphs

the outgoing flow at σs is zero; (c) except for σs, each vertex in s sends out one unit of flow

more than it receives; (d) flow can be sent only over selected edges.

(a)
∑

u∈s\{σs} fs,u,σs
= |s| − 1 for all s ∈ S

(b) fs,σs,v = 0 for all s ∈ S, v ∈ s \ {σs}

(c)
∑

v∈s\{u}(fs,u,v − fs,v,u) = 1 for all s ∈ S, u ∈ s \ {σs}

(d) fs,u,v ≤ eu,v · (|s| − 1) for all s ∈ S, u, v ∈ s with u 6= v

Variants The above ILP results in the shortest plane support graph for H. It can easily

be modified to give a (shortest plane) support tree as well as to penalize or admit a limited

number of intersections. The latter requires additional variables to indicate whether both

edges of a crossing pair are used.

References

1 H. A. Akitaya, M. Löffler, and C. D. Tóth. Multi-colored spanning graphs. In Graph

Drawing and Network Visualization (GD’16), LNCS 9801, pp. 81–93. Springer, 2016.

2 B. Alper, N. Henry Riche, G. Ramos, and M. Czerwinski. Design study of LineSets, a novel

set visualization technique. IEEE TVCG, 17(12):2259–2267, 2011.

3 B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers. The state of

the art of set visualization. CGF, 35(1):234–260, 2016.

4 S. Bereg, K. Fleszar, P. Kindermann, S. Pupyrev, J. Spoerhase, and A. Wolff. Colored

non-crossing Euclidean Steiner forest. In Algorithms and Computation (ISAAC’15), LNCS

9472, pp. 429–441. Springer, 2015.

5 S. Bereg, M. Jiang, B. Yang, and B. Zhu. On the red/blue spanning tree problem. TCS,

412(23):2459–2467, 2011.

6 M. de Berg and A. Khosravi. Optimal binary space partitions in the plane. In Computing

and Combinatorics (COCOON’10), LNCS 6196, pp. 216–225. Springer, 2010.

7 U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Path-based supports for hyper-

graphs. In Combinatorial Algorithms (IWOCA’10), LNCS 6460, pp. 20–33. Springer, 2010.

8 K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek. On planar supports

for hypergraphs. JGAA, 14(4):533–549, 2011.

9 K. Dinkla, M. van Kreveld, B. Speckmann, and M. Westenberg. Kelp Diagrams: Point set

membership visualization. CGF, 31(3pt1):875–884, 2012.

10 F. Hurtado, M. Korman, M. van Kreveld, M. Löffler, V. Sacristán, A. Shioura, R. I. Silveira,

B. Speckmann, and T. Tokuyama. Colored spanning graphs for set visualization. CGTA,

68:262–276, 2018.

11 B. Klemz, T. Mchedlidze, and M. Nöllenburg. Minimum tree supports for hypergraphs

and low-concurrency Euler diagrams. In Algorithm Theory (SWAT’14), LNCS 8503, pp.

253–264. Springer, 2014.

12 E. Korach and M. Stern. The clustering matroid and the optimal clustering tree. Mathe-

matical Programming, Series B, 98:385–414, 2003.

13 W. Meulemans, N. Henry Riche, B. Speckmann, B. Alper, and T. Dwyer. KelpFusion: A

hybrid set visualization technique. IEEE TVCG, 19(11):1846–1858, 2013.

14 H. Purchase. Metrics for graph drawing aesthetics. J Visual Languages & Computing,

13(5):501–516, 2002.

15 E. Tufte. The Visual Display of Quantitative Information. Graphics Press, 2001.

16 A. van Goethem, I. Kostitsyna, M. van Kreveld, W. Meulemans, M. Sondag, and J. Wulms.

The painter’s problem: covering a grid with colored connected polygons. In Graph Drawing

and Network Visualization (GD’17), 2017. arXiv:1709.00001.

