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Abstract— We propose BarcodeTree (BCT), a novel visualization technique for comparing topological structures and node attribute
values of multiple trees. BCT can provide an overview of one hundred shallow and stable trees simultaneously, without aggregating
individual nodes. Each BCT is shown within a single row using a style similar to a barcode, allowing trees to be stacked vertically with
matching nodes aligned horizontally to ease comparison and maintain space efficiency. We design several visual cues and interactive
techniques to help users understand the topological structure and compare trees. In an experiment comparing two variants of BCT with
icicle plots, the results suggest that BCTs make it easier to visually compare trees by reducing the vertical distance between different
trees. We also present two case studies involving a dataset of hundreds of trees to demonstrate BCT’s utility.

Index Terms—tree visualization, comparison, multiple trees.

1 INTRODUCTION

Datasets sometimes comprise of many similar trees (such as different
collections of books at different local libraries, all classified according
to the Dewey Decimal system) or a single tree that changes over time
(e.g., the “site map” of a website changing over time). Visual overviews
of such collections of trees could greatly help with performing com-
parisons, identifying nodes or subtrees that are present or absent, or
finding trends and outliers.

There is much previous literature [54] on visualizing individual trees,
and considerably less on visual comparison of trees, mostly limited to
visualizing two trees at a time [5,15,29,30,34,44,63,64]. The previous
work that has demonstrated the visualizations of three or more trees
simultaneously has shown less than 40 trees at most [9]. As sources
of all kinds of data continue to grow, there is an increasing need to
visualize larger numbers of multiple trees.

We propose BarcodeTree (BCT) for scalable comparison of both
topological structure and node attribute values across multiple trees.
BCT linearizes each tree as a single row (Fig. 1), compressing the
visualization vertically, making it easy to stack multiple trees and
align their matching nodes (Fig. 2), reducing the distance between
matching nodes. We investigate two variants, BCTw (width-encoded
BarcodeTree) and BCTh (height-encoded BarcodeTree), which encode
node depth into the width or height, respectively, of rectangles. Node
attributes can be encoded with color, or (in the case of BCTw) in the
height of the rectangles. To help users understand the topological
structure, we also design “structural cues” to highlight the descendants,
ancestors, and siblings of the node under the cursor.

The design of BCTs was motivated by working with datasets of trees
that are relatively shallow and stable. By “stable”, we mean that there
is a pre-defined universal tree which is a supertree of all the trees in the
dataset. The differences between the trees are that they may contain
different subsets of the nodes in the supertree and that the attribute
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Fig. 1. BarcodeTrees (BCTs) linearize hierarchical data and map the
nodes to rectangles. The BCTw encodes the depth of each node with
the Width of each rectangle, leaving height and color available for en-
coding node attributes. The BCTh encodes depth with the Height of the
rectangles, leaving color available for encoding node attribute values.
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Fig. 2. A sequence of three trees, visualized using classical node-
link drawings (left) and then stacked as three BCTw rows. By aligning
matching nodes, the differences in the structures become apparent.

values on each node may change. Such datasets of trees are encoun-
tered in applications such as (1) daily borrowing records from a single
university library for multiple days where books follow a pre-defined
classification system; (2) collections of books in multiple libraries; (3)
the budgets for multiple departments from different governments or
the same government over time; (4) the categorization hierarchy of
products on an e-commerce website that grows over time.

We compared our two variants of BCT with icicle plots [40] and
Indented Pixel Tree Plots (IPTP) [13] in a pilot study, and found that
time spent on IPTP was slower than icicle plots for all the tasks studied.
A controlled experiment then compared BCTw, BCTh, and icicle plots,
finding that BCTs require significantly more time in tasks requiring the
understanding of the topology of an individual tree, but significantly
less time in tasks involving the comparison of multiple trees.



Our contributions are: (1) BarcodeTree, a novel visualization tech-
nique for comparing the topological structure and node attribute values
of multiple shallow and stable trees, capable of accommodating one
hundred trees, at hundreds of nodes per tree (but with small fan-out
degree), within a normal screen size, (2) visual feedback (“structural
cues”) to help users understand the topological structure, (3) a con-
trolled experiment that demonstrates that BCTs can make tree com-
parison tasks significantly easier than with a competing visualization
technique, and (4) two use cases involving a library book dataset to
demonstrate the utility of BCTs.

2 RELATED WORK

2.1 Visualization of Individual Trees

Tree visualizations can be categorized into explicit and implicit tech-
niques according to the visual encodings of parent-child relation-
ships [54]. Explicit techniques encode these relationships with visible
edges, e.g., line segments or arcs. Implicit techniques use inclusion
(i.e., children nested, or enclosed, inside their parent) or adjacency [53].

Most explicit tree visualizations arrange hierarchical data within
a 2D or 3D space, whereas arranging nodes in 1D is underexplored.
Thread Arc [36] arranges the nodes of a tree along a 1D row according
to chronology and uses circular arcs between nodes to encode parent-
child relationships. However, the arcs used in Thread Arc make it
difficult to compress the layout into a thin strip that would be amenable
to stacking many trees together. In contrast, BCTs do not encode
parent-child relationships with explicit visual elements, which increases
space-efficiency for stacking multiple trees.

Within implicit tree visualizations, a prominent example of inclusion
encoding is the treemap [35], which nests children inside their parents.
In treemaps, leaf nodes show node attribute values through their size,
and the attribute value of a non-leaf node is typically the sum of its
children. By contrast, BCTs allow the attribute value of a node to
be independent of the values of its children. Treemaps are usually
arranged in 2D [10, 55, 57] or 3D [17, 60]. ArcTree [49] linearizes the
hierarchical data and arranges nodes within a single row, which can
be regarded as a “one dimensional” treemap. For example, a 7-node
tree can be shown as an ArcTree with or without horizontal
spaces between the borders of nodes. The same tree shown using BCTh

or BCTw requires less spatial resolution, because BCTs
contain fewer closely-spaced lines than ArcTrees.

Adjacency encodings, such as icicle plots [40], are a compromise
between explicit and inclusion encodings. Compared to explicit encod-
ings, the use of adjacency saves space by not showing explicit edges
between nodes. Compared to inclusion encodings like treemaps, using
adjacency is not as space-efficient [46], but makes the different levels
of the tree easier to distinguish [4]. Icicle plots [40] show parent-child
relationships with vertical adjacency: child nodes are placed below
parent nodes. Each level of the tree is one row, with an entire tree
occupying several rows. Although it is possible to stack multiple icicle
plots vertically for comparison of trees, BCTs require much less vertical
space than icicle plots. In this way, BCTs reduce the distance between
the matching nodes of different trees.

BCTs can be understood as another kind of adjacency encoding. It
maps the nodes of a tree to parallel bars in depth-first traversal order.
Each parent node neither contains nor has explicit links to its children,
but users can still discern the underlying topological structure. This is
similar to the indented outline [37] layout (used in many file browsers)
and to Indented Pixel Tree Plots (IPTP) [13], both of which position
nodes according to depth-first traversal order. The indented outline
layout works well for showing nodes with text labels. To enable users to
read these text labels, indented outline always arranges nodes vertically
rather than horizontally. If we remove the text labels from the nodes,
compress and rotate 90 degrees, we obtain a layout similar to BCTh,
making it suitable for stacking multiple trees together. IPTP allocates
a separate row for each level of a tree, like icicle plots, and therefore
both of these layouts are less vertically compressed than BCTs.

2.2 Visual Comparison of Trees
Comparison is an essential task in data analysis [23, 24, 50]. A range of
techniques exist for visually comparing trees [28], which we subdivide
into: juxtaposition, merged views, and atomic representations.

Juxtaposition is the most prevalent strategy and can be done in space
or time. Spatial juxtaposition can be done with node-link representa-
tions [9, 48, 70], radial representations [16, 25, 26], and treemaps [41].
Such side-by-side views can leverage interaction through brushing and
linking and dynamic queries, highlighting the corresponding nodes of
other trees interactively. However, without interaction, it is difficult
to understand the highlighted differences of many nodes, making it
ineffective for presenting the user with an overview of many changes
across many trees. Furthermore, because the representations in previ-
ous work are not as vertically compressed as in BCTs (i.e., they are not
“long and skinny”), these previous techniques do not scale well beyond
a small number of trees. Previous works also juxtapose icicle plots for
comparison. Some of these [15, 34, 44, 66] arrange two icicle plots ad-
jacently and connect the matching leaf nodes with edges. By mirroring
the icicle plots, Code flow [61] allows users to compare more than two
trees. The explicitly drawn links provide an overview of topological
structure difference, but also occupy much space, again preventing this
technique from accommodating more than a small number of trees at a
time. Taxonaut [69] juxtaposes multiple indented outlines horizontally
and aligns them using a union tree, but it is still less scalable than
BCTs because each indented outline needs to occupy several columns.
Some works [18, 39, 43] connect matching nodes across trees using
curved bands, but at the cost of “blurring together” individual nodes.
Temporal juxtaposition, such as with TimeTree [14], uses animation
to transition across different trees. This strategy also does not scale
well to a large number of trees. Users have limited ability to remember
variation between frames, and therefore have to view the animations
multiple times.

Some previous works propose merging multiple trees into a single
visual representation to improve space efficiency. Beck et al. [5, 6]
propose a dependency structure matrix which arranges an icicle plot
along each side of an adjacency matrix, with each cell in the matrix
encoding the node differences. This approach only accommodates two
trees at a time, and the matrix only shows the results of comparing leaf
nodes. Some works [7,20,29,30,42,64] merge the trees to be compared
into one union tree. Graham et al. [27] explore several trees by merging
them into a Directed Acyclic Graph (DAG) representation. Compared
to a union tree, the DAG allows displaying multiple ancestor paths of a
node. The merged view needs to show the differences among multiple
trees. However, the relationships of multiple trees are complicated,
especially when dealing with a large number of trees, and it is also
difficult to show these results within a single merged view.

For sufficiently large numbers of trees, the limited screen space
cannot show all the trees in full detail, so techniques have been de-
veloped that visualize the trees as atomic representations. Previous
works [2, 33] visualize each tree as a single point in a scatter plot to
support the comparison of large numbers of trees. The distances be-
tween two points show the degree of similarity between the associated
trees. TreeEvo [22] mainly focuses on the structural heterogeneity of
family trees. It visualizes each family tree with a pixel line and groups
them into the nodes of a Sankey diagram. Explicit representation of
relationships only reveals the comparison results from a high-level
overview, but it cannot provide detailed comparisons of topological
structure and node attribute values.

Despite the substantial previous works on tree comparison, to the
best of our knowledge, previous methods are not able to show one
hundred trees simultaneously in full detail, i.e., showing all individual
nodes, showing both topological structure and node attribute values
simultaneously on a typical PC screen. This is a unique feature of
BCTs.

3 REQUIREMENTS ANALYSIS

We seek a technique for comparing multiple shallow and stable trees
that is more scalable than previous techniques. We first consider previ-
ous literature on tree comparison to determine which tasks to support.



Guerra-Gómez et al. [29, 30] identified five types of tree comparison:
(1) comparing topological differences where nodes have no attribute
value; (2) comparing attribute values of leaf nodes with no changes in
topology; (3) comparing attribute values of all nodes with no changes
in topology; (4) comparing attribute values of leaf nodes with changes
in topology; (5) comparing attribute values of all nodes with changes
in topology. Munzner et al. [48] indicated that structural comparison
is done by associating each node in one tree to its corresponding node
in the other tree. In addition to comparison tasks, Chi et al. [16] also
identified global and local tasks for multiple tree exploration. Global
tasks refer to comparing multiple trees to discover trends/patterns. Lo-
cal tasks refer to finding specific information about topology or node
attributes. Supporting both global and local tasks agrees with Shneider-
man’s [56] recommendation to enable switching from an overview to a
drilled-down view. We seek to support all the aforementioned kinds of
tasks. Some additional tasks related to trees that could be considered
are ways to edit trees (e.g., moving nodes or subtrees), but such editing
tasks are beyond our scope since we seek to visualize the data.

Thus, our requirements for a new layout derive from three main
needs. To support all of Guerra-Gómez et al.’s [29, 30] five tasks, we
need a technique that shows both topology and node attributes, in a
way that enables efficient comparison. To support global tasks, the
technique should show as many trees as possible, while also showing as
many individual nodes as possible within each tree. Providing a clear
depiction of the topological structure of each tree is also desirable to
support local tasks. However, making topology clear is less important
than accommodating many trees and many nodes. This is because users
can always start from an overview of many trees using the new layout,
to compare multiple trees and discover trends or outliers, and later
drill-down to one or a few trees shown with a more traditional layout
that shows topology more clearly.

Below are our specific design requirements. R1 and R2 address the
need for global tasks; R3 and R4 enable the five kinds of comparisons
identified by Guerra-Gómez et al. and R5 enables local tasks.
R1: Show many trees within one screen. Providing an overview
within the space of a typical display is essential for comparing multiple
trees, and it is one of the requirements for many usage scenarios of tree
comparison [9, 34, 61].
R2: Show many nodes within each tree. The visualization should
show individual nodes within each tree. Providing such fine-grained
information, while the user is still viewing an overview of the multiple
tree dataset, reduces the need for the user to drill-down to more detailed
views.
R3: Show one quantitative attribute for each node. Encode the
attribute value on each node, to enable comparison of node values
across trees, revealing trends and outliers.
R4: Facilitate comparison of a node’s presence/absence or at-
tribute values across many trees. It should be easy to find matching
nodes across multiple trees, for comparing their attribute values, and
for comparing the presence or absence of a node in different trees.
R5: Show topological (parent-child) relationships within each tree.
It should be possible to discern the topological structure of tree data.
This requirement is listed last to indicate that some sacrifices to the
clarity of parent-child relationships are acceptable if such sacrifices
increase space efficiency (R1, R2).

4 BARCODETREE DESIGN

Guided by the design requirements above, we propose BarcodeTree
(BCT), which is a tree visualization to compare topological structure
and node attribute values among multiple trees. In this section, we
introduce the visual design of BCT, and then we propose interaction
techniques to help users understand the underlying hierarchical data.

4.1 Visual Encoding Designs
To achieve scalability in the number of trees and nodes, we investigated
mapping topology of multiple trees to vertical and horizontal positions
(the most efficient visual channels [47]). Specifically, BCT visualizes
each tree within a single row to minimize its vertical extent, which
maximizes the number of trees that can be stacked vertically (R1). BCT

(a) (b)

Fig. 3. “Structural cues” highlight certain nodes in response to the cursor
hovering over a node, to make topological relationships more apparent.
Horizontal underlining appears under ancestors to the left of the cursor,
and also under descendants to the right of the cursor. Vertical tick marks
appear under siblings at the same level as the node under the cursor.
Both marks appear under the node under the cursor, resulting in a cross-
shaped glyph. Above we see two variants of these structural cues, with
an ellipse with dotted border indicating their differences: (a) Descendants
are shown with a single horizontal stroke; (b) Each subtree is shown with
a separate stroke.

also packs nodes horizontally within each row. Parent-child relation-
ships are encoded into relative positions in a space-efficient manner, to
maximize the number of nodes that can be packed horizontally (R2).

BCT represents each node as a rectangle, which can be rendered
very efficiently, meaning that large numbers of nodes can be rendered at
interactive frame rates (R1, R2). The visual channels of the rectangles
(width, height, color) can encode the node depth and node attribute
value (R3). Mapping the node depth to rectangle width produces BCTw.
Specifically, the root node has the largest width, and deeper nodes have
smaller widths. The width difference between nodes at adjacent levels
in BCTw is identical. Mapping the node depth to rectangle height
produces BCTh, which makes it easier for a user to perceive the depth
of each node. In the resulting visualization for a large number of
trees, each node only occupies a tiny space to fit into the screen space.
Specifically, the width and height of each node are small. The small
length could encode the node depth because the target hierarchical
data is relatively shallow. However, the node attribute value has a
high dynamic range. Therefore the node attribute value can only be
encoded into the node color, which is not limited by the node size.
Encoding node attribute values into the color channel cannot support
the accurate comparison. The remaining visual channel (height of
BCTw and width of BCTh) can encode the attribute values repeatedly
as a complementary in some cases. However, encoding the attribute
value into the node width of BCTh will lead to larger gaps between the
nodes after the alignment and therefore, low space utilization efficiency.
Therefore, we rule out this design.

BCTs utilize pre-order depth-first traversal to determine the horizon-
tal node positions, which encode the parent-child relationships. Nodes
in the hierarchy are added to the layout left-to-right according to the
order of the first traversal time. The descendants of each node are
placed to the right of the node. The user can find the descendants of a
node N by scanning to the right of N until they encounter another node
of the same width or height as N, depending on the variant of BCT
used. Therefore, BCT allows users to interpret the tree’s topological
structure (R5). Because of its compactness, BCT can be embedded into
a single line of text, just like sparklines [65]. For example,
represents a tree with eleven nodes and four levels.

Subsection 4.3 discusses the alignment method used to make com-
parison easier (R4). As shown in Figure 2, BCT clearly shows node
deletions and insertions as nodes appearing or disappearing within a
column. However, if a node is displaced in two trees (i.e., moves from
under one parent to another), it is hard to identify such correspondence.
With BCT, a displaced node is duplicated and mapped to two columns.
Specifically, the node is present in the first column of one tree and
the second column of the other tree. An alternative design is to show
explicitly visible links between the BCT rows to more clearly indicate
node displacements. However, this would come at the cost of increased
vertical space requirements and is beyond the focus of this work.

4.2 Interaction Design

To help users understand and navigate the hierarchical data, we de-
signed three interaction techniques for BCTs. In the following, we use



(a) (b)

Fig. 4. Diagonal stripe glyphs. (a) Selecting the root nodes of two
subtrees of interest; (b) Replacing each contiguous uninteresting region
with diagonal stripe glyphs. The density of the diagonal stripe texture in
each glyph encodes the number of elided nodes.

(a) (b) (c)

Fig. 5. Collapse/Expand subtrees. The figure above shows the process
that users refine their focus of interest. Darker icons correspond to
branches with more nodes. Taller icons correspond to deeper branches,
and wider icons correspond to a higher average branching factor. As
users change the focus of the layout (i.e., click on the node under the
cursor in (a)), more details in (b) are revealed. (c) Changing the focus of
layout to a deeper branch by clicking on the node under the cursor in (b).

BCTw as an example to illustrate the interaction techniques and these
designs can also be applied to BCTh.

Structural cue highlighting. Although users can discern the topol-
ogy in BCTs, this process can be tedious, requiring users to scan nodes
sequentially. To help with such interpretation (R5), we added inter-
active structural cues. Figure 3 shows how ancestors, children, and
siblings of the node under the cursor are indicated with underlining or
tick marks. To indicate descendants, we firstly used a single horizontal
stroke (Figure 3(a)). However, we found that analysts still had difficul-
ties in understanding the characteristics of the descendants, such as the
number or the balance of subtrees. Therefore we developed the variant
in Figure 3(b), where each subtree is indicated with a separate horizon-
tal stroke. The number and lengths of strokes indicate the number and
size of subtrees, making it easier to judge whether the tree is balanced.

Compress with diagonal stripe glyphs. For the trees with tens of
thousands of nodes, BCTs representation can be very wide and hard
to accommodate in a screen. When exploring large hierarchical data,
users are usually interested in a few subtrees, and the other parts will
distract them. If several subtrees of interest cannot be visualized within
the same screen space, users need to scroll horizontally back and forth
to navigate between these subtrees. To facilitate such exploration, users
can select the subtrees of interest and then aggregate each contiguous
uninteresting region into diagonal stripe glyph (Figure 4).

Collapse/Expand Nodes. When the nodes in one branch cannot be
visualized within a screen, it will hinder users’ navigation. We provide
collapse/expand interaction to make the best possible use of the BCT
visual representation for interactive visualization. Figure 5 shows the
progressive opening of branches as users refine their focus of interest.
Compressed branches are previewed with an isosceles triangle. The
preview icons are below the root node of the compressed branch.

The visual encodings of the triangular glyph are similar to Space-
Tree [51]. The width of the triangle’s base encodes the average width
(number of items divided by the depth). The height encodes subtrees’
depth. The darkness encodes subtrees’ total number of nodes. Even for
the collapsed subtrees, users can still get overview information from the
triangle glyph, and even make rough comparisons of whole subtrees.
Clicking on nodes can open collapsed branches.

4.3 Alignment Comparison Method

To compare the topological structures and node attribute values among
multiple trees, we developed an alignment comparison method involv-
ing two steps. The first step is to juxtapose multiple trees vertically, and
the second step is to align the BCTs horizontally. We also introduce
visual encodings of alignment results and sorting interactions.

Horizontal alignment. Our method aligns multiple trees and maps
the matching nodes to the same horizontal positions to help the user
compare their topological structure (R4). Our alignment method con-
structs a union tree to merge multiple trees into a single tree (Algo-
rithm 1), then visualize union tree with BCT to get union BCT, and
maps the nodes in each tree to the positions of their matching nodes
in the union BCT. The union BCT is composed of BCTs as a kind
of superset of the nodes. Constructing the union BCT is a top-down
recursive process. Each iteration merges all matched children (and
their subtrees) and then appends unmatched children. The mapping
strategy determines the position of each node and allows placing the
matching nodes in the same horizontal position after stacking multiple
trees vertically.

Algorithm 1 Construction of the union tree
Require: T1,T2 are root nodes of two trees to merge.

1: procedure BUILDUNIONTREE(T1, T2)
2: if T1.key = T2.key then // if the keys of the root nodes match ...
3: C1[ ]← T1. children
4: C2[ ]← T2. children
5: // Cmatched is an array of 2-element arrays.
6: // of children with matching keys:
7: Cmatched [ ]←{[c1,c2]|c1 ∈C1∧c2 ∈C2∧c1.key= c2.key}
8: // Cunmatched is an array of the remaining children.
9: Cunmatched [ ]←C1∪C2−∪i Cmatched [i]

10: // Cunion will be an array of merged subtrees.
11: Cunion[ ]← [ ] // initially empty
12: for pair[ ] ∈Cmatched do
13: cunion← BUILDUNIONTREE(pair[0], pair[1])
14: Cunion. push(cunion)
15: end for
16: Tunion← new Node( T1.key ) // give it same key as T1.
17: Tunion.children←Cunion ∪Cunmatched
18: else
19: Tunion← new Node( new key ) // generate a new key for it.
20: Tunion.children← [T1, T2]
21: end if
22: return Tunion
23: end procedure

The alignment result merges the nodes of multiple trees, so the
width of the alignment results is larger than single BCT. Our method
supports to align a subset of nodes interactively and lay out other
nodes successively as the original BCT, which reduces the width of
comparison results. Our method provides two alignment strategies,
aligning the subtrees of interest and aligning the tree to a certain level.

Figure 6(a) shows three original BCTs. Our method aligns the
subtrees of interest by partitioning the BCTs into segments according
to whether they need to be aligned. Each partitioned segment contains a
single subtree. Then it computes the maximum length of each segment
and aligns them at first. Then our method computes the layout of the
nodes within each segment separately. As shown in Figure 6(b), for the
unaligned segments, our method lays out the nodes based on the BCT
layout algorithm. For the aligned segments, our method lays out the
nodes using the alignment comparison algorithm based on the union
BCT.

For aligning the BCTs to a certain level as shown in Figure 6(c), our
method firstly constructs the union tree for the nodes above the level,
then computes the maximum length for the descendants among the
leaf nodes of these trees. Next, it places the nodes of union tree with
reserving the blank space, the length of which is the maximum length
after each leaf node. Finally, our method computes the positions of the
nodes under the aligned level in the corresponding blank space using
BCT layout algorithm.

Visual encoding. The alignment results encode the non-existent
nodes into outlined rectangles . Users can select the nodes/subtrees
as the reference and identify the extra/missing parts in other trees. The
visual encoding of BCT facilitates users to understand the differences.



(a) (b) (c)

Fig. 6. Node alignment for comparison. (a) Juxtapose the original BCTs vertically; (b) Align the nodes in the subtrees of interest; (c) Align the nodes
to the second level. The black line at the bottom of the BCTs indicates the aligned parts, and the gray dotted line indicates the unaligned parts;

Reference Subtree

(a)

Reference Node

(b)

Sort

(c)

Fig. 7. Visual encoding of the differences between trees. The reference
nodes/subtrees are with a light gray background. (a) Topology compar-
ison; The outlined rectangles represent the non-existent nodes. After
setting the reference nodes/subtrees, red outlined rectangles encode the
missing parts, and green rectangles encodes the extra parts. (b) Node
attribute value comparison; After setting the reference node, the red line
indicator is added on the matching nodes with a smaller attribute value,
and a green line indicator is added on the matching node with a larger
attribute value. (c) Sorting BCTs; Three BCTs are sorted descending
according to the values of the reference node.

It maps the missing nodes to red outlined rectangles and the extra
nodes to green rectangles as illustrated in Figure 7(a). Encoding
the node attribute value into height might be difficult for comparison
between different trees, especially when their differences are small.
After selecting the reference as illustrated in Figure 7(b), the indicators
will be added on the matching nodes to show the negative and positive
changes of node values. The position of the indicators is identical to
the node value of reference nodes, and its color indicates the negative
or positive differences (R4).

Sorting. Users can rank multiple BCTs interactively according to
different criteria. Firstly, the user can select the subtrees of interest and
rank multiple trees by the node number or topological structure similar-
ities. Secondly, the user can choose to rank multiple trees according
to the values of the selected node. To reveal the evolution patterns, the
user can rank these trees by their original characteristic, for example,
the chronological order.

5 EXPERIMENT

We conducted a controlled experiment to evaluate the performance of
the two BCT variants in four different tasks.

5.1 Choice of Techniques
We aim to evaluate the two variants, BCTw, which is more vertically
compact, and BCTh (Figure 1), which may allow for easier understand-
ing of the topological structure. For experimental comparison, we
considered which existing techniques also allow multiple trees to be
stacked along the vertical (y) axis, with the nodes of each tree packed
along the horizontal (x) axis. More precisely, we considered techniques
where the x-coordinate of leaf nodes increases monotonically during
a depth-first traversal. This criterion means that we do not consider
radial layout techniques [3, 21, 59, 68], as well as inclusion techniques
such as treemaps [35, 55] and nested circles [8, 62].

One well-known technique that does arrange leaf nodes along one
axis is the icicle plot [40] (Figure 8, left). Classical node-link layout
techniques [11, 52] also do this and can be obtained by connecting the

Fig. 8. Competing techniques for experimental evaluation.

centers of the rectangles in an icicle plot with line segments along with
parent-child relationships. However, compared to classical node-link
layouts, the rectangles in icicle plots provide more room for labels and
are easier to select with a mouse. Icicle plots have been used previously
for comparing multiple trees [61], although without alignment.

Another candidate technique is the Indented Pixel Tree Plot (IPTP)
(Figure 8, right). Previous work [13] on this does not use it to compare
multiple trees, but IPTP could be used in this way, and has the advantage
that it assigns a unique x position to each node (not just to leaf nodes),
allowing matching nodes of stacked trees to be aligned and compared.
Note that the originally published form of IPTP renders leaf nodes in a
smaller size, however this would hinder the display of attributes on the
leaf nodes, hence our implementation draws all nodes the same size.

For each technique, we can ask: does each child node overlap its
parent node (1) along the x axis and (2) along the y axis? With icicle
plots, the answers to these questions are (yes, no), that is to say, there
is overlap along the x axis but not along the y axis. With BCT, the
answers are (no, yes). With IPTP, the answers are (no, no). Each of the
two questions offers a tradeoff, with overlap saving space but possibly
making it more difficult to distinguish nodes.

Thus, four techniques were implemented and investigated experimen-
tally: BCTw, BCTh, ICICLE, and IPTP. As we explain later, IPTP was
eliminated after our pilot study and not included in the full experiment.

5.2 Analysis of Techniques and Hypotheses

Table 1 compares the four techniques according to several criteria. The
3rd row concerns vertical space requirements. If we assume that all
techniques display leaf nodes of the same size, then clearly BCTh
and especially BCTw save space vertically over the other techniques,
allowing different trees to be stacked closer together. The 4th row
concerns the size of nodes: ICICLE results in larger non-leaf nodes,
making them easier to select with a mouse. The last two rows in the
table are grey because our answers are tentative and hypothetical. The
second-last row indicates which techniques are best at communicating
the structure of the tree: we suspect that BCTh and especially BCTw
will suffer here.

The last row concerns the comparison of multiple trees. We sus-
pect ICICLE does not support easy comparison of the matching nodes
in different trees, as the intervening space between matching nodes
is filled with other nodes, which hinders finding the matching nodes.
IPTP, however, assigns a unique x position to each node, facilitating
comparison of matching nodes in different trees, as there are no inter-
vening nodes. Both BCT techniques also assign unique x positions to
each node, and also allow different trees to be closer together than the



Table 1. Comparison of techniques

BCTw BCTh ICICLE IPTP
Can encode attribute with color yes yes yes yes
Can encode attribute with height yes no yes yes
Saves space vertically yes partially no no
Non-leaf nodes are bigger, no no yes no
hence easier to select
Easy to understand structure of single tree no maybe yes yes
Easy to compare nodes in different trees yes yes no maybe

other two techniques, which could make a comparison even easier.
The last two rows in the table are the ones we seek to investigate

experimentally. We aim to confirm that BCT is indeed better for com-
paring matching nodes, and also test if other techniques are better at
helping users understand the structure of trees. We formulate the fol-
lowing hypotheses:
H1 - BCT will require more time and/or result in a higher error rate than
ICICLE or IPTP for tasks requiring the understanding of the structure
(topology).
H2 - BCT will require less time than ICICLE or IPTP for tasks requir-
ing the comparison of multiple trees.
H3 - BCT will result in an error rate that is competitive with (i.e.,
no worse than) ICICLE or IPTP in tasks requiring the comparison of
multiple trees.

5.3 Experiment tasks

To test the preceding hypotheses, we chose two tasks (Task1, Task2)
that require the user to understand the structure of a single tree and two
tasks (Task3, Task4) that require comparing multiple trees. Examples
are illustrated in Figure 9.

Task1 (Find a descendant node): A single tree is displayed, within
which one node N is highlighted. The user must find the second child
of N’s second child, then click this node to finish the task.

Task2 (Find the nearest common ancestor): A single tree is dis-
played, within which two nodes N1, N2 are highlighted. The user must
find the nearest (i.e., deepest) common ancestor of N1, N2 and click it.
If N1 is itself an ancestor of N2, the user must click on the parent of N1.

Task3 (Tree comparison without scrolling): The alignment results
of three trees are displayed within the screen space, stacked vertically
to place the matching nodes at the same horizontal positions, with
one tree T1 highlighted to indicate that is the “reference tree”. The
user must compare the trees to find, among the other two trees, which
one (call it T2) contains the largest number of identical nodes with the
reference tree T1. The user must click on the label of T2 to finish the
task. Note that this task does not involve clicking on a node, but rather
on a label for an entire tree, and that these labels were always the same
size regardless of the tree layout technique used.

Task4 (Tree comparison with scrolling): This is the same as Task3,
except that now there are six trees to compare, and only three are visible
at a time within the screen space, requiring the user to scroll vertically
to compare the trees. Scrolling was done using the mouse wheel (i.e.,
the user did not need to click on a scrollbar to begin scrolling firstly).
To complete the task, the user had to click on the label of one of the
five non-reference trees to indicate which had the largest number of
identical nodes with the reference tree.

Tasks 1 and 2 are designed to test hypothesis H1, while Task3 and
Task4 measure ability to compare sets of nodes across multiple trees to
test H2 and H3. Task3 and Task4 are designed to measure the benefit
of saving vertical space, especially Task4, where ICICLE and IPTP
require users to scroll more.

Task1 is similar to tasks in previous studies [38, 58] where users had
to find a node with particular properties. Task2 has been used in other
previous studies [4, 12]. Tasks 3 and 4 are similar to Wang et al.’s [67]
which asked users to find subtrees that are “very similar”, “slightly
similar”, “significantly different”, etc.

For all tasks, the maximum vertical size of nodes was always set to
be the same, and the horizontal spacing between the adjacent nodes was
the same as well. Furthermore, with the BCTh and ICICLE techniques,
the width of leaf nodes was always the same. With BCTw, however,

IPTP
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ICICLE

ICICLE

IPTP ICICLE

BCTw

BCTw

BCTw

BCTh

BCTh

BCTh

Fig. 9. Example tasks in the controlled experiment. Nodes highlighted at
the start of the trial are red, and cursors above show where the user had
to click. (Top) Task1: Click the second child of the second child of the
highlighted node. (Middle) Task2: Click the nearest common ancestor of
the highlighted nodes. (Bottom) Task3: Click the tree most similar to the
reference tree (tree-0) indicated by the box.

leaf nodes were thinner, because BCTw requires having thin leaf nodes
to allow for a range of widths for non-leaf nodes.

None of our tasks required the user to compare attribute values be-
tween different nodes. This is because previous work [31] has already
studied comparisons of pairwise attributes encoded with different chan-
nels. We were instead interested in understanding the tradeoffs in using
BCT to understand tree structure and compare multiple trees.

5.4 Pilot study

A pilot study compared all four techniques (BCTw, BCTh, ICICLE,
and IPTP) with four users and all four tasks. The users were from the
computer science department. The goal of the pilot was to validate
if the experimental design is appropriate. During the pilot, each user
took more than 1.5 hours to complete all the tasks. The main result of
the pilot was that IPTP was always slower than ICICLE, in all tasks.
Before the pilot, we suspected that IPTP could benefit over ICICLE
by not having any nodes in the intervening space between matching
nodes. However, during interviews, users reported that the nodes
occupying intervening space (in ICICLE) do not hinder comparison;
on the contrary, they provide references to help find matching nodes
in other trees. Based on the measured times and interview results, we
removed IPTP from the full experiment, thus allowing users in the full
experiment to complete all tasks within one hour.

5.5 Full experiment

To understand the advantages and disadvantages of BCT, we conducted
a full experiment to compare BCTw, BCTh, and ICICLE.

Participants and Apparatus. Twenty-one users (aged 25-35) from
both local universities and industry participated. The users were from
the fields of computer science, economics, business, and finance. All
of them were right-handed. All the subjects indicated that they were
familiar with hierarchical data and had experience with visual analysis
tasks. Tasks were performed in a quiet computer lab on a Dell Precision
T5500 desktop PC, with an Intel Xeon Quad-Core processor, 8GB
RAM, and an NVidia Quadro 2000 graphics card driving a 23IN LCD
1920×1080 pixel monitor. The experiment system was developed in
JavaScript using Node.js.

Dataset. We decided to use algorithmically-generated data, rather
than real-world data, so as to more easily control the characteristics
of the data, making it easier to replicate a similar study in the future
(if so desired) and avoiding the bias that would come from using any
particular real-world dataset. (As a complementary approach, the
qualitative evaluation in Section 6 uses real-world data.)
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Fig. 10. Experiment results are broken down by the techniques and tasks.
Vertical error bars indicate standard errors. Horizontal red line segments
indicate pairs that are significantly different (p < 0.05).

Trees for the experiment were generated such that each tree or set of
trees fits within the screen without scrolling, except in Task4. Each tree
had a depth between 2 to 5, and each node had between 0 to 5 children.
The differences between trees of the same set involved nodes (or sub-
trees) either appearing (insertions) or disappearing (deletions), but not
nodes moving from one location in a tree to another (displacements).

The BCT layout can show node displacements by duplicating each
displaced node in the alignment results (discussed in Section 4.1).
However, the data generated for the experiment did not involve such
node displacements, for two reasons.

Firstly, none of the techniques in the experiment use explicit links
to show matching nodes between trees, in order to save vertical space.
Thus, to show node displacements, it would be reasonable for all the
techniques to use node duplication. Furthermore, all four techniques
assign x coordinates to leaf nodes in the same depth-first order. These
similarities suggest that all the techniques would suffer similarly when
used with data involving node displacements, and generating such data
for the experiment would likely only prolong the trials and/or reduce
statistical power.

Second, the real-world datasets used for qualitative evaluation of
the prototype (Section 6) are based on a library book classification
where nodes never move from one place to another. This is at least one
real-world domain where node displacements simply do not occur.

Procedure. A within-subjects design was used, with each user
completing all four tasks with each of the three techniques. Tasks
were completed in a fixed order. Within each task, users underwent
each of the three techniques in counterbalanced order, beginning with
warm-up trials. In total, there were 21 users × 4 tasks × 3 techniques
× 8 repetitions = 2016 trials.

Users were instructed to complete each trial as accurately and as
quickly as possible and were told that accuracy and completion time
are equally important. They were seated ≈ 80 cm from the monitor.

Experiment results. Times and error rates (Figure 10) for each
task were analyzed using repeated measures ANOVA (α = 0.05) with
Bonferroni adjusted post-hoc comparisons.

Task1 (Find a descendant node): technique had a significant effect on
time (F2,501 = 7.9, p < 0.0005). Pairwise t-tests showed that ICICLE
was significantly faster (p < 0.05) than each of the BCT techniques,
whereas the two BCT techniques did not significantly differ (p > 0.05).
A subsequent ANOVA found no significant difference between the error
rates of the techniques (p > 0.05).

Task2 (Find the nearest common ancestor): technique had a signifi-
cant effect on time (F2,501 = 31.32, p < 10−12). Pairwise t-tests found
that ICICLE is significantly faster (p < 10−6) than each of the BCT
techniques, whereas the two BCT techniques are only weakly different
(p = 0.061). A subsequent ANOVA showed that the technique also had
a significant effect on error rate (F2,501 = 7.62, p < 0.001). Pairwise
t-tests found that ICICLE only had a significantly lower error rate than
BCTw (p < 0.0005), whereas the two BCT techniques are only weakly
different (p = 0.052).

Task3 (Tree comparison without scrolling): ANOVA found that
technique had a significant effect on time (F2,501 = 4.32, p < 0.02).
Pairwise t-tests showed that ICICLE is significantly slower (p < 0.05)
than each of the BCT techniques, whereas the two BCT techniques do
not significantly differ (p> 0.05). There were no significant differences
in error rate (p > 0.05).

Task4 (Tree comparison with scrolling): ANOVA again found that

technique has a significant effect on time (F2,501 = 5.42, p < 0.005).
Pairwise t-tests showed that ICICLE is significantly slower (p < 0.02)
than each of the BCT techniques, whereas the two BCT techniques do
not significantly differ (p> 0.05). There were no significant differences
in error rate (p > 0.05).

Discussion of results. Given the results of the pilot study, we re-
move consideration of IPTP and slightly rephrase the hypotheses as
follows. H1: the BCT techniques require significantly more time than
ICICLE for Task1 and Task2. H2: the BCT techniques require signifi-
cantly less time than ICICLE for Task3 and Task4. H3: the BCT tech-
niques yield error rates not significantly worse than ICICLE for Task3
and Task4. Formulated like this, all three hypotheses are confirmed.
As expected, the BCT techniques make topological interpretation tasks
(Task1 and Task2) more difficult, but makes tree comparison tasks
(Task3 and Task4) easier, probably because the design of BCT allows
the distance between trees to be reduced. As explained in Section 3,
showing parent-child relationships (R5) is the least important design
requirement for BCT, in the interest of showing as many trees and
nodes as possible. In tasks requiring more topological interpretation,
it could be important for the user to be able to switch to alternative
visualizations that make the topological structure more clear.

We also note that all four tasks required users to first determine
the answer to the question being asked (e.g., find the nearest common
ancestor), and then to move the mouse cursor to an on-screen target
and click. The time required for moving the mouse cursor and clicking
is governed by Fitts’ law [45]. This robust predictive model has been
confirmed in hundreds of studies [1] and predicts that smaller targets
require more time to point and click on. In Task3 and Task4, the targets
clicked by the user were always the same size, thus giving no advantage
to any technique. However, in Task1 and Task2, the user had to click
on a node of the tree, and the non-leaf nodes of ICICLE are bigger
than the nodes of BCT layouts. Therefore we should expect ICICLE to
have a greater time advantage in these tasks, especially in Task2 where
users always had to click on a non-leaf node, often a very shallow
node (and therefore a node that is much larger in ICICLE). Indeed, the
experimental results show that ICICLE had the biggest time advantage
in Task2. Because Task1 and Task2 measured the combined time to
understand which node to click on, and also the time to move the mouse
cursor to that node and click, the measured times do not reflect the true
difference in time to understand topology. In other words, BCT is not
as bad at topological understanding as the results suggest.

Finally, comparing the two BCT variants, it is interesting that BCTh
required less time and resulted in a lower error rate than BCTw for
Task1 and Task2, though not significantly. This is not surprising, since
the design of BCTh is intended to make the depth of each node clearer.
However, this design comes at the cost of making BCTh less vertically
compressible than BCTw, and also meaning that node attribute values
can only be shown using color, which is less effective than using height
for quantitative values [31].

6 QUALITATIVE EVALUATION

We demonstrate the utility of the BCT technique via two use cases that
were identified by working with two domain experts. We also report
feedback from these experts during follow-up interviews.

6.1 Dataset

Our evaluation uses the records of borrowed books at a university li-
brary. Libraries often organize books according to the Dewey decimal
classification, a proprietary, hierarchical system. Deeper levels of the
tree classify books with ever-increasing refinement. The root node
contains all the books, and its children correspond to literature, tech-
nology, social science, etc. The social science node has children for
political science, economics, law, etc. Each leaf node represents the
most granular book category.

The dataset contains the records of borrowed books for two years
(01/01/2016 to 31/12/2017). For each day, we constructed a tree based
on the Dewey decimal classification of all the borrowed books, where
each node’s attribute value is equal to the number of borrowed books in
that node’s category. The dataset contains 730 trees, one for each day.



Fig. 11. The histogram along the top shows the number of borrowed books over the entire two years. The user firstly selects interval (a), yielding the
view in the main view (shown as a background layer in the figure) of just over 100 days. In other words, just over 100 trees (with hundreds of nodes
per tree) are visible simultaneously. The different columns correspond to categories of books, including columns (as, at ), where subscripts indicate
the category: s for Social Science, t for Technology. Later, the user selects intervals (b) and (c), resulting in the data shown in columns (bs, bt , cs, ct ),
shown in the figure as cropped layers superimposed on the original main view for comparison. Throughout all these views, the user has set the ratio
filter in (d) to the range 0.35 to 0.95 to show only the categories that account for the most commonly borrowed books, and not including the root
whose ratio is 1.0. In interval (b), the activity in Technology (bt ) is clearly different.

6.2 Prototype
We have implemented a prototype system based on BCT techniques.
In this system, an overview histogram on the top (Figures 12 and 11)
shows the sum of borrowed books (the attribute values on the root
node) for each day. Users can select intervals within the histogram.
Below the bar chart, interactive views support comparison of multiple
BCTs. We have also implemented the interaction techniques proposed
in Section 4, including structural cues, diagonal stripe glyphs, and
node alignment. The system also provides auxiliary functions for data
exploration, including filtering and sorting.

6.3 Expert Users
We invited two university librarians, each having at least 15 years of
experience, to evaluate our prototype system for comparison of multiple
trees based on BCT. The two experts are interested in comparing the
borrowing records of different time to optimize the allocation of human
resources and book management. Before the exploration of the dataset,
the experts are given a brief introduction of the usage of the prototype
system. The followings are two use cases that emerged from their
exploration. The first case shows that BCTs can support to compare the
topological structure of multiple trees, and the second case shows the
BCTs can support to compare the node attribute values.

6.4 Case 1: Topological structure comparison
To explore the differences between the book borrowing patterns of
two semesters in one year, the experts brushed the overview histogram
and selected two similar periods in two semesters: interval (a) (from
Mar. 20 to Apr. 22 in 2017) and interval (b) (from Jul. 21 to Aug.
21 in 2017), as shown in Figure 12. From the overview histogram,
the experts learned that the amounts of borrowed books are similar.
The selected trees are visualized as BCT rows and stacked vertically
for comparison. The experts aligned the subtrees at the second level
to place the matching nodes at the same horizontal positions. They
identified that the number of borrowed books in the Language category
of the first period is much larger than that of the second period. The
experts then focused on the Language category, compressed the other
parts with the diagonal stripe glyphs, and aligned the subtree of the
Language category at the third level. The exploration results at the
bottom of Figure 12 reveal the different topology variation patterns.

Fig. 12. Changes in books borrowed over time. Within the overview
histogram along the top, the user has selected intervals (a) and (b),
which are similar periods in different semesters. The two intervals are
visualized below (in the left and right panes, respectively) of the main
view. Both panes focus on the Language subtree, replacing other sub-
trees with diagonal stripe textures. Matching nodes are aligned. Three
categories under Language are labelled c1, c2, and c3. In both intervals,
c2 (English and Old English) shows similar continuous activity. In interval
(a) and interval (b), c1 (Linguistics) exhibits different periodic patterns.
Specifically, students borrowing book nearly every weekday in interval
(a) and on every Monday in interval (b).

Firstly, at the overview level, the experts found that students borrow
books in the Language category more frequently in interval (a) com-
pared with interval (b). The experts also noticed that the topological
structure changes of the category English and Old English in both two
intervals are quite small. Specifically, the borrowing records of this
category exist almost every day. However, the borrowing patterns of
the categories Linguistic and Hellenic Languages in interval (a) are
quite different from that in interval (b). Furthermore, the experts contin-
ued to compare the topological structure constructed by the borrowing
records of different days. For the Linguistic category under interval
(a), the experts found that the students usually do not borrow the books
of this category at weekends (identifying the missing nodes). For the



Linguistic category under interval (b), they found that students usually
borrow books (identifying the extra nodes) on Monday.

After checking the university handbook, the experts found that many
foundation courses for international students are in the first semester.
Therefore the books related to the Language categories is more popular
in the first semester. From the detailed borrowing records, experts
also found that the international students borrowed most books un-
der the Language categories. With this discovery, the librarians can
change the location of the books under the Language categories to more
handy places and add more administrators and volunteers to help the
international students to find these books in the first semester.

6.5 Case 2: Node attribute comparison
The second case explores the differences between students’ borrowing
behaviors between term-time and vacations. The experts want to find
the node attribute variation patterns of different categories. As shown
in Figure 11, the experts first brushing two semesters in the overview
histogram, interval (a) (from Aug. 1 to Nov. 12 in 2016) and interval
(c) (from Mar. 13 to Jul. 1 in 2017). The experts then start their
explorations from the comparison results overview. Our prototype
provides filtering interactions according to the ratio between the amount
of borrowing records under this category and the total number of the
borrowing records. As the experts want to explore the most frequently
borrowed categories, they set the ratio in the range of 0.35 to 0.95.
The filtered nodes have a relatively large amount of borrowing records.
The visualization results showed that in interval (c), Social Science
and Technology have a large amount of borrowed books nearly every
day (cs and ct ). In interval (a), the experts found that the number of
borrowing records has a rising trend in the Social Science category (as).
Specifically, fewer nodes are filtered out at the beginning, and then it
appears more nodes along the time. However, borrowing records in
the Technology category (at ) stays stable. Next, the experts selected
the vacation period interval (b) (from Nov. 28 in 2016 to Mar. 2 in
2017), and adjusted ratio controller to filter the ratio of numbers of
book borrowing. From the overview, the experts found a different
attribute variation patterns between the Social Science category and the
Technology category (bs against bt ). Specifically, a large number of
borrowing records lie in Social Science during interval (b). However,
the number of records in the Technology category is small. Furthermore,
the experts also found two abnormal increases in the middle.

For the explanation of this variation pattern, the handbook indicates
that the university provides many elective subjects in interval (b) from
different departments. Students need to select the courses of interest
and count into their credits. Then, the experts looked into the detailed
information of the courses related to Social Science and Technology.
There were 17 courses in Social Science which with 11 courses taught
in the classroom. However, students related to Technology only had
five courses in the classroom, and other 16 courses were involved
in industrial practice and internship. Only the courses that need to
take lessons in the university requires students to borrow books from
the library. In this way, the students are more likely to choose these
courses related to Social Science than Technology. As described above,
the course arrangements in interval (a) and (b) are very different, but
the courses in interval (a) and (c) do not have a significant difference
between Social Science and Technology.

6.6 Expert Feedback
We conducted one-on-one 45-minute interviews with the two domain
experts to collect feedback on our techniques. We asked the experts
to explore on their own using our prototype. During this process, we
answered their questions and recorded comments and preferences. Both
experts expressed enthusiasm toward using BCT. “BCT technique is a
little hard to understand at first, but it is easy to learn and use” (E1) and
“It provides interactive tools to help me explore data with full confidence”
(E2). E1 and E2 also confirmed that our search strategies and interactive
suggestion could help them to recognize variation patterns. E2 is a
technical staff in the library, and he deemed that BCT techniques
were good methods to save space which allows stacking multiple trees
vertically. “The prototype system with interactive auxiliary tools can
facilitate decision maker for forecasting, preparing and tracking future

activities” (E1). They agreed that the BCT techniques can be easily
applied to other analysis tasks involving multiple trees.

7 CONCLUSIONS AND FUTURE DIRECTIONS

We have presented BarcodeTree, the first visualization technique for
multiple shallow and stable trees that enables comparison of topological
structure and node attribute values of one hundred trees on a single
screen (Figure 11). Our experimental evaluation found that, BCT
requires significantly more time than ICICLE for understanding the
topology of a single tree (Task1 and Task2), but requires significantly
less time than ICICLE for the comparison of multiple trees (Task3 and
Task4). We also demonstrated the utility of BCT through case studies
with real-world data comprising hundreds of trees.

Future work could design ways to easily switch between a BCT
overview and other visualizations of trees that make topology easier to
understand, to combine the best of both approaches. Our experimental
results also suggest that the BCTh variant makes it easier to understand
topology than BCTw but at the cost of being less vertically compressible
than BCTw. Future work could design a method to smoothly animate
between these two variants, allowing the user to transition to one or the
other according to current needs.

Some limitations of BCT are that they become less readable if some
nodes have a large fan-out [58], and BCT is not designed for comparing
a small number of trees that each have large numbers of nodes. This
might also be addressed in future work.

BCT is designed to save space vertically and therefore does not show
explicitly visible links between matching nodes across trees. Because
of this, if there are node displacements across trees, BCT can only
show this by duplicating the node in the alignment results (Section 4.1).
Future work could evaluate the tradeoffs of such node duplication
versus showing explicit links, perhaps taking inspiration from an earlier
study involving network data [32]. Future work could also evaluate a
hybrid visualization that only sometimes, or only optionally, displays
explicit links between consecutive trees, to reduce the vertical space
required. The use of explicit links would also be helpful in cases where
the trees to compare are very different, and trying to align matching
nodes would result in a very sparse visualization.

Tree comparison requires associating each node in one tree with the
matching node in another tree. However, our work does not focus on
matching algorithms, and we assumed that each node in the hierarchical
data has one unique key, so the nodes with the same key in multiple
trees can be perfectly matched in linear time [19]. TreeJuxtaposer [48]
instead computes the best corresponding nodes through pairwise simi-
larity scores, which require quadratic time to compute. There is still
research left to be done on tree matching algorithms.

Regarding the visual design of our techniques, the glyphs with
diagonal stripe texture cannot reflect the node number precisely, but
they are designed to reduce the width of context and help users focus on
the subtrees. They can also provide users with hints to support further
exploration. When visualizing a very deep tree or compressing the
BCT significantly, the width/height difference between the nodes at the
adjacent levels will be tiny, and it might be difficult for users to discern
the topological structure. In these cases, users are allowed to select
a given level of granularity and update the width/height interactively.
Our method supports encoding the numerical node value and compares
them among multiple hierarchical data. Future work could investigate
the comparison of multivariate attributes over multiple trees.

Our method provides users with an overview of visualizing multiple
trees within the screen space. From the overview, users can also learn
the detailed information of each node. However, users might be over-
whelmed with this information and find it difficult to explore. In the
future, we plan to explore automatically pattern detection algorithms
based on BCT alignment results to facilitate users’ exploration.

ACKNOWLEDGMENTS

This work is supported by NSFC No. 61672055 and the National Key
Research and Development Program of China (2016QY02D0304), as
well as PKU-Qihoo Joint Data Visual Analytics Research Center.



REFERENCES

[1] http://www.yorku.ca/mack/rn-fitts bib.htm.
[2] N. Amenta and J. Klingner. Case study: visualizing sets of evolutionary

trees. In Proc. IEEE Symp. Information Visualization (InfoVis), pp. 71–74,
2002.

[3] K. Andrews and H. Heidegger. Information slices: Visualising and explor-
ing large hierarchies using cascading, semi-circular discs. In Proc. IEEE
Symp. Information Visualization (InfoVis), pp. 9–12, 1998.

[4] T. Barlow and P. Neville. A comparison of 2-D visualizations of hier-
archies. In Proc. IEEE Symp. Information Visualization (InfoVis), pp.
131–138, 2001.

[5] F. Beck and S. Diehl. Visual comparison of software architectures. Infor-
mation Visualization, 12(2):178–199, 2013.

[6] F. Beck, J. Melcher, and D. Weiskopf. Identifying modularization patterns
by visual comparison of multiple hierarchies. In IEEE Int. Conf. Program
Comprehension (ICPC), pp. 1–10, 2016.

[7] F. Beck, F. Wiszniewsky, M. Burch, S. Diehl, and D. Weiskopf. Asym-
metric visual hierarchy comparison with nested icicle plots. In Joint
Proceedings of the Fourth International Workshop on Euler Diagrams
and the First International Workshop on Graph Visualization in Practice
co-located with Diagrams, pp. 53–62, 2014.

[8] R. Boardman. Bubble trees: The visualization of hierarchical informa-
tion structures. In Extended Abstacts of ACM Conf. Human Factors in
Computing Systems, pp. 315–316, 2000.

[9] S. Bremm, T. von Landesberger, M. Hess, T. Schreck, P. Weil, and
K. Hamacherk. Interactive visual comparison of multiple trees. In Proc.
IEEE Symp. Visual Analytics Science And Technology (VAST), pp. 31–40,
2011.

[10] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In Proc.
Eurographics / IEEE VGTC Conference on Visualization (EuroVis), pp.
33–42, 1999.

[11] C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s algorithm
to run in linear time. In Proc. Symp. Graph Drawing (GD), pp. 344–353,
2002.

[12] M. Burch, N. Konevtsova, J. Heinrich, M. Hoeferlin, and D. Weiskopf.
Evaluation of traditional, orthogonal, and radial tree diagrams by an eye
tracking study. IEEE Transactions on Visualization and Computer Graph-
ics, 17(12):2440–2448, 2011.

[13] M. Burch, M. Raschke, and D. Weiskopf. Indented pixel tree plots. In Proc.
Int. Symp. Advances in Visual Computing (ISVC), pp. 338–349, 2010.

[14] S. K. Card, B. Suh, B. A. Pendleton, J. Heer, and J. W. Bodnar. TimeTree:
Exploring time changing hierarchies. In Proc. IEEE Symp. Visual Analytics
Science And Technology (VAST), pp. 3–10, 2006.

[15] F. Chevalier, D. Auber, and A. Telea. Structural analysis and visualization
of C++ code evolution using syntax trees. In Int. Workshop on Principles
of Software Evolution (IWPSE), pp. 90–97, 2007.

[16] E. H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, R. Gossweiler, and S. K.
Card. Visualizing the evolution of web ecologies. In Proc. ACM Conf.
Human Factors in Computing Systems (CHI), pp. 400–407, 1998.

[17] N. Churcher, L. Keown, and W. Irwin. Virtual worlds for software visuali-
sation. In Software Visualisation Workshop (SoftVis), pp. 9–16, 1999.

[18] W. Cui, S. Liu, Z. Wu, and H. Wei. How hierarchical topics evolve in large
text corpora. IEEE Transactions on Visualization and Computer Graphics,
20(12):2281–2290, 2014.

[19] W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves.
Journal of Classification, 2(1):7–28, 1985.

[20] K. Dinkla, M. A. Westenberg, H. Timmerman, S. A. van Hijum, and
J. J. van Wijk. Comparison of multiple weighted hierarchies: visual
analytics for microbe community profiling. Computer Graphics Forum,
30(3):1141–1150, 2011.

[21] P. D. Eades. Drawing free trees. Bulletin of the Institute for Combinatorics
and its Applications, 5:10–36, 1992.

[22] S. Fu, H. Dong, W. Cui, J. Zhao, and H. Qu. How do ancestral traits shape
family trees over generations? IEEE Transactions on Visualization and
Computer Graphics, 24(1):205–214, 2018.

[23] M. Gleicher. Considerations for visualizing comparison. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):413–423, 2018.

[24] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Information
Visualization, 10(4):289–309, 2011.

[25] M. Glueck, A. Gvozdik, F. Chevalier, A. Khan, M. Brudno, and D. Wigdor.
PhenoStacks: Cross-sectional cohort phenotype comparison visualizations.

IEEE Transactions on Visualization and Computer Graphics, 23(1):191–
200, 2017.

[26] M. Glueck, P. Hamilton, F. Chevalier, S. Breslav, A. Khan, D. Wigdor, and
M. Brudno. PhenoBlocks: Phenotype comparison visualizations. IEEE
Transactions on Visualization and Computer Graphics, 22(1):101–110,
2016.

[27] M. Graham and J. Kennedy. Exploring multiple trees through DAG repre-
sentations. IEEE Transactions on Visualization and Computer Graphics,
13(6):1294–1301, 2007.

[28] M. Graham and J. Kennedy. A survey of multiple tree visualisation.
Information Visualization, 9(4):235–252, 2010.
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