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A B S T R A C T

Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-
dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional
data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data
relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense
of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and
tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection
based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then
regarding different tasks, various projections and subspaces are recommended to enhance certain features of the
POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map.
Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-
dimensional local data analyses.

1. Introduction

Dimension-reduced projections are widely used for high-dimen-
sional data analysis. They approximate distributions of high-dimen-
sional data in low-dimensional spaces. Such approximations are often
made as global ones that improve the overall mapping by striking a
balance among all data. Two well-known examples are Principle
Component Analysis (PCA) and Multidimensional Scaling (MDS). They
generate good overviews of the data, but still unable to preserve all
information without any loss [1]. Local distortion is an example of such
loss, where inaccurate distance mapping may lead to unfaithful inter-
pretations of data relationships [2,3].

Users are often not aware of the existence of distortions, and hence
easily get misguided [4]. Even when distortions are informed [5,6],
there are seldom interactive approaches for users to control them [7].
As a result, users often find it difficult to trust the projections [4,8]. On
the other hand, users may wish to observe some local POI regions more
precisely, while not so concerned about the other data. It inspires us to
develop a dimension reduction scheme where users are able to decide
which part of the projection is more precise and can be trusted.

Over the last few decades, different kinds of non-linear dimension
reduction techniques have been developed to promote local data ana-
lyses [9–12]. Recent works further allow users to control the local

mapping quality during a progressive rendering process [13]. Despite
their abilities to preserve local structures, non-linear projections are not
designed to visualize dimensional information. Cheng et al. [14] pro-
posed to use interpolation and iso-contours for displaying attribute
values. However, iso-contours may not be as simple and intuitive as
axes in conveying dimensional semantics [15,16]. They are also prone
to overlapping when the dimensionality increases. In this work, we
choose to stay in the linear framework, since the linear projections
provide intuitive dimensional semantics, are generally simple to use
and interpret, and are also computationally efficient.

For the linear projections, Choo et al. proposed to preserve local
structures by including supervised dimension reduction [17,18]. Along
with similar works focusing on machine learning [19] and quality
metrics [20,21], these approaches require the knowledge of data clas-
sification. It makes them unsuitable for general data explorations where
no prior knowledge should be assumed. On the other hand, explora-
tional methods allow users to manually adjust dimension weights of the
projection [22–24]. However, the parameter search is often blind and
time-consuming. It could be difficult to find a satisfying projection for a
certain POI. Yuan et al. [25] proposed a framework where users are
able to create new projections for data subsets. But the approach still
requires a manual search of dimensional subspaces. In comparison, our
approach generates projections and subspaces based on users’ POIs and
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tasks. Users steer the projections by choosing their interests, without
the need for any manual search.

In this paper, we propose an interactive scheme to help users cus-
tomize a linear projection based on their POI data and analytic tasks.
Specifically, users are able to specify a focus in the projection, which
could be a single datum or a group of data. Then we offer multiple ways
to alter the projection to enhance different features/aspects of the focus
while maintaining the other data as contexts. Based on the locally en-
hanced projection, we further reveal dimensional subspaces that are
most likely related to the features. It helps to interpret the features in
the context of dimensions. In addition, we provide various means to
support the data exploration at different stages. Users are assisted to
discover, analyze, modify and compare different focuses. In summary,
our contributions include:

• Given the user-defined POI data, we provide linear projections with
enhanced POI features to support different kinds of local analytic
tasks.

• Our method supports an interactive high-dimensional data ex-
ploration, where users are assisted to discover, analyze, modify and
compare interesting pieces of local data.

The remainder of this paper is structured as follows. In the next
section, we briefly review the related literature. Section 3 gives an
overview of the proposed method. Then we elaborate each part of the
method in detail in Section 4. Section 5 presents case studies to de-
monstrate the effectiveness of our method. In Section 6, we discuss
weaknesses and potential improvements. At last, we end this paper with
the conclusions.

2. Related work

Out method facilitates local data analysis in linear projections. We
adopt the strategy of feature-driven projection pursuit [26,27], as op-
posed to dimension-driven methods [22–24]. We will briefly introduce
the related works.

2.1. Data locality analysis in projections

Data locality has been extensively studied in high-dimensional data
research. There are roughly two branches focusing on different aspects.

The major branch aims to improve global projections, focusing on
preserving data localities. Many non-linear projections have been pro-
posed for this purpose, such as Laplacian Eigenmaps (LE) [9], Locally
Linear Embedding (LLE) [10], Local Tangent Space Alignment
(LTSA) [11] and the T-distributed Stochastic Neighbor Embedding (t-
SNE) [12]. These methods are fit for data lying on a low-dimensional
manifold (e.g. face images of the same person), but the semantics of
dimensions are lost. Cheng et al. [14] proposed to visualize attribute
values using isocontours. But given their discrete natures, contours are
not as intuitive as axes in conveying dimensional information [15,16].
They are also prone to overlapping when there are multiple layers. In
comparison, our method keeps all projections in the linear framework.
It helps users intuitively perceive and interpret the dimensional se-
mantics of data relationships.

Another branch aims to reveal distortions in a projection. Martins
et al. [28] examined distortions in different types of projections. They
used color mapping to indicate distortion levels, and searched for real
neighbors using automatic algorithms. Liu et al. took a step [6] further
by analyzing data structures based on distortions. But none of them
provide means to correct the distorted layout. Stahnke et al. [7] pro-
posed a simple correction by directly mapping distances to the POI.
Effective as it is, the approach loses dimensional contexts and is not
suitable for situations where the POI is a group of data.

2.2. Projection assisted data exploration

Dimension reduced projections are often used to explore high-di-
mensional data. They are intuitive overviews, but hard to be changed
interactively. Jeong et al. [22] proposed to change a projection by
updating dimension weights in the PCA algorithm. Nam et al. [23]
further enable users to freely decide the dimension components of a
projection. Beyond parameter tuning, Lehmann et al. [24] proposed a
more intuitive interaction, with which users can alter the dimension
axes while maintaining an orthogonal mapping. These methods are
indeed effective in updating a projection, but users need to go through a
trial-and-error process to learn about the unpredictable effects of
parameter changes. In comparison, our method helps users choose local
POIs and their enhanced features, rather than dimension weights. Users
are able to directly decide and predict the outcomes.

In a projection assisted exploration, subspace clusters are often
provided beforehand [23,29,30]. In other methods [29,31,32], users
can further participate in the clustering process. But in either way, users
don’t fully understand the given clusters or subspaces. It’s hard for them
to modify the results, let alone discovering more hidden clusters. Yuan
et al. [25] proposed a hierarchical subspace exploration, which allows
users to analyze a local subset in different subspaces. The approach
helps to discover hidden clusters, but it doesn’t provide any guidance
for subspace selection.

2.3. Feature driven projection selection

Projection pursuit [26,27] is a well-known technique for finding
interesting projections. It generates a series of projections to optimize a
certain index. Gleicher et al. [19] used machine learning to train
compositive dimensions for classification. Choo et al. [18] made the
process interactive by involving users in a semi-supervised Linear Dis-
criminant Analysis (LDA) process. In both works, user-defined classes
are imported as the pursuit index. Apart from class labels, user-defined
layouts can also function as the pursuit indices [33–35]. However, these
methods require prior knowledge of the data, which cannot be assumed
in a data exploration.

The rank-by-feature framework [36] is a variant of projection pur-
suit. It ranks existing projections according to feature strengths. Various
kinds of metrics [37] are defined to measure different features, in-
cluding class separation [20,21], clustering/outliers [38,39], and more
complex topological properties [40]. They are helpful for analyzing a
large group of scatterplots [41,42]. But most of them are result-oriented
and computationally expensive, and thus unsuitable to guide the gen-
eration of projections. Otherwise, the time spent to find and score a
projection will be unbearable in an interactive exploration. In this
work, we only consider simple metrics when pursuing projections with
desired features. The simple criteria are not only more efficient, but also
easier to interpret.

3. Overview

In this work, we aim to facilitate local data analysis in linear pro-
jections. We propose an interactive and exploratory scheme to help
users discover, analyze, modify, and compare different POI local data.
To be specific, our method supports a four-step data exploration
(Fig. 1):

Step. 1: Focus Search: First, we present a global projection as an
overview (Fig. 1(a)) of the data. Users can choose any data
subset in the layout and name it as the POI, which is also called
a focus. We define two types of focuses, i.e. the focus point and
the focus group, regarding whether the POI includes multiple
samples. We also make recommendations for both types. Users
can simply follow our suggestions if they don’t know what to
choose.
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Step. 2: Enhancing Features of the Focus: After some focus is chosen,
we customize a linear projection to enhance features of the
focus. By features, we refer to three kinds of featured re-
lationships we find most informative in the local analysis
(Fig. 1(d)). Different features serve different analytic tasks.
Besides the enhancement, we further reveal dimensions that
may relate to the feature, and thus suggest a feature-prominent
subspace. It helps to interpret dimensional causes of the un-
derlying data relationships.

Step. 3: Modifying the Focus: When analyses are finished in the pro-
jection, the user may need to modify the current focus or
simply change his/her interest. We provide various interac-
tions for the modification. The user can choose a new focus, or
add / remove samples from the current POI without being in-
terfered by irrelevant data. Projections will update along with
the focus.

Step. 4: Focus Comparison: When a valuable POI is found, the user
can store it in the Focus List for further analysis (Fig. 1(f)). We
provide the Projection Map (Fig. 1(e)) that shows featured
projections as glyphs for all focuses in the list. It helps to
compare different focuses, and navigate the high-dimensional
exploration.

In this four-step exploration, users can pick up any local data and
feature, and get both structural and dimensional insights from the lo-
cally enhanced projections. We expect the analysis to be free from in-
visible and uncontrollable distortions, since the feature to be analyzed
is enhanced to the greatest extent. Moreover, users are able to handle
and compare multiple focuses, and retrieve the explored ones at any
time.

We develop a prototype system called FocusChanger (Fig. 2) to
support this exploratory pipeline. It consists of five parts: Projection
View, Information Panel, Control Panel, Focus List and Projection Map.
We will introduce the function of each part as we elaborate the tech-
nical details in the next section.

4. High-dimensional local data analysis in locally enhanced
projections

As stated before, our method supports a four-step exploration. In
this section, we’ll introduce in detail how we support this POI-based
exploration in each step.

4.1. Discovering interesting local focus

Shneiderman has suggested in his information seeking mantra [43]:
”Overview first, then detail on demand”. Following the suggestion, we
first provide a PCA projection as an overview of the data. Despite the
inherent distortion issues, PCA are widely used, easy to interpret, and
also generates reasonably good data overviews. More importantly, it fits
well into our linear framework and allows for seamless view transfor-
mations. Therefore we choose the PCA projection as a start point.

Users can brush any part of the data they feel interesting and claim
it as a focus. However, it may not be easy for users who have no analytic
backgrounds or prior knowledge about the data. Hence, we also re-
commend to users some potential focuses generated via automatic de-
tection algorithms. Different suggestions are made for different types of
POIs (point or group).

Note that, we make all recommendations based on the projected
data, i.e. a distorted copy, rather than the original high-dimensional
data. There are two reasons for such a practice. Firstly, no additional or
prior knowledge should be assumed in a free exploration. Users choose
their focuses based on what they perceive. Therefore, we should also
recommend based on what is presented to users. Secondly, the locally
enhanced projections are capable of revealing underlying data features.
What’s been misunderstood due to distortions can be corrected in the
POI-enhanced layouts. By changing the focus, users can gradually
clarify data structures in different local regions.

4.1.1. Focus point suggestion
Given a projection, we consider a datum interesting in the following

Fig. 1. We propose an interactive and exploratory scheme for local analysis in high-dimensional data. (a) We first present a global projection as the overview. (b)
Then suggestions are made to help user find an interesting piece of local data. (c) User chooses some local data as the focus, and named a feature to be analyzed. (d)
We make linear projections to enhance local features of the chosen data. Different features are defined for different analytic tasks. (e) A feature-related subspace is
also revealed to support dimensional analysis. From the resulting projection and subspace, users can gain both structural and dimensional insights about the data
focus. (f) Finally, the user can move on to a new focus, and store valuable findings in Focus List for further study. Projection Map is provided to help compare multiple
focuses in the list based on their features.
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cases: (1) it’s a representative datum; (2) it’s an outlier; (3) it’s mis-
placed in a distorted neighborhood. The former two cases are helpful to
identify popular data and anomalies, which are both widely studied in
data analysis. We also consider the last case important, given that
misplaced points often misguide the interpretation of data locality.
Users have no need to pay full attention to these data, but knowing the
distortions helps to avoid misunderstanding.

We define representative points and outliers based on clusters in the
projection. To obtain clusters, we adopt a variant of DBSCAN, details of
which are described in Section 4.1.2. For each cluster, we choose top
5% members that are closest to the cluster center as recommended
representative points. Each of them is representative of its cluster. As
for outliers, we simply recommend data that falls out of any cluster.
Since density clustering is used, such data are outliers in the sense that
they have sparse neighborhoods. We mark the suggested POI points
with colored boundaries (Fig. 3(a)). Red denotes representative points,
while green denotes outliers.

In order to quantify distortions, we assess the accumulated distance
errors for each datum:

∑′ = − ′ ′ = ⋯
=

Error Dist Dist i nx x x x x( ) ( ( , ) ( , ) ), 1, 2,i
j

n

i j i j
1

2 2

(1)

Here xi and ′xi represents a high-dimensional datum and its pro-
jected counterpart. Distance is measured by the Euclidean metric. We
use point size to show the distortion levels (Fig. 4). Larger points are
more likely misplaced with ”false neighbors”, that are projected nearby
but actually far away in the high-dimensional space. When users hover
on a datum, the saturation of other points changes to reflect their high-
dimensional distances to the hovered one. Closer data get higher sa-
turation. This technique has also been used in [7]. It allows users to find
distorted datum / neighborhoods that may benefit a lot from local
enhancements.

4.1.2. Focus group suggestion
In a projection, we assume a group of data interesting if they appear

as a cluster. Hence, we detect clusters in the projection and recommend
them as potential POI groups.

Many clustering algorithms can be applied to identify projection
clusters [45]. We adopt a variant of DBSCAN [44] whose parameters
are adaptive to the data. We choose DBSCAN because it can efficiently
identify clusters in any shape. It also reveals outliers in sparse regions.
The self-adaptive parameters make it applicable to most datasets
without the need for manual tuning. Refer to Fig. 3(b) for actual effects

Fig. 2. An overview of our prototype system called FocusChanger. (a) Projection View allows users to choose the POI data, and returns a locally enhanced projection
accordingly. (b) Information Panel shows details about the POI and its featured projection, including data size, dimension weights, and so on. (c) Control Panel
provides different options for choosing POIs and enhancing the projection. (d) Focus List is where users store the POIs they found valuable for further analysis. (e)
Projection Map shows featured projections of all POIs in the Focus List. Each projection is shown as a glyph while the in-between distance denotes dissimilarity.

Fig. 3. Focus Suggestions. (a) Representative points (red) and outliers (green)
are recommended as potential POI points. (b) Clusters are revealed in the
projection, guiding users to choose a proper POI group. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Visualizing distortion with point size and color. When a datum is hov-
ered, the saturation of other data reflects their high-dimensional distances to
the hovered one. This image shows a case where two projection neighbors are
probably far way in the high-dimensional space.
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of the algorithm. Clusters are shown as contours around data points.
Users can choose any suggested cluster by clicking on the contour.

Note that, either points or groups, we only make suggestions to
guide and support users’ decisions, not to replace them. Users can hide
the suggestions at any time, and choose his own POI by brushing the
desired data. All options are provided in Control Panel (see ”Focus” and
”Suggestion” in Fig. 2 (c)).

4.2. Featured projections of the focus

We call a chosen datum the focus point, and call a chosen group the
focus group. After some focus is chosen, we generate projections to
either reduce its distortion, or enhance its local features. The locally
enhanced projection is updated in Projection View (Fig. 2(a)) with
highlighted POI data and grayed out contexts.

4.2.1. Focus point enhanced projection
For a focus point, we assume that the user is interested in its high-

dimensional neighbors. In other words, he/she may wish to find more
data similar to the POI in different aspects. It’s especially useful in
scenarios where users start searching from a familiar case. For example,
a college student longs for a good car but cannot afford the price. He/
she can search for other cars with similar qualities but at a lower price.
In such a case, mapping distortions could be a major obstacle. To reveal
the true neighbors, we seek a projection to reduce the overall distance
distortions for the POI. Let P be the focus point, we aim to solve the
following optimization problem:

∑= − ′

=
=

Error Dist Dist

s t

P P x PA x

A A I

min ( ) min ( ( , ) ( , ) )

. .
i

n

i i
A

T
1

2 2

(2)

Here the term A represents a projection matrix containing unit
vectors, and I is the identity matrix. The projected focus is ′ =P PA. Via
this optimization, we push aside all false neighbors that are far from
POI in the high-dimensional space. The projected neighborhood is then
left with real neighbors. Since the high-dimensional distances are in-
variant between POI and other data, the term Dist(P, xi)2 is simply a
constant. The minimization problem can be written in the following
form:

∑ ′ =
=

Dist s tPA x A A Imax ( , ) , . .
i

n

i
A

T

1

2

(3)

Note that if we replace P with the mean data x, the optimization will
directly lead to PCA projection in Euclidean distances. In other words,
the locally enhanced projection can be regarded as PCA with a shifted
center (i.e. the chosen focus). Thus the optimization is no harder than a
simple PCA algorithm. Accelerating skills for PCA are also applicable to
speed up the optimization.

Compared to the direct distance correction used in [7], our method
preserves all benefits of a linear projection rather than mere point-wise
distances. It provides rich dimensional contexts, and help maintain a
consistent mental model of the data space. In Section 4.2.3, we will
further integrate this projection into a larger framework.

4.2.2. Featured local relationships
For a focus group, we first examine what kinds of features are of

interest in the local analysis. By features, we refer to featured re-
lationships (e.g. clustering, sub-grouping, outliers, etc.) that involve the
focus group. Since relationships are defined based on distances, we can
look into the distance matrix for an answer. Given the POI group, the
whole distance matrix is divided into three parts (Fig. 5(a)). The first
part describes distances between group members. The second part is
about distances between the group and the other data. The last part
describes distances among the context data. Since the last part has
nothing to do with the focus, we simply ignore it. For the remaining

parts, we consider the data to be either ”similar” or ”dissimilar”
(Fig. 5(b)).

By revealing similarities among group members, we can show users
in which aspects the data are most similar. It helps to comprehend why
these data gather into a cluster in the projection. Enhancing dissim-
ilarities, on the other hand, tells about the major differences among
group members. If there are sub-clusters within the group, their dif-
ferences will be more prominent when enhanced. It helps to reveal
hidden local structures.

Currently, we did not consider similarities between the group and
the others. It’s based on the fact that, we will have to distinguish be-
tween two parts before talking about their similarities. If we ignore the
differences, the similarity between two complementary parts is always
equal to similarities among all data, i.e. the inter-group similarity of the
whole dataset. In that case, there is no need for such a setting. In
contrast, by enhancing the dissimilarities, we can show why the focus
group is different from the others. The idea resembles that of Linear
Discriminant Analysis (LDA), except that we did not regard the other
data as the same class.

In summary, three types of relationships are found informative in
the local analysis. They are named intra-group similarity, intra-group
dissimilarity and inter-group dissimilarity respectively (Fig. 5(b)).

4.2.3. Focus group enhanced projections
With the three types of relationships, we first translate them in the

language of data distances. Then we adopt projection pursuit to find
linear projections for the enhancement.

Enhancing similarities or dissimilarities, equals to decreasing or
enlarging data distances in the projection. For a focus group G, we
enhance the intra-group dissimilarities by:

∑ ∑′ ′ =

=

′ ′ ∈ ∈

Dist Dist

s t

x x x A x A

A A I

max ( , ) max ( , )

. .
G

i j
G

i j
x x A x x

T

,

2

,

2

i j i j

(4)

For simplicity, we call this optimization the Expand metric, since
the focus group will be expanded in the resulting projection. It actually
leads to a local PCA projection (see Appendix). Likewise, we enhance
the similarities by minimizing the same metric:

∑ =
∈

Dist s tx A x A A A Imin ( , ) , . .
G

i j
A x x

T

,

2

i j (5)

It is named the Compress metric, as the opposite of Expand. At last,
we enhance the inter-group dissimilarities by enlarging distances be-
tween the group and the other data:

Fig. 5. Enhancing featured local relationships. Given a focus group, the dis-
tance matrix is divided into three parts (a). We enhance data similarity/dis-
similarity based on each part (b). Three types of projections are generated via
the local enhancements (c).
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T2
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It is named the Separate metric. We use glyphs to denote different
feature enhancements throughout the whole system. Fig. 5(c) illustrates
those glyphs, as well as projections generated from different metrics.
The user can change the enhanced feature in the Control Panel (see
”Features” in Fig. 2 (c)), regarding the analytic task at hand.

In fact, a focus point can be regarded as a group containing only one
datum. There will not be Compress or Expand projections, but the
Separate metric simply degrades to the center-shifted PCA (compare
Eq. (3) and (6)). This enables us to combine all featured projections into
the same framework.

At last, solutions to all optimization problems can be approximated
via eigen-decompositions in O(D3) time (see Appendix), with D being
the number of dimensions. The complexity can be further reduced by
numerical techniques. It makes our method well scalable to larger da-
tasets with higher dimensions.

4.2.4. Subspace suggestion
When pursuing the feature enhanced projections, we take into ac-

count all dimensions. However, only a few of them truly contribute to
the features. Redundant dimensions will obscure the patterns and in-
terfere with dimensional analysis. Hence, we need to reveal a feature-
related subspace to promote subsequent analysis.

In a sense, projection pursuit itself is a process to identify the most
featured dimensions. Based on its results, we can make reliable judge-
ments on dimension contributions. To be specific, we first generate an
enhanced projection with all dimensions considered. Then we examine
dimension weights in that projection, and rank all dimensions by their
weights: > > ⋯>W d W d W d( *) ( *) ( *)m1 2 . All weights are normalized and
sum to 1. At last, we pick out dimensions with large weights, until their
sum exceeds a certain threshold:

= = …

∑ ≤ ∑ >= =
+

Subspace d i L

s t W d R W d R

{ * 1, 2, },

. . ( *) and ( *)
i

j
L

j j
L

j1 1
1

(7)

Threshold R is set as 0.75 by default, cutting down at least 25%
redundant dimensions. The result would be a subspace that is most
related to the enhanced feature. The sum of weights is named the
Subspace Score. It indicates how strong the chosen subspace is related
to the current feature. Dimension weights are always displayed as a bar
chart in the Information Panel (Fig. 2 (b)). Users can include / exclude
dimensions by brushing in this view.

After gaining a subspace, we run optimizations again in that sub-
space to get the final result. The refined projection will be easier to
interpret with only the most related dimensions. Features will also be
more prominent.

4.3. Modifying the focus

For a focus point, a distortion reduced projection is the final step.
But for a focus group, it may still need to be modified. The featured
projections support this task by revealing local insights.

The Expand projection shows minor relationships hidden in the
group. It reveals sub-clusters and outliers, and helps to trim the POI into
a more consistent group. The Compress projection enhances similar
aspects within the group. If there are other data that resemble the focus
in such aspects, they will also be drawn closer to the group, claiming to
be potential members. It helps to regain the missing members. The
Separate projection highlights differences between group members and
the others. Boundary points will stand out in this case, which helps to
clarify cluster boundaries. We support the modification by providing
focus-aware brushing techniques (see ”Selection” in Fig. 2(c)), in order
to avoid interference from the context. When the user needs to add
more members, he/she can use the ”Increase” brush. Whatever chosen

by the brush will be added into the current focus group. When there is a
need for decreasing members, the ”Decrease” brush can be used. The
intersection of the current group and the brushed data will be chosen as
the new focus.

Once the focus group is changed, the projection will also be up-
dated. Smooth transitions are applied to avoid swift changes (see the
supplementary video). We keep an orthogonal mapping in each frame
of the transition [46], so as to maintain an intact mental model of the
high-dimensional data structure.

4.4. Storing and comparing multiple focuses

During the exploration, there will be times when users need to store
the results. For example, when sub-groups are found, the current group
shall be stored before focusing on a smaller group. Besides, there are
needs to compare different focuses regarding their features. We provide
the Focus List and the Projection Map to support such tasks.

In the Focus List (Fig. 2(d)), users can store the current focus or
retrieve a previous one. Each focus is represented as a node. Its size
denotes the data size, while colors differentiate different focuses. When
hovering on a node, users can name the focus or change its color.
Specially, there is a fixed node called ”All Data”. Enhancing its Expand
feature will lead to a global PCA projection.

For every focus in the list, its enhanced projections for all three
features are shown as glyphs in the Projection Map (Fig. 2(e)). Different
glyphs denote different features (Fig. 5(c)). Dimension weights are
displayed as small histograms on top of each glyph to help compare the
projections. Clicking on a glyph can retrieve the focus and corre-
sponding projection.

To measure the similarity between projections, we refer to the
manifold learning domain. It has been proved that any two 2D pro-
jections lie on the same Grassmann manifold. Their dissimilarity can
thus be measured by their geodesic distance on this manifold [47]. We
choose this metric since it reflects dimensional diversity between pro-
jections, which is important in feature comparison. After gaining the
distances, we construct the final map using MDS algorithm. Due to the
mapping technique, there may be occlusions between glyphs. Never-
theless, users can always clarify the clutter by hovering on a focus node,
which can highlight related glyphs in the map.

5. Case study

In this section, we demonstrate the effectiveness of our method with
two real-world datasets.

5.1. Cars data

For the first case, we present a usage scenario in the Cars da-
taset [48], where accurate neighborhood analysis is required. The data
contains 392 samples with 8 numerical/categorical attributes: dis-
placement, MPG, cylinder number, horsepower, weight, acceleration
time, year and origin. Names of the cars are also given as a textual
attribute.

Tom plans to buy a new car, but he doesn’t know much about the
automobile market. So he decides to look into the cars data, and try to
find some suitable targets. After a quick overview of the projection, he
is attracted by some representative points in the right-side cluster
(Fig. 6(a)), which seem to be popular cars. When he hovers on one of
them, a tooltip pops up to show the details. It is Celica GT from Toyota,
a popular Japanese car famous for its excellent performance. Tom likes
what he just found but is worried about its displacement (144 CL). He
wonders if there are other cars with similar performance but are more
environment friendly.

He first notices a recommended point next to Celica called Plymouth
Cricket. However, when the point is hovered, all its neighbors fade out
with low saturation (the left part in Fig. 6(a)). Tom knows immediately
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that it could be a misplaced datum. In order to reveal the real neigh-
bors, he chooses Celica as the focus, and enhances the projection. In the
resulting layout, he finds that Cricket is placed far away from Celica
(Fig. 6(b)). In addition, he discovers some new neighbors that have not
been noticed in the original projection. Most of these neighbors have
lower displacement than Celica, especially a close one named Mazda
RX-7 GS, which is also a very popular Japanese car. RX-7’s performance
is close to Celia, but its displacement is only half of the latter at 70 CL
(right part in Fig. 6(b)). Tom is now satisfied with his new options.

To quantify the effectiveness of the algorithm, we further assess the
neighborhood of Celica in different spaces. Specifically, we compare the
k-nearest neighbors in a global/locally-enhanced projection to the “real
neighbors” in high-dimensional space. We varied k from 10 to 40, and
found that PCA preserves at most 37.5% neighbors, while the locally
enhanced layout preserves at least 85% neighbors (see Appendix for
more details). In the Celica case, our mapping indeed provides a more
authentic neighborhood for the POI.

We also compare our method with that in [7] (Fig. 6(c)). The latter
approach authentically restores distances from the neighbors to the
focus, which may create misleading patterns. As an example, there are
three major clusters shown in the overview, which have vanished in the
direct mapping but are still maintained in our locally enhanced pro-
jection. Compared with direct distance mapping, our method keeps a
better balance between the local neighborhood and the background
structure.

5.2. USDA Food data

The second case is from the USDA Food Composition Data (http://
www.ars.usda.gov/). The dataset describes nutrients of a collection of
raw or processed foods, with 722 records and 18 dimensions after
preprocessed. The recorded nutrients include fibers, carbohydrates,
water, vitamins (e.g. VitARAE, VitD, VitB12), microelements (e.g. iron,
calcium, sodium) and so forth. This data has been used in some pre-
vious works [25,29] for case studies. However, those methods focus on
subspace mining, while we concern more about local data analyses.

Jean is a nutritionist whose daily work is to examine various foods,
and analyze their nutrients. At the first sight of the projection, she can
roughly identify three clusters (Fig. 8(a)). But there are no clear
boundaries or subtle structures. She brushes a cluster and chooses the
Expand feature, in order to discover hidden subtle structures.

In the enhanced projection (Fig. 8(b)), there seems to be some un-
clear pattern. Jean turns on the subspace suggestion, gaining the result
in Fig. 8(c). Now she clearly sees a large cluster with several outliers.
The outliers even include two tiny clusters dominating two dimensions
(vitamin D and Sodium). A closer examination reveals that these are
salty foods and cakes, which are rich in sodium and vitamin D re-
spectively.

Jean chooses the major cluster as a new focus, using the “Decrease”
brush to avoid including contextual data. She wants to study both si-
milarities and dissimilarities among cluster members, so she applies
Compress and Expand projections respectively (Fig. 9(b),(c)). The
Compress view reveals that this cluster contains more water and energy
than the other foods, but is poor in carbohydrate. On the other hand,
data in the Expand view are separated into three sub-clusters along four
dimensions, all of which are vitamins.

She applies Compress to two of the sub-clusters, gaining results in
Fig. 9(g) and (h). Sub-cluster 1 exhibits a very strong feature (all data
gathering around the origin) that, none of its members contains any
fiber or beta-carotene. Jean suspects these are animal-based or pro-
cessed foods, which is validated by a later examination. Sub-cluster 2
does not show much new information, but it seems to be the most si-
milar to the contextual data (Fig. 9). She stores the two sub-clusters in
Focus List for further study, before going deeper into the last sub-
cluster.

After expanding the last group, she quickly identifies a large cluster
with a few outliers. She picks out the cluster and applies the en-
hancements. There is again a strong pattern that no cluster member
contains any fiber or vitamin C. These should also be animal-based or
processed foods. A later examination proves that most of them contain
beef, chicken, cream or fruit juice. But the Expand view shows two sub-
groups, which again surprises her. The two sub-group are mainly di-
verse in vitamin B6 and Sodium. She also stores them in the list.

Jean finally gets to enjoy all the trophies she has collected in the
exploration. She names the stored clusters by their hierarchies, and
then compares them in the Projection Map (Fig. 7). The map shows a
very close relationship between cluster 3-1 and 3-2, in all three featured
projections (Fig. 7(e), (f), (g)). She also finds the strong Compress
features she met in the exploration (Fig. 7(c), (d)). Hovering on each
cluster allows her to highlight them in the global projection (Fig. 9(i),
(j) and Fig. 10(g), (h)). Different clusters occupy different layers in the
overview, which seems reasonable.

6. Discussion

In this work, we propose to customize linear projections to facilitate
analyses regarding the user-specified local POI data. In Section 5, we
prove the effectiveness of our method in revealing hidden relationships
and reducing local distortions. However, there are still flaws in the

Fig. 6. Cars Data: (a) In the global projection, the user finds a good car named
Celica among the suggested POIs. He also notices that a neighbor named Cricket
may be misplaced, given its inconsistent saturation. (b) He chooses Celica as the
focus, and enhances the projection. A similar car is found near Celica in the new
layout, while Cricket is placed far wary. (c) Directly mapping distances to the
layout [7] may create false data patterns. Colored points are kept across all
projections to keep track of the data.
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proposed method, which we would like to discuss in this section. After
that, we illustrate the relationships and differences between our method
and some state of art machine learning techniques. At last, we show
that our method can be extended into a more general methodology.

The first flaw we’d like to mention, is the lack of effective navigation
in the exploration. Dimension weights are like the steering wheel. They
provide good controls to fine-tune a projection, though the tuning is
often aimless. In our method, the steering wheel is the focus with its
features. The exploration inevitably jumps between diverse projections
when the focus or metric is updated. Even supplied with animations,
users may still get confused when faced with the abrupt changes. Some
intermediate results could be lost if they are missed by mistake. A
proper remediation is to provide controls over animations, dimensions,
and even the navigation history.

The second flaw is about the dimensional analysis. At present, we

interpret the projected data by perceiving their distribution along the
projected axes. But such interpretation is not precise, since the pro-
jected directions often interfere with each other. As the dimensionality
increases, it becomes more and more difficult for individual axes to
stand out. In higher-dimensional cases, the dimensional analysis re-
quires to handle a large amount of dimensions at each time (see
Appendix). The interference problem will then be alleviated.

In the machine learning field, the commonly studied data use to
have huge amounts of dimensions, while each dimension alone is not so
meaningful. Such data are assumed to be samples on a low-dimensional
manifold, where neighborhood relationships are more important than
dimensional semantics. In this work, we also seek to preserve data lo-
cality, but we decide to maintain the dimensional context by using
linear projections. That’s because, in a more general case, it’s of interest
what factors account for the data differences. The explanatory power of
dimensions directly differentiates our method from the local-preserving
mappings. Besides, as shown in the supplemented cases (see Appendix),
our method is also helpful in interpreting a very-high-dimensional da-
taset.

In the case studies, we only demonstrate the method in some small
datasets. Nevertheless, there is no substantial difficulty in applying the
method to higher-dimensional datasets, such as the image data (please
refer to the Appendix). Given the O(D3) complexity, the computation
time of our method seems tolerable in practice (around 2 s for a 1000-D
dataset). But a performance test is still needed to validate its efficiency.
We also plan to conduct a user study in real-world scenarios to further
examine the usability of our approach.

Finally, we would like to discuss about possible extensions of this
work. Our method is built upon linear projections. Nevertheless, the
focus-based framework, either point-based distortion reduction or
group-based relationship enhancement, is also applicable to non-linear
projections. Currently, we only define three kinds of featured projec-
tions based on a direct division of the distance matrix. But the frame-
work is totally compatible with more complex metrics, as long as they
can be described in the form of data distances.

7. Conclusion

In this paper, we propose an interactive method that helps custo-
mize a linear projection to facilitate the analysis of user-defined local
data. By incorporating users’ POI with dimension reduced projection,
we make more efficient use of the display space, and more effectively
meets users’ analytic needs. We also provide various kinds of techniques
to support a fluent high-dimensional data exploration. Users are as-
sisted to discover, analyze, modify and compare multiple pieces of local

Fig. 7. USDA Food Data: Four clusters found in the exploration are stored in
Focus List (a). Projection Map helps to compare them based on the featured
projections. It can be seen from dimensional weights that, Compress projections
of Cluster 1 and 2 are highly featured (c, d). Cluster 3-1 and 3-2 are very similar
in all their projections (e, f, g).

Fig. 8. USDA Food Data: User chooses a global cluster as the focus (a), and enhances the projection to explore its features (b, c). Outliers can be found in the
suggested subspace (d), which are hard to discern in the global projection (f).
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data. At present, our method only provides several kinds of local im-
provements, including local distortion reduction and local relationship
enhancements. However, our method is totally compatible with more
complex enhancements. It’s also applicable to more general kinds of
projections. The integration of user-defined focuses will largely benefit
dimension reduction techniques. We look forward to extending our
method to a broader field in the future.
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Appendix A. Solving the optimization problems

We approximate solutions to the three optimization problems in O(D3) time, with D being the dimensionality of data.
The Expand optimization:

∑ =
∈

Dist s tx A x A A A Imax ( , ) , . .
G

i j
A x x

T

,

2

i j (A.1)

We approximate the solution by solving:

∑ =
∈

Dist s txA x A A A Imax ( , ) , . .
G

j
A x

T2

j (A.2)

, which leads to a local PCA projection.

Fig. 9. The user focuses on the cluster found in a previous step. Similarities (b) and diversities (c) are revealed among the cluster members. Three sub-clusters are
found. One of them exhibits a very strong feature that it contains no fibers of beta-carotene (g). It could be a group of animal-based foods.

Fig. 10. The user focuses on a sub-cluster found in Fig. 9(f). She gets the major group by removing a few outliers (b). This group shows a strong Compress feature (d),
as well as an interesting inner structures (c). Again, two sub-clusters (e, f) are found within the focus. They seem to be small neighboring clusters in the overview (g,
f).
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The Compress optimization:

∑ =
∈
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G

i j
A x x

T

,
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Similarly, we approximate the solution by solving:
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The Separate optimization:
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We approximate the solution by solving:
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G j
A x
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In the approximation, we replace the many-to-many distances with many-to-one distances, allowing the mean data to represent the whole group.
All the approximations can be summed up as:

∑ =Dist s tyA x A A A I( , ) , . .i
x

T2

i (A.7)

, with Dist being Euclidean distance. The problem can be solved by eigen-decomposing the matrix PTP, where each row of P is = −P y xi i.
Since the PTP is a D*D matrix, the eigen decomposition can be finished in O(D3) time. For the maximization problem, we choose eigenvectors

with the largest eigenvalues to construct the projection matrix A. Similarly, the smallest eigenvalues are used to solve the minimization problem.

Appendix B. Neighborhood preservation rate

We examine the K-nearest neighbors of a POI datum named Celica in the Cars dataset. Specifically, each datum has a unique integer ID. Let NH,
NG, andNL be the Neighborhood Sets of Celica in the high-dimensional space, the global projection, and the locally enhanced projection re-
spectively.

We measure the Neighborhood Preserving Rate by =
⋂Rate N N

N
H

H
. We vary K from 10 to 40 and get the following results:

K 10 20 30 40

⋂N NH G 2 5 8 15
Rateg 20% 25% 27% 37.5%

⋂N NH L 9 15 25 34
Ratel 90% 75% 83% 85%

The locally enhance projection only misses 6 in the 40 neighbors, and restores 9 out of 10 nearest neighbors. It preserves at least 75% neighbors,
which is two times the best performance of the original projection. This proves the effectiveness of our method in preserving a high-dimensional local
neighborhood.

Appendix C. A Supplemental case study

To demonstrate the scalability of our method, we provide a case study on the image data. Due to space limitations, we only include it here in the
appendix. The dataset is called Yale Faces [49], shared by the Department of Computer Science, Yale University. It has been widely used over
decades for computer vision research. The dataset contains 165 grayscale facial images of 15 individuals (see Fig. C.1). There are 11 images per
subject, one per different facial expression or configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy,
surprised, and wink. All images are in the 32×32 resolution. In other words, it is a 1024-D dataset.

C1. The effect of lighting

In the global projection, the data is divided into three parts (see Fig. C.2(a)). We take the dimension weights and have them rendered in a 32×32

Fig. C1. Yale Faces: the 15 subjects with their ’normal’ faces.
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bitmap, as shown in the top row of Fig. C.2. Brighter areas indicate higher weights. In bitmap (a), we can see that the background and the facial
features (i.e. the eyes, nose, and mouth) are dark, meaning that these are the common parts shared by most images. The main differences lie in other
parts like the cheeks and the shape of a face.

Then we select the lower cluster and apply the Separate projection to see why it’s different from others (see Fig. C.2(b)). The locally enhanced
projection looks similar to the global one, but the corresponding bitmap (b) is quite different from before. The lower-left and upper-right parts of the
face are brighter, implying that these are probably the major featured areas. We further examine the data points, and find that these are exactly the
15 images taken in the left-light condition (see Fig. C.2(d) for some examples). The lower-left part of the face is brighter while the upper-right part is
darker. The feature bitmap nicely captures the lighting direction to explain why this cluster stands out.

Likewise, we analyze the upper cluster and find that these are exactly the 15 images taken in the right-light condition (see Fig. C.2(c) and (e)).
Once again, the feature bitmap (c) nicely captures the lighting direction. Now we understand that lighting dominates the distribution of these facial
images.

C2. What makes her different

We expand the middle cluster, and immediately see some highly notable outliers (see Fig. C.3(b)). These images all belong to subject No. 11. It is
the only female subject in the 15 individuals. But what makes her so different from others?

We continue to find out by narrowing down the selection, and applying the Separate projection (see Fig. C.3(c)). The feature bitmap (c) highlights
two specific areas: the long hair and the prominent chin. One spot is especially bright in the forehead. It turns out this lady is the only one with
hanging bangs, making her forehead area darker than anyone else.

C3. Beard or mustache

Apart from free explorations, we can also demonstrate the effectiveness of our approach by verifying a known fact in the data. As shown in
Fig. C.1, only 4 subjects have facial hairs: No. 2, No. 7, No. 9 and No. 13. Among them, only No. 13 has a full beard while the other three have
mustaches. The beard should be enough to distinguish No. 13 from all the others. But given the complexity of the data, is our method able to
correctly separate this subject and identify his feature?

We highlight all images of No. 13 in the global projection (see Fig. C.4(a)). It turns out he is indeed quite distinguishable, since all related data are
distributed at the edge of the projection. We choose the corresponding part in the middle cluster to avoid lighting effects, and apply the Separate
projection. An outlier pops out in the new projection (see Fig. C.4(b)). It is a center-light image of subject No. 13, who has a mustache and dark skin.
This proves the ability of our approach to avoid perceptual pitfalls in the global projection. After removing the outlier, we successfully obtain all 9
center-light images of subject No. 13. The corresponding bitmap nicely captures his full beard feature (see Fig. C.4(c)).

Fig. C2. In the global projection (a), the lower/upper cluster contains images taken in the left-light (d)/right-light (e) condition. Dimension weights of the Separate
projection are rendered as a feature bitmap (top row of (b) and (c)). It nicely captures the lighting direction as the feature of these images.

Fig. C3. Some outliers are found in the middle cluster (b), all belonging to subject No. 11, the only female subject. After the Separate projection is applied, the feature
bitmap reveals the reason for this lady to stand out (c): she is the only one with bangs.
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C4. Performance in practice

In our current implementation, the computation is supported by numerical algorithms based on C++. Parallel computing is not included. Users
are able to get instant feedbacks when Interacting with small datasets (up to 18-D). For the 1024-D Yale Faces dataset, there is a delay of around 2 s
for the projection to update. Note that this rough assessment includes not only the time of computation but other parts including data transmission,
graphic rendering, animation and so on. A formal performance study is still needed in the future to assess the scalability and feasibility of this
approach.
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Fig. C4. We choose the center-light images of subject No. 13 in the global projection (a). An accidentally included outlier is revealed in the Separate projection (b).
After removing the outlier, the feature bitmap successfully captures the full beard feature of the subject.
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