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ABSTRACT

Effectively visualizing complex node-link graphs which depict re-
lationships among data nodes is a challenging task due to theclutter
and occlusion resulting from an excessive amount of edges.

In this paper, we propose a novel energy-based hierarchicaledge
clustering method for node-link graphs. Taking into the consider-
ation of the graph topology, our method �rst samples graph edges
into segments using Delaunay triangulation to generate thecontrol
points, which are then hierarchically clustered by energy-based op-
timization. The edges are grouped according to their positions and
directions to improve comprehensibility through abstraction and
thus reduce visual clutter. The experimental results demonstrate
the effectiveness of our proposed method in clustering edges and
providing good high level abstractions of complex graphs.

Keywords: Graph visualization, Edge clustering, Delaunay trian-
gulation, Node-link diagrams, Hierarchies.

Index Terms: E.1 [Data Structures]: Graphs and networks; G.1.6
[Numerical Analysis]: Optimization—Constrained Optimization;
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques; H.5.0 [Information Interfaces and Presen-
tation]: General.

1 INTRODUCTION

Graph is a popular tool to represent complex relationships.Infor-
mation such as trade relationships among countries or cities, hyper-
links among Internet webpages, citations between literatures, dy-
namic biological reactions within a complex system, power grids,
airline routes, road maps, and interpersonal relationships can all be
modeled by node-link diagrams in which nodes represent dataele-
ments and links indicate their relationships.

However, as the amount of information increases, visual clutter
becomes a major challenge to achieve effective visualization. Edge
congestion [3, 16, 19], where excessive edge density in a region
leads to edge-crossings and edge-overlappings, obscures nodes in
these regions, and thus causes dif�culties in understanding the in-
formation represented by the graph. One typical example is the
maps of the �ight routes of airline companies. Severe edge conges-
tion can often be observed near major hub cities from which many
�ights originate. The edge density is so high that the entireregion
surrounding the hub cities can be fully covered by lines. It would
be very dif�cult to trace individual �ight route and extractuseful
information from the underlying graph in such cases.

The graph edge density can be alleviated by magnifying the con-
gestion regions [2,5,6,10], merging and rearranging edges[3,4,12].
More recently, hierarchical edge clustering methods have been ap-
plied to avoid visual clutter in single-source graphs [15] and graphs
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with known hierarchical structures [9]. Through grouping the
edges, visual clutter can be dramatically reduced without moving
the node positions which may have semantic or geographic mean-
ings in graphs such as road maps. However, the research on edge
clustering, especially hierarchical edge clustering for general node-
link graphs is scarce. In this paper, we propose a novel energy-
based hierarchical edge clustering method for general node-link di-
agrams. Our method �rst performs Delaunay triangulation ongraph
nodes and segments original graph edges based on the computed
Delaunay edges. Then adaptive sampling which re�ects both node
and edge densities in graphs are achieved. Clustering edgesbased
on the adaptively sampled segments instead of uniformly sampled
segments can generate more desirable results which maintain the
topology information of the graph. The sampled segments arethen
�ltered and hierarchically clustered based on our energy-based op-
timization method. The proposed energy function takes bothlo-
cations and directions of edges into consideration during the edge
clustering stage, in order to make spatially close and visually par-
allel edges cluster together. Finally, the clustered edgesare dynam-
ically grouped according to their positions in the hierarchy to im-
prove comprehensibility through abstraction and thus reduce visual
clutter. Users can slide our provided scrolling bar to dynamically
explore the edge clustering results at continuous level of details in
real time.

The rest of the paper is organized as follows. We brie�y dis-
cuss related work in Section 2. In Section 3, details of our proposed
hierarchical edge clustering algorithm are given, followed by exper-
imental results and performance discussions in Section 4. Finally,
we present our conclusions and future work in Section 5.

2 RELATED WORK

Much efforts have been devoted to relieving edge congestionsince
over a decade ago. Without modifying the layout of the graph itself,
directly magnifying the congestion regions with techniques such as
Magic Lens [2] and �sheye views [5, 6, 10] can make the central
part larger and provide a focus+context view, but cannot relieve the
edge confusion and occlusion. Edge crossings can also be reduced
by rearranging the nodes and edges. One possible way to allevi-
ate edge congestion is to merge edges and draw them as curves.
Force-based or energy-based node layout algorithms [13, 14] have
been investigated to generate good graph layouts for mediumsize
graphs, based on some aesthetic criteria. However, for graphs with
dense edges, edge crossings usually cannot be reduced to a satisfac-
tory level. Ware et al. [17] discussed the perception of continuity
in edge paths and showed that the three most important factors of
the cognitive criteria of graph aesthetics are the length ofthe path,
continuity, and edge crossings, in a decreasing order of importance.
It can be observed that the most severe congestion occurs in the
areas where edges heavily cross each other. NewBery [12] pro-
posed the Edge Concentration method which reduces the number
of edges while retaining the graph structural information.The pro-
posed method eliminates edges through replacing the set of edges
with the same set of source and target nodes by a special node called
edge concentration node. The number of crossings is reducedsub-
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Figure 1: Hierarchical edge clustering algorithm overview. Step 1: performing Delaunay triangulation; Step 2: sampling the graph edges; Step 3:
building the control map of the graph; Step 4: generating edge hierarchy (hierarchical clustering). The �gures (e) and ( f) enclosed in the dotted
rectangle are the intermediate graphs during the hierarchical clustering.

sequently when the number of edges is reduced. Lin [11] further
studied the computational complexity of Edge Concentration and
showed that the problem is NP-hard.

Schemes of planar graphs [4] have been investigated to to-
tally avoid edge crossing with certain constraints. Carpendale and
Rong [3] described an edge-displacement algorithm which inter-
actively adjusts the graph layout. In their algorithm, onlyedges
are shifted to provide suf�cient space to clarify relationships, while
nodes remain at their original positions. EdgeLens [19] interac-
tively curves edges of the node-link diagrams away from the center
of focus (center of the lens) without changing the node positions.
Suf�cient space can be provided by the EdgeLens operations to dis-
cern ambiguous node and edge relationships and to reveal theun-
derlying information while still preserving the node layout. How-
ever, the visual clutter is only reduced locally, and large-scale pat-
terns cannot be effectively revealed. Above methods rely onthe
interaction with the user and are not applicable to static media such
as magazine printouts. Edge Plucking [18] introduced by Wong and
Carpendale allows users to interactively pluck edges apartto clarify
node-edge relationships.

Hierarchical methods have been applied to graphs with known
node hierarchy structures to avoid visual clutter and provide bet-
ter abstractions of graphs [9]. Phan et al. [15] proposed a method
for generating layouts of �ow maps using hierarchical clustering.
The algorithm minimizes edge crossings and distorts node positions
while maintaining their relative positions. Their method mainly tar-
gets at single-source node-link diagrams. It is not clear how to ex-
tend it to general multiple source graphs. Recently, Gansner and
Koren [7] presented an idea of minimizing an energy functionfor
rerouting edges to achieve hierarchical edge clustering. The edge
density is reduced by coupling groups of edges as bundled splines
that share part of their routes. However, their method is speci�cally
designed for circular layout graphs, while our method is forgeneral
node-link graphs. TopoLayout, a feature-based algorithm organiz-

ing multilevel undirected graph layouts by topological features, has
been proposed by Archambault et al. [1]. The graph hierarchyis
formed by collapsing subgraphs into single nodes accordingto re-
cursively detected topological features. Instead of clustering the
nodes, our method clusters the edges to build the hierarchy,which
can keep the geographic meanings of the nodes in the graph. Qu
et al. [16] proposed a controllable edge clustering method based on
Delaunay triangulation to reduce visual clutter for large networks.
It groups edges together which are represented by curved lines ac-
cording to their geometry information. That method only allows
merging on the Delaunay edges, while our new method can provide
more �exibility and scalability to the edge clustering process.

3 HIERARCHICAL EDGE CLUSTERING ALGORITHM

In this section, we �rst give the de�nition of node-link graphs. We
then brie�y overview our proposed energy-based hierarchical edge
clustering algorithm which consists of four steps, i.e., performing
Delaunay triangulation, sampling the graph edges, building the con-
trol map, and generating the edge hierarchy. We then discussthe de-
tails of each step followed by a brief description of the implemented
interface enabling user exploration on the clustering results.

3.1 Basic De�nition

A graphG = ( V;E) comprises a setV of n nodes, and a setE of m
edges, whereV = f vi ji = 1; :::;ng, E = f (vi ;v j )jvi ;v j 2 V; i 6= jg.
Each edge(vi ;v j ) connects nodesvi andv j . In the scope of this
paper, we only consider undirected graphs, in which edge(vi ;v j ) is
equivalent to(v j ;vi ).

We do not change the node positions during the clustering with
the assumption that a relatively good initial layout of nodes has been
computed based on other methods [13,14] and the location of each
node is unchanged during the clustering. For certain applications
such as visualizing airline �ight routes, it is important topreserve
the node location.
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Figure 2: Sampling the graph edges based on Delaunay triangula-
tion. Edge AD is intersected with Delaunay triangulation edges BF,
BE, and CE. Four segments AG0, G0G00, G00G000, and G000D are sampled
for edge AD.

Before clustering, in the representation of the graphG, each edge
(vi ;v j ) is a straight line connecting two nodesvi andv j , as shown in
Figure 1(a). Our edge clustering algorithm merges edges anddis-
plays a new edge layout in the form of polylines or curves according
to the graph topology and edge distribution.

3.2 Algorithm Overview

As illustrated in Figure 1, our energy-based hierarchical edge clus-
tering algorithm can be divided into the following four steps:

� Step 1:Performing Delaunay Triangulation.Delaunay trian-
gulation is computed based on the node setV;

� Step 2:Sampling the Graph Edges.Each edge in the setE is
subdivided into segments according to its intersections with
the Delaunay edges computed in Step 1;

� Step 3: Building the Control Map.Sampled segments, rep-
resented by the midpoint of each, are �ltered to form a new
graphG0(V0;E0), based on the criteria of Euclidian distance
and the relative positions of each node pair in the setV0;

� Step 4: Generating the Edge Hierarchy.Nodes in the new
graphG0are hierarchically clustered based on our energy op-
timization. The edges in the original graphG are clustered
accordingly.

In the following subsections, we describe each step in detail.

3.3 Step 1: Performing Delaunay Triangulation

Similar to the controllable and progressive edge clustering
method [16], we �rst compute a Delaunay triangulation of thenodes
in the original graphG. Delaunay triangulation is a classic method
to generate triangles from points. Delaunay triangulationmaxi-
mizes the minimum angle of all the angles of the triangles in the
triangulation and tends to avoid sharp angles, thus the shapes of the
generated triangles are usually very good. An example triangula-
tion of nodes in the graph shown in Figure 1(a) is illustratedin Fig-
ure 1(b). The Delaunay edges are marked with red color. Recently,
some GPU-accelerated Voronoi diagram and Delaunay triangula-
tion methods have been proposed [8], thus thousands of points can
now be triangulated in real time. In our algorithm, we take the ad-
vantages of Delaunay triangulation for the graph edge sampling in
the next step.
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Figure 3: Comparison between uniform sampling and our proposed
non-uniform sampling scheme based on Delaunay triangulation: (a) -
(c) uniform sampling schemes with regular grids at difference sam-
pling rate; (d) Delaunay-triangulation-based non-uniform sampling
scheme.

3.4 Step 2: Sampling the Graph Edges

In the previous step, we obtain a triangulation of the node set V. As
shown in Figure 1(a) and (b), each edge in the original graphG is ei-
ther overlapped or intersected with one or multiple Delaunay edges.
An edge(u;v) 2 E, intersecting withk Delaunay edges can be sub-
divided intok+ 1 sampling segments according to the intersection
positions. As illustrated in Figure 2, edgeAD intersects Delaunay
edgesBF, BE, andCE at pointsG0, G00, andG000respectively. Line
segmentsAG0, G0G00, G00G000, andG000D are sampled.

Based on Delaunay triangulation, we non-uniformly sample
edges according to the geometry of the graph. In Figure 3, ournon-
uniform sampling scheme is compared with the grid-based uniform
sampling scheme on the same graph illustrated in Figure 2. InFig-
ure 3(a), the graph edges are sampled with a 2� 2 grid. The sam-
pling grid edges are drawn in the purple color. Each graph edge is
segmented according to its intersections with the grid edges. Edges
are segmented into 17 fragments, each painted with the colorof red,
green, blue, or yellow. In Figure 3(b) and (c), the graph edges are
sampled under the increased rates, with the grid size of 4� 4 and
7� 7 respectively.

We observe that with regular sampling, segments with very short
length are usually generated in two scenarios. In the �rst scenario,
a graph edge intersects the corner of one grid cell, such as the seg-
ments colored with red in Figure 3(a) and (b). In the second sce-
nario, a graph node is very close to the grid cell boundary andthe
node has edge(s) corssing the nearest grid cell boundary. One ex-
ample is the lowest node (nodeF in Figure 1) in Figure 3(c). Based
on the above observation, the uniform sampling that is solely based
on the edge length instead of the graph geometry may result intoo
many or too few subdivided edge segments with undesirable length,



either causing low performance or generating unpleasant results.
Figure 3(d) shows all the segments generated with our Delaunay-

triangulation-based scheme. Delaunay triangulation edges are
drawn in dashed lines to be distinguishable from the original graph
edges. In contrast to uniform sampling, our sampling schemecon-
siders not only the edge information itself, but also the information
of the neighboring nodes, e.g., the overall topology of the graph.

3.5 Step 3: Building the Control Map

Based on the sampling result of the second step, we build a control
map for further processing. We represent each sampled segment
with its midpoint (blue points shown in �gure 1) and form a new
complete graphG0(V0;E0), in whichV0 is the set of the midpoints
of sampled segments inG andE0is the set of edges connecting each
pair of nodes inV0. We call graphG0 the control map of graphG.
By merging and rearranging the nodes in the control map, we can
cluster and reroute the edges in the original graphG. Before further
processing, the edges, in graphG0, that satisfy the following criteria
are �rst �ltered out.

1. The edge linking two nodes (representing two sampled seg-
ments in graphG) which are originally on the same edge in
graphG;

2. The edge linking two nodes with Euclidian distance larger
than a thresholdd speci�ed by the user.

After �ltering, only a subset of edges inE0 remains, as shown
in Figure 1(d). This �ltered control mapG0 forms the basis of the
further hierarchical edge clustering in the next step.

3.6 Step 4: Generating the Edge Hierarchy

In this step, we build the hierarchical clustering of nodes in the
control mapG0 and thus generate the hierarchical edge clustering
in G accordingly. During this step, the nodes ofG0are merged and
moved. The edges in graphG can be drawn as polylines or curves
with control points from graphG0. The edges inE0 are �rst sorted
according to their energyU computed with Equation 1:

U(u0;v0) = � Du0v0 � Dq(u0;v0) � ln(Du0v0+ 1)

� Da (u0;v0) � ln(Du0v0+ 1) (1)

whereDu0v0 = jj pu0 � pv0jj is the Euclidian distance of nodeu0

andv0, andDq(u0;v0) is the angle between the two sampled edges
associated withu0andv0. When bothu0andv0are original nodes in
the initial control map,Da (u0;v0) is the same asDq(u0;v0).

The edge with the highest energy is collapsed to form one sin-
gle node. Intuitively, nodes with close or parallel corresponding
sampled segments are likely to be merged together. After merging
a node pair, the control map graphG0(V0;E0) is updated and the
energies of updated edges are recomputed. The new pairs are in-
serted into the priority queue according to the energy. For the newly
formed nodew0 which is the merging of nodew0

1 andw0
2, its cor-

responding sampled segment direction is computed as the average
direction of the segments associated withw0

1 andw0
2. In Equation 1,

if u0 is the merging of nodesu0
1;u0

2; :::;u0
m, andv0 is the merging of

nodesv0
1;v0

2; :::;v0
n of the initial control map, then the sampled seg-

ment directions ofu0
1;u0

2; :::;u0
m are averaged for the direction ofu0.

The segment direction ofv0 is computed similarly. ValueDq(u0;v0)
is computed using the average segment directions andDa (u0;v0) is
computed as the sum of pairwise angle between set(u0

1;u0
2; :::;u0

m)
and(v0

1;v0
2; :::;v0

n).
During the merging of node pair(u0;v0) in V0, the following op-

erations are performed:

1. Update the node list V0: Removeu0andv0 from the node list
V0 and insert new nodeu0v0 into V0. The position ofu0v0 is
initialized as the midpoint ofu0andv0;

2. Update the edge list E0: Remove the edges associated withu0

andv0and make new edges with the end nodeu0v0. The edges
are being �ltered based on the criteria described in the step
of building the control map (Step 3) before being added into
graphG0.

3. Optimize the location of u0v0: The location ofu0v0is optimized
to minimize the overall energy of graphG0.

Our energy de�nition is partially inspired by the edge-repulsion
LinLog energy model [14]. The �rst term in Equation 1 can be in-
terpreted as the attraction between close segments. The closer the
two segments are, the higher possibility the merging has. Thus, in
Equation 1, the smaller the value ofDu0v0, the larger the energy is.
The second term models the repulsion between segments with small
Euclidian distance but large direction difference. In thisterm, the
angular distance is multiplied by the logarithmic value of the Eu-
clidian distance. Large angular distance makes small energy, thus
two segments with very different directions have a low possibility
to be merged even though they have small Euclidian distance.The
term Dq(u0;v0) is recorded in radians, therefore, the value ranges
from 0 top=2. The value of termDu0v0 is positive. If the input to the
logarithmic operation is less than 1, the curve becomes verysharp
as the input value increasing. The last term in Equation 1 is used to
prevent the merging of the nodes whose corresponding edges in the
original graphG are almost perpendicular to each other. Similar to
the second term, this term also considers both angular and Euclidian
distances. The difference is that the angular distance ofDq(u0;v0)
is recorded for the segments in the original graphG instead of the
control mapG0.

The energy model for location optimization is following:

U(G0) = � å
(u0;v0)2E0

Du0v0 � å
(u0;v0)2E0

(Dq(u0;v0) � ln(Du0v0+ 1)) (2)

whereDu0v0 andDq(u0;v0) are de�ned the same as in Equation 1.
Equation 2 is for the overall energy of graphG0. Compared with
Equation 1, the �rst two terms are similar, and the third termof
Equation 1 is removed. The removed term is to count the pairwise
angles between the nodes in the initial control map. For the overall
energy of a graph, this term is a constant value and can be ignored
for optimization.

The above merging operation is repeated until there is no new
candidate node pair left in the queue.

3.7 User Interaction

We provide an interface allowing users to explore the node-link
graphs with different level of details. The implemented user in-
terface consists of two regions, as shown in Figure 4. The left is the
display region. The graphs are displayed with shaded tubes (edges)
and spheres (nodes). The right is the parameter region. Two types
of parameter controls are provided to the user. The control panel for
the computation parameter is used for adjusting the edge clustering
computation, i.e., the distance threshold discussed in Section 3.5
and 3.6. The display parameter panel provides users with theaccess
to explore the clustering results. In our algorithm, each edge is seg-
mented and represented by a series of control points. The resulting
hierarchically clustered edges can be drawn in either Catmull-Rom
splines or Bezier curves upon the user's selection. In this paper,
all the curves shown are drawn with Catmull-Rom splines in which
speci�ed curves pass all of the control points. Our user interface
supplies an easy-to-use scrolling bar for user exploration. The user
can slide the scrolling bar to examine the edge clustering results at
different levels interactively.



Figure 4: The user interface of our system using energy-based hi-
erarchical edge clustering. Left: display region; Right: parameter
region accepting user input.

4 EXPERIMENTAL RESULTS AND DISCUSSION

We applied our energy-based hierarchical edge clustering algorithm
to several node-link diagrams. Figure 5 shows the clustering results
on two graphs with simple topologies. The top images are the orig-
inal graphs, while the bottom ones are the corresponding clustered
results. In Figure 5(a), one array of nodes are all connectedto a
single center node to form a single bundle. As illustrated inFig-
ure 5(b), a tree graph is clustered by our algorithm. All edges are
grouped as expected. Figure 6 shows the hierarchical edge clus-
tering structure of an arti�cial dataset with 13 nodes and 57edges.
Figure 6(a) is the original node-link graph. The highest level of
edge clustering generated by our hierarchical edge clustering algo-
rithm is illustrated in Figure 6(b). Figure 6(c)-(e) show the inter-
mediate graphs during the hierarchical clustering from lowto high
levels. Graph edges are clustered progressively as the level of hier-
archy increasing.

We further applied our algorithm on a �ight route map. The
original graph is shown in Figure 7(a), with 83 cities and 187�ight
routes displayed. Each graph node represents a major city inChina,
while each graph edge represents a �ight connecting two cities. The
hierarchical clustering result is illustrated in Figure 7(b). Airline
routes are clustered together according to their geometry and topol-
ogy structures. Similar routes are combined together to reduce vi-
sual clutter. We observe that undesirable results can be generated
for a few routes. Such as the route of the direct �ight between
Beijing and Urumqi (the most northwestern city in the map) isdis-
torted in the clustered result and becomes dif�cult to trace. We are
currently investigating possible solutions for such cases. One pos-
sibility is to let the user directly restrict the deformation degree for
certain graph edges.

We implemented our algorithm on a Dell OptiPlex GX280 desk-
top with a single Intel Pentium 4 3.2GHz CPU and 1GB Memory.
The results in Figure 5 can be computed interactively. Computing
the hierarchy for graphs in Figure 6 and Figure 7 takes 0.985 sec-
onds and 9.125 seconds respectively. Our implementation isnot
highly optimized for speed. Therefore, for large size graphs, the
pre-computation may cost several minutes. The GPU-accelerated
Delaunay triangulation methods [8] and local optimizationcon-
straints can be applied to speed up the performance.

One advantage of our method is that once pre-computed, the
whole hierarchical clustering structure can be stored for further

(a) (b)

Figure 5: Results of hierarchical edge clustering. The images in the
top row are the initial graphs. The images in the bottom row are the
corresponding clustered graphs drawn with curved edges.

uses. After that users can interactively explore the clustering results
at continuous level of details clustering results with an easy-to-use
scrolling bar.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel energy-based hierarchi-
cal edge clustering method for graphs. Our method hierarchically
clusters control points of edges to minimize a tailored energy func-
tion. In the sampling stage, we adapt Delaunay triangulation for the
non-uniform sampling of graph edges. Comparing with uniform
sampling schemes using regular grids, our Delaunay-triangulation-
based scheme considers the topological structure of the graph and
generates more desirable results. Through hierarchical edge clus-
tering, our method can reduce visual clutter and provide a better
understanding of the graphs. The results shown in the paper demon-
strate the effectiveness of our method in clustering edges.Our al-
gorithm can be applied to data with complex interconnections and
can provide good high level abstractions of complex graphs.

We plan to further investigate the effectiveness of our method on
large graphs. We will test whether the diagrams with our hierarchi-
cal edge clustering are more readable than the raw diagrams under
some de�ned visual clutter measures. We are also interestedin con-
ducting user studies to validate our technique. In addition, we are
looking into an intuitive interface for users to control theabstrac-
tion level of the clustering. In some cases, it is desirable to allow
users to modify the clustering results interactively, e.g., to modify
the locations of certain control points.
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Figure 6: Results of hierarchical edge clustering on an arti�cial dataset with 13 nodes and 57 edges: (a) the original nod e-link graph; (b)
the highest level of edge clustering based on our hierarchical edge clustering algorithm; (c), (d), and (e) the intermediate graphs during the
hierarchical clustering from low to high levels.
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(a)

(b)

Figure 7: Results of hierarchical edge clustering on an airline �ight route map with 83 nodes and 187 edges: (a) the origin al node-link graph; (b)
the edge clustering result. (Data source of the background map: http://www.airchina.com.cn/ )


