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ABSTRACT

Effectively visualizing complex node-link graphs whichpitet re-
lationships among data nodes is a challenging task due tiutier
and occlusion resulting from an excessive amount of edges.

In this paper, we propose a novel energy-based hierarcaice
clustering method for node-link graphs. Taking into thesider-
ation of the graph topology, our method rst samples grappesd
into segments using Delaunay triangulation to generatedhgol
points, which are then hierarchically clustered by endrgged op-
timization. The edges are grouped according to their positand
directions to improve comprehensibility through absim@ttand
thus reduce visual clutter. The experimental results detnate
the effectiveness of our proposed method in clustering ®dge
providing good high level abstractions of complex graphs.

Keywords: Graph visualization, Edge clustering, Delaunay trian-
gulation, Node-link diagrams, Hierarchies.

Index Terms: E.1 [Data Structures]: Graphs and networks; G.1.6
[Numerical Analysis]: Optimization—Constrained Optiration;
1.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques; H.5.0 [Information Interfaces &vesen-
tation]: General.

1 INTRODUCTION

Graph is a popular tool to represent complex relationshipfar-
mation such as trade relationships among countries oscltiger-
links among Internet webpages, citations between litegatudy-
namic biological reactions within a complex system, powsisy
airline routes, road maps, and interpersonal relatiosstem all be
modeled by node-link diagrams in which nodes representelata
ments and links indicate their relationships.

However, as the amount of information increases, visudteriu
becomes a major challenge to achieve effective visuatimattdge
congestion [3, 16, 19], where excessive edge density in amreg
leads to edge-crossings and edge-overlappings, obscodes im
these regions, and thus causes dif culties in understanttie in-
formation represented by the graph. One typical exampléds t
maps of the ight routes of airline companies. Severe edgges-
tion can often be observed near major hub cities from whichyma
ights originate. The edge density is so high that the entégion
surrounding the hub cities can be fully covered by lines. duld
be very dif cult to trace individual ight route and extraatseful
information from the underlying graph in such cases.

The graph edge density can be alleviated by magnifying the co
gestion regions [2,5,6,10], merging and rearranging effyds12].
More recently, hierarchical edge clustering methods haenlap-
plied to avoid visual clutter in single-source graphs [15d graphs
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with known hierarchical structures [9]. Through groupirte t
edges, visual clutter can be dramatically reduced withooning

the node positions which may have semantic or geographic-mea
ings in graphs such as road maps. However, the research en edg
clustering, especially hierarchical edge clustering fmeyal node-
link graphs is scarce. In this paper, we propose a novel gherg
based hierarchical edge clustering method for general-fioki€li-
agrams. Our method rst performs Delaunay triangulatiogmaph
nodes and segments original graph edges based on the campute
Delaunay edges. Then adaptive sampling which re ects botten
and edge densities in graphs are achieved. Clustering ddgesl

on the adaptively sampled segments instead of uniformlypfein
segments can generate more desirable results which nmathii
topology information of the graph. The sampled segmentshemre
Itered and hierarchically clustered based on our energgea op-
timization method. The proposed energy function takes bwmth
cations and directions of edges into consideration dutiregetige
clustering stage, in order to make spatially close and \lispar-
allel edges cluster together. Finally, the clustered edgeslynam-
ically grouped according to their positions in the hiergrot im-
prove comprehensibility through abstraction and thuscedisual
clutter. Users can slide our provided scrolling bar to dyitatty
explore the edge clustering results at continuous levektdits in
real time.

The rest of the paper is organized as follows. We brie y dis-
cuss related work in Section 2. In Section 3, details of oappsed
hierarchical edge clustering algorithm are given, folldveg exper-
imental results and performance discussions in Sectiorirall{
we present our conclusions and future work in Section 5.

2 RELATED WORK

Much efforts have been devoted to relieving edge congestite
over a decade ago. Without modifying the layout of the gragif
directly magnifying the congestion regions with technigjsaech as
Magic Lens [2] and sheye views [5, 6, 10] can make the central
part larger and provide a focus+context view, but cannavelthe
edge confusion and occlusion. Edge crossings can also bheegd
by rearranging the nodes and edges. One possible way ta-allev
ate edge congestion is to merge edges and draw them as curves.
Force-based or energy-based node layout algorithms [1 B
been investigated to generate good graph layouts for mesiizen
graphs, based on some aesthetic criteria. However, fohgnajth
dense edges, edge crossings usually cannot be reducedisfacsa
tory level. Ware et al. [17] discussed the perception of icoiitty

in edge paths and showed that the three most important sacfor
the cognitive criteria of graph aesthetics are the lengtthefpath,
continuity, and edge crossings, in a decreasing order afiitapce.

It can be observed that the most severe congestion occutgin t
areas where edges heavily cross each other. NewBery [12] pro
posed the Edge Concentration method which reduces the mumbe
of edges while retaining the graph structural informatidhe pro-
posed method eliminates edges through replacing the selgekse
with the same set of source and target nodes by a special atheld ¢
edge concentration node. The number of crossings is reduded
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Figure 1: Hierarchical edge clustering algorithm overview. Step 1: performing Delaunay triangulation; Step 2: sampling the graph edges; Step 3:
building the control map of the graph; Step 4: generating edge hierarchy (hierarchical clustering). The gures (e) and ( f) enclosed in the dotted

rectangle are the intermediate graphs during the hierarchical clustering.

sequently when the number of edges is reduced. Lin [11] éuarth
studied the computational complexity of Edge Concentratind
showed that the problem is NP-hard.

Schemes of planar graphs [4] have been investigated to to-
tally avoid edge crossing with certain constraints. Cadpdémand
Rong [3] described an edge-displacement algorithm whioérin
actively adjusts the graph layout. In their algorithm, oelyges
are shifted to provide suf cient space to clarify relatibips, while
nodes remain at their original positions. EdgelLens [1%rat-
tively curves edges of the node-link diagrams away from treer
of focus (center of the lens) without changing the node st
Suf cient space can be provided by the EdgelLens operatmdist
cern ambiguous node and edge relationships and to reveahthe
derlying information while still preserving the node layoudow-
ever, the visual clutter is only reduced locally, and lasgele pat-
terns cannot be effectively revealed. Above methods relyhen
interaction with the user and are not applicable to statidiemsuch
as magazine printouts. Edge Plucking [18] introduced by §\fomd
Carpendale allows users to interactively pluck edges apatarify
node-edge relationships.

Hierarchical methods have been applied to graphs with known
node hierarchy structures to avoid visual clutter and glebet-
ter abstractions of graphs [9]. Phan et al. [15] proposed thode
for generating layouts of ow maps using hierarchical carsig.
The algorithm minimizes edge crossings and distorts nodiipos
while maintaining their relative positions. Their methodiniy tar-
gets at single-source node-link diagrams. It is not clear twoex-
tend it to general multiple source graphs. Recently, Ganane
Koren [7] presented an idea of minimizing an energy funcfiamn
rerouting edges to achieve hierarchical edge clusteririge ddge
density is reduced by coupling groups of edges as bundléakespl
that share part of their routes. However, their method isisgaly
designed for circular layout graphs, while our method iggiemeral
node-link graphs. TopoLayout, a feature-based algorithyardz-

ing multilevel undirected graph layouts by topologicaltieas, has
been proposed by Archambault et al. [1]. The graph hieraighy
formed by collapsing subgraphs into single nodes accoriting-
cursively detected topological features. Instead of ehiisy the
nodes, our method clusters the edges to build the hierandtigh

can keep the geographic meanings of the nodes in the graph. Qu

et al. [16] proposed a controllable edge clustering mettase:d on
Delaunay triangulation to reduce visual clutter for largéworks.

It groups edges together which are represented by curves io-
cording to their geometry information. That method onlyoat
merging on the Delaunay edges, while our new method cangeovi
more exibility and scalability to the edge clustering pess.

3 HIERARCHICAL EDGE CLUSTERING ALGORITHM

In this section, we rst give the de nition of node-link grap. We
then brie y overview our proposed energy-based hieraarécdge
clustering algorithm which consists of four steps, i.erf@ening

Delaunay triangulation, sampling the graph edges, buglthe con-
trol map, and generating the edge hierarchy. We then discaske-
tails of each step followed by a brief description of the iempented
interface enabling user exploration on the clusteringltesu

3.1 Basic De nition
A graphG = (V;E) comprises a s&f of n nodes, and a s& of m

Each edg€vi;v;) connects nodeg andvj. In the scope of this
paper, we only consider undirected graphs, in which €ege;) is
equivalent tq(vj;Vvj).

We do not change the node positions during the clusteriniy wit
the assumption that a relatively good initial layout of netias been
computed based on other methods [13, 14] and the locatioacbf e
node is unchanged during the clustering. For certain agipdics
such as visualizing airline ight routes, it is important poeserve
the node location.



Figure 2: Sampling the graph edges based on Delaunay triangula-
tion. Edge AD is intersected with Delaunay triangulation edges BF,
BE, and CE. Four segments AG® GIG29 G%&%0and GO% are sampled
for edge AD.

Before clustering, in the representation of the gr@pkach edge
(vi;vj) is a straight line connecting two nodgsandvj, as shown in
Figure 1(a). Our edge clustering algorithm merges edgesdesad
plays a new edge layout in the form of polylines or curves ediog
to the graph topology and edge distribution.

3.2 Algorithm Overview

As illustrated in Figure 1, our energy-based hierarchidaleeclus-
tering algorithm can be divided into the following four step

Step 1:Performing Delaunay TriangulatiorDelaunay trian-
gulation is computed based on the node\set

Step 2:Sampling the Graph Edge&ach edge in the s& is
subdivided into segments according to its intersectiorth wi
the Delaunay edges computed in Step 1;

Step 3:Building the Control Map.Sampled segments, rep-
resented by the midpoint of each, are Itered to form a new
graphGY{V%EY, based on the criteria of Euclidian distance
and the relative positions of each node pair in the/Set

Step 4: Generating the Edge HierarchyNodes in the new
graphGPare hierarchically clustered based on our energy op-
timization. The edges in the original gra@hare clustered
accordingly.

In the following subsections, we describe each step indetai

3.3 Step 1: Performing Delaunay Triangulation

Similar to the controllable and progressive edge clusterin
method [16], we rstcompute a Delaunay triangulation of tegles

in the original graptG. Delaunay triangulation is a classic method
to generate triangles from points. Delaunay triangulaticaxi-
mizes the minimum angle of all the angles of the triangleshin t
triangulation and tends to avoid sharp angles, thus theestajthe
generated triangles are usually very good. An examplegukm
tion of nodes in the graph shown in Figure 1(a) is illustrateBig-
ure 1(b). The Delaunay edges are marked with red color. Rigcen
some GPU-accelerated Voronoi diagram and Delaunay triangu
tion methods have been proposed [8], thus thousands ofspeéant
now be triangulated in real time. In our algorithm, we take #al-
vantages of Delaunay triangulation for the graph edge sampti
the next step.

(@) (b)
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Uniform sampling

grid Edes

Delaunay Triangulation based
non-uniform samplng grid edges

Sanpled sgments
of graph edges

Figure 3: Comparison between uniform sampling and our proposed
non-uniform sampling scheme based on Delaunay triangulation: (a) -
(c) uniform sampling schemes with regular grids at difference sam-
pling rate; (d) Delaunay-triangulation-based non-uniform sampling
scheme.

3.4 Step 2: Sampling the Graph Edges

In the previous step, we obtain a triangulation of the nod® sés
shown in Figure 1(a) and (b), each edge in the original g@&jsei-
ther overlapped or intersected with one or multiple Delgwetges.
An edge(u;V) 2 E, intersecting wittk Delaunay edges can be sub-
divided intok+ 1 sampling segments according to the intersection
positions. As illustrated in Figure 2, edgd intersects Delaunay
edgesBF, BE, andCE at pointsG® G% andGespectively. Line
segmentdG®, GIGP0 G9%9005nd GO are sampled.

Based on Delaunay triangulation, we non-uniformly sample
edges according to the geometry of the graph. In Figure oo
uniform sampling scheme is compared with the grid-basefrmi
sampling scheme on the same graph illustrated in Figure Righh
ure 3(a), the graph edges are sampled with &22yrid. The sam-
pling grid edges are drawn in the purple color. Each graple éslg
segmented according to its intersections with the grid edgdges
are segmented into 17 fragments, each painted with the abted,
green, blue, or yellow. In Figure 3(b) and (c), the graph eduye
sampled under the increased rates, with the grid size of &and
7 7 respectively.

We observe that with regular sampling, segments with veoytsh
length are usually generated in two scenarios. In the rehsacio,

a graph edge intersects the corner of one grid cell, sucheaseti
ments colored with red in Figure 3(a) and (b). In the secomd sc
nario, a graph node is very close to the grid cell boundarythad
node has edge(s) corssing the nearest grid cell boundary.eon
ample is the lowest node (no@fein Figure 1) in Figure 3(c). Based
on the above observation, the uniform sampling that is ghlated
on the edge length instead of the graph geometry may restdoin
many or too few subdivided edge segments with undesirabigte



either causing low performance or generating unpleasanttse

Figure 3(d) shows all the segments generated with our Dajaun
triangulation-based scheme. Delaunay triangulation ®dye
drawn in dashed lines to be distinguishable from the originaph
edges. In contrast to uniform sampling, our sampling scheone
siders not only the edge information itself, but also theiinfation
of the neighboring nodes, e.g., the overall topology of tteph.

3.5 Step 3: Building the Control Map

Based on the sampling result of the second step, we buildtaoton
map for further processing. We represent each sampled s¢gme
with its midpoint (blue points shown in gure 1) and form a new
complete graptGYV® EY, in whichVCis the set of the midpoints
of sampled segments G andECis the set of edges connecting each
pair of nodes ifv® We call graphG%the control map of grapls.

By merging and rearranging the nodes in the control map, we ca
cluster and reroute the edges in the original gr@pBefore further
processing, the edges, in gra@f) that satisfy the following criteria
are rst ltered out.

1. The edge linking two nodes (representing two sampled seg-
ments in graphG) which are originally on the same edge in
graphG;

2. The edge linking two nodes with Euclidian distance larger
than a threshold speci ed by the user.

After ltering, only a subset of edges i&®remains, as shown
in Figure 1(d). This ltered control ma®forms the basis of the
further hierarchical edge clustering in the next step.

3.6 Step 4: Generating the Edge Hierarchy

In this step, we build the hierarchical clustering of nodedhe
control mapGPand thus generate the hierarchical edge clustering
in G accordingly. During this step, the nodes@fare merged and
moved. The edges in graghcan be drawn as polylines or curves
with control points from grapie® The edges ifE%are rst sorted
according to their enerdy computed with Equation 1:

U9

Do Dg(u®Vd In(Dyao+ 1)

Da (V) In(Dyap+ 1) (1)

whereD 0 = A’j P Pwij is the Euclidian distance of nod€
and\®, andDg(u\9 is the angle between the two sampled edges
associated with®andv®. When bothu®andvPare original nodes in
the initial control mappPa (u®\9) is the same aBg(u®\9).

The edge with the highest energy is collapsed to form one sin-
gle node. Intuitively, nodes with close or parallel cor@sging
sampled segments are likely to be merged together. Afteginger
a node pair, the control map gra@f{V® EY is updated and the
energies of updated edges are recomputed. The new pains-are i
serted into the priority queue according to the energy. f®newly
formed noden® which is the merging of node? andw3, its cor-
responding sampled segment direction is computed as tmageve
direction of the segments associated withandwd. In Equation 1,
if wis the merging of nodes; ud; :::;u%, andvPis the merging of
nodesvd;v3; :::;V8 of the initial control map, then the sampled seg-
ment directions oéi%; ud; :::; ud, are averaged for the direction t
The segment direction afis computed similarly. VaIqu&uO,v%
is computed using the average segment direction d®\ is
computed as the sum of pairwise angle betweer@t@euz; anu
and(V9;v3;:\R).

During the merging of node pafu®v9 in VO the following op-
erations are performed:

0

1. Ugdate the node list ¥ Removeu®and\Pfrom the node list
VYand insert new node®Pinto V% The position ofudPis
initialized as the midpoint afi®andv®

. Update the edge list & Remove the edges associated with
andv?and make new edges with the end noé€. The edges
are being Itered based on the criteria described in the step
of building the control map (Step 3) before being added into
graphGP

. Optimize the location of4 The location ol4Pis optimized
to minimize the overall energy of graP.

Our energy de nition is partially inspired by the edge-région
LinLog energy model [14]. The rst term in Equation 1 can be in
terpreted as the attraction between close segments. Téer tle
two segments are, the higher possibility the merging hasis;Tim
Equation 1, the smaller the value Bfap, the larger the energy is.
The second term models the repulsion between segmentsméith s
Euclidian distance but large direction difference. In tigigm, the
angular distance is multiplied by the logarithmic value loé Eu-
clidian distance. Large angular distance makes small gntrgs
two segments with very different directions have a low puiisy
to be merged even though they have small Euclidian distahe.
term Dg(u®V9 is recorded in radians, therefore, the value ranges
from 0 top=2. The value of ternb o, is positive. If the input to the
logarithmic operation is less than 1, the curve becomes stagyp
as the input value increasing. The last term in Equation $ésluo
prevent the merging of the nodes whose corresponding edgles i
original graphG are almost perpendicular to each other. Similar to
the second term, this term also considers both angular acidiEzun
distances. The difference is that the angular distandaq® o
is recorded for the segments in the original gré&mstead of the
control mapG?

The energy model for location optimization is following:

uGY= a (Dg(wV In(Dye+ 1)) (2)
(W92 ED

é. Duap
(W92 EO0

whereD o0 andDq(u® V9 are de ned the same as in Equation 1.
Equation 2 is for the overall energy of gragf. Compared with
Equation 1, the rst two terms are similar, and the third tesi
Equation 1 is removed. The removed term is to count the psérwi
angles between the nodes in the initial control map. For teeadl
energy of a graph, this term is a constant value and can begdno
for optimization.

The above merging operation is repeated until there is no new
candidate node pair left in the queue.

3.7 User Interaction

We provide an interface allowing users to explore the ndule-I
graphs with different level of details. The implementedruse
terface consists of two regions, as shown in Figure 4. Thésléfie
display region. The graphs are displayed with shaded tiduksef)
and spheres (nodes). The right is the parameter region. Viyes t
of parameter controls are provided to the user. The conaméifor
the computation parameter is used for adjusting the edgtecing
computation, i.e., the distance threshold discussed itid®e8.5
and 3.6. The display parameter panel provides users withdtess
to explore the clustering results. In our algorithm, eaalesd seg-
mented and represented by a series of control points. Th#ings
hierarchically clustered edges can be drawn in either CidiRam
splines or Bezier curves upon the user's selection. In thjgep
all the curves shown are drawn with Catmull-Rom splines iictvh
speci ed curves pass all of the control points. Our userrfate
supplies an easy-to-use scrolling bar for user explorafidre user
can slide the scrolling bar to examine the edge clusterisglt®at
different levels interactively.



Figure 4: The user interface of our system using energy-based hi-
erarchical edge clustering. Left: display region; Right: parameter
region accepting user input.

4 EXPERIMENTAL RESULTS AND DISCUSSION

We applied our energy-based hierarchical edge clustelgugithm
to several node-link diagrams. Figure 5 shows the clugiegaults
on two graphs with simple topologies. The top images are tige o
inal graphs, while the bottom ones are the correspondingeried
results. In Figure 5(a), one array of nodes are all conneitted
single center node to form a single bundle. As illustrateéim
ure 5(b), a tree graph is clustered by our algorithm. All edges
grouped as expected. Figure 6 shows the hierarchical edge cl
tering structure of an arti cial dataset with 13 nodes ancefges.
Figure 6(a) is the original node-link graph. The higheselexf
edge clustering generated by our hierarchical edge clogtatgo-
rithm is illustrated in Figure 6(b). Figure 6(c)-(e) shovetimter-
mediate graphs during the hierarchical clustering fromtowigh
levels. Graph edges are clustered progressively as thieoelreer-
archy increasing.

We further applied our algorithm on a ight route map. The
original graph is shown in Figure 7(a), with 83 cities and 1igfit
routes displayed. Each graph node represents a major cyiima,
while each graph edge represents a ight connecting twegifrhe
hierarchical clustering result is illustrated in Figurd)Z( Airline
routes are clustered together according to their geomattyapol-
ogy structures. Similar routes are combined together tocedi-
sual clutter. We observe that undesirable results can bergienl
for a few routes. Such as the route of the direct ight between
Beijing and Urumgi (the most northwestern city in the mapjiss
torted in the clustered result and becomes dif cult to tradé are
currently investigating possible solutions for such casse pos-
sibility is to let the user directly restrict the deformatidegree for
certain graph edges.

We implemented our algorithm on a Dell OptiPlex GX280 desk-
top with a single Intel Pentium 4 3.2GHz CPU and 1GB Memory.
The results in Figure 5 can be computed interactively. Cdamgu
the hierarchy for graphs in Figure 6 and Figure 7 takes 0.885 s
onds and 9.125 seconds respectively. Our implementatiootis
highly optimized for speed. Therefore, for large size gsphe
pre-computation may cost several minutes. The GPU-aateler
Delaunay triangulation methods [8] and local optimizatimmn-
straints can be applied to speed up the performance.

(@) (b)

Figure 5: Results of hierarchical edge clustering. The images in the
top row are the initial graphs. The images in the bottom row are the
corresponding clustered graphs drawn with curved edges.

uses. After that users can interactively explore the clirgeesults
at continuous level of details clustering results with asye@-use
scrolling bar.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel energy-based dfierar
cal edge clustering method for graphs. Our method hiereadizi
clusters control points of edges to minimize a tailored gnéunc-
tion. In the sampling stage, we adapt Delaunay trianguidtiothe
non-uniform sampling of graph edges. Comparing with umifor
sampling schemes using regular grids, our Delaunay-tuiatign-
based scheme considers the topological structure of theh gnad
generates more desirable results. Through hierarchicg eliis-
tering, our method can reduce visual clutter and providettebe
understanding of the graphs. The results shown in the p&peoxt
strate the effectiveness of our method in clustering ed@es. al-
gorithm can be applied to data with complex interconnestiand
can provide good high level abstractions of complex graphs.

We plan to further investigate the effectiveness of our metn
large graphs. We will test whether the diagrams with ourarighi-
cal edge clustering are more readable than the raw diagrades u
some de ned visual clutter measures. We are also inter@st=uh-
ducting user studies to validate our technique. In addities are
looking into an intuitive interface for users to control thlestrac-
tion level of the clustering. In some cases, it is desirablaltow
users to modify the clustering results interactively, ,e.g.modify
the locations of certain control points.
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Figure 6: Results of hierarchical edge clustering on an arti cial dataset with 13 nodes and 57 edges: (a) the original nod e-link graph; (b)
the highest level of edge clustering based on our hierarchical edge clustering algorithm; (c), (d), and (e) the intermediate graphs during the
hierarchical clustering from low to high levels.
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Figure 7: Results of hierarchical edge clustering on an airline ight route map with 83 nodes and 187 edges: (a) the origin al node-link graph; (b)
the edge clustering result. (Data source of the background map: http://www.airchina.com.cn/)



