
Ef�cient Unsteady Flow Visualization with High-Order Access
Dependencies

Jiang Zhang1 � Hanqi Guo3 y Xiaoru Yuan1;2 z

1) Key Laboratory of Machine Perception (Ministry of Education), and School of EECS, Peking University
2) Beijing Engineering Technology Research Center of Virtual Simulation and Visualization, Peking University

3) Mathematics and Computer Science Division, Argonne National Laboratory

ABSTRACT

We present a novel high-order access dependencies-based model
for ef�cient pathline computation in unsteady �ow visualization.
By taking longer access sequences into account to model more
sophisticated data access patterns in particle tracing, our method
greatly improves the accuracy and reliability in data access pre-
diction. In our work, high-order access dependencies are calcu-
lated by tracing uniformly seeded pathlines in both forward and
backward directions in a preprocessing stage. The effectiveness
of our approach is demonstrated through a parallel particle tracing
framework with high-order data prefetching. Results show that our
method achieves higher data locality and hence improves the ef�-
ciency of pathline computation.

1 INTRODUCTION

Field line tracing is a fundamental technique in �ow visualiza-
tion and analysis. Various applications require massively tracing
streamlines or pathlines, such as �ow surface computation [8],
�nite-time Lyapunov exponent (FTLE) computation [14], and
source-destination analysis [16]. However, �eld line computation
is both data- and computational-expensive, especially for large and
complex unsteady �ow data. The dominant cost in �eld line tracing
is I/O, which may take up to 90% time [15]. The key to mitigating
the data I/O burden is to improve the data locality, which has been
studied extensively [5, 3, 6]. One major solution is to incorporate
data access patterns in �eld line tracing. In �ow visualization, how-
ever, modeling data access patterns is challenging because they are
implicitly determined by �ow �eld features. The access patterns are
regarded as random in most studies.

One approach to model data access patterns is using Markov
chains. In stochastic models, the probability of accessing one block
(chunk of data) depends only on the previously visited block. The
�rst-order access patterns are recorded by calculating the state tran-
sition probabilities for each pair of blocks. Then in the �eld line
tracing process, the next data accesses can be evaluated in advance
according to which block the particle currently sits. This �rst-order
Markov model was successfully applied to computational �uid dy-
namics (CFD) postprocessing for reducing data access time [10].
Moreover, in �ow visualization, a few attempts had been made
to use this model for both streamline computation in steady �ow
�elds [5] and pathline computation in unsteady �ow �elds [3, 13],
in order to predict data accesses and thereby improve data locali-
ties. The limitation of the Markov chain-based method is that the
state may transit from one data block to various other data blocks,
which means a particle may have various probabilities to access in

� e-mail: jiang.zhang@pku.edu.cn
ye-mail: hguo@anl.gov
ze-mail: xiaoru.yuan@pku.edu.cn (corresponding author)

the next step. As a result, determining the next data access is dif�-
cult because a lot of data blocks may be possible. In other words,
accurate and reliable data access patterns cannot be achieved.

In this work, we introduce a novel access dependency model
based on high-order Markov chains [25]. The high-order access
dependencies are calculated in order to improve the data localities
and ef�ciency in the �eld line computation. Speci�cally, histori-
cal access information is taken into account in high-order access
dependencies, which improves the prediction accuracy of the next
data accesses. Different from the �rst-order access dependencies-
based method commonly employed [10, 5, 3, 13], the prediction of
the next data accesses relies on both current and several previously
visited data blocks in our method. By incorporating historical data
accesses, the number of probabilities for the next data accesses is
less, and the precision of each probability is higher. Hence, more
reliable predictions of the next access patterns can be achieved dur-
ing particle advection.

In our implementation, high-order access dependencies are com-
puted in a preprocessing stage and are reusable for further pathline-
based visualization tasks. The data is �rst partitioned into regular
and small blocks. By uniformly seeding particles in each block, we
perform a round of particle tracing in both forward and backward
directions in the domain. The high-order access dependencies be-
tween data blocks are calculated based on the data access informa-
tion recorded in these pathlines. To further explore the advantages
of high-order access dependencies in pathline computation, we ap-
ply a task-parallel particle tracing framework with high-order data
prefetching. In our work, the high-order access dependencies are
organized together with corresponding data blocks. During parti-
cle advection, when a block is requested, the system precaches the
blocks with higher probability to be visited in the immediate fu-
ture. High-order access dependencies achieve higher prefetching
accuracy and cache hit ratio, thus reducing I/O requests.

In the remainder of this paper, we review the background of this
work in Section 2. In Section 3, the high-order access dependen-
cies in unsteady �ow �elds are described in detail. Section 4 depicts
the parallel particle tracing framework with data prefetching, which
applies high-order access dependencies. Results are shown in Sec-
tion 5 to demonstrate the effectiveness of our method. In Section 6,
we present our conclusions and discuss future work.

2 BACKGROUND

We summarize related work on advection-based �ow visualization,
data access dependencies in �ow visualization, and parallel particle
tracing and data prefetching in general.

2.1 Advection-Based Flow Visualization

Field line advection plays a vital role in �ow visualization and anal-
ysis. Many �ow visualization tasks require �eld line-based analy-
sis, such as texture-based visualization [17], geometry-based visu-
alization [19], and feature extraction and tracing in �ow visualiza-
tion [24]. Based on different strategies of particle placement, these

visualization methods can be divided into two categories: full-range
analysis and local-range analysis.

In full-range analysis, particles are seeded over the entire domain
for exploring overview features of �ow �elds. Numerous applica-
tions, such as line integral convolution [2], unsteady �ow LIC [26],
and Lagrangian coherent structures extraction [9], are computed by
densely seeding particles in the entire spatiotemporal domain. The
computation in full-range analysis is always expensive because of
tracing a large number of particles. In contrast, local-range analy-
sis requires seeding particles in a local subdomain. Methods in this
category are typically used to explore local features in �ow �elds,
such as source-destination queries [16] and �ow surfaces computa-
tion [8].

2.2 Data Access Dependencies in Flow Visualization

Based on the fact that certain data access patterns exist in particle
advection, recent research has focused on the access dependencies
among data blocks. The access dependency graph (ADG) [5] was
proposed for �le layout optimization of static �ow �eld data. In
ADG, each node represents a data block, and each direct edge be-
tween two nodes records the access probability for a particle seeded
in one block traveling to the other block. Furthermore, ADG was
extended to compute pathlines in unsteady �ow �eld [3], as well
as to effectively schedule particle seeds for ef�cient out-of-core
FTLE computation [4]. Recently Guo et al. [13] introduced a novel
advection-based sparse data management for ef�cient and scalable
unsteady �ow visualization based on data access dependencies. In
that work, the access dependencies were learned and recorded as
hints during particle tracing. This on-the-�y construction was also
employed to build a probability graph that represents the successor
relation of blocks for CFD datasets [10]. However, the access de-
pendencies in these methods are all �rst order, and the predictions
of data accesses are not accurate and reliable. More sophisticated
access patterns exist in particle tracing. Therefore, our work also
takes historical access information into account. By matching the
high-order historical information of a pathline, next data accesses
can be predicted with higher accuracy.

2.3 Data Prefetching and Parallel Particle Tracing

Our work is related to data prefetching, a widely used technique to
improve the I/O access performance for particle tracing. The effec-
tiveness of data prefetching depends on the predictions of next data
accesses. In order to hide I/O latency for parallel applications, a
pre-execution prefetching framework was also proposed [7]. More-
over, an I/O signature-based strategy [1] used a predetermined I/O
signature generated automatically to guide prefetching and reduce
the overhead of future I/O read prediction.

In order to ef�ciently generate high-order access dependencies,
our method employs parallel computation in the preprocessing
stage. Tracing particles in parallel is a common solution in visu-
alizing large unsteady �ow �elds. There are three parallel strate-
gies for parallel particle tracing: task-parallelism, data-parallelism,
and hybrid-parallelism. The task-parallel methods focus on work-
load distribution through various schedule strategies. Static work-
load estimation [22] and dynamic load-balancing [20] were both
well studied. In data-parallel methods, the strategies of data par-
titioning and distribution are dominant. Data can be partitioned
based on �ow features [6], over time steps [21], or be distributed
by round-robin [23], hierarchical clustering [28]. Hybrid-parallel
method that combines task- and data-parallelism was introduced re-
cently in scalable stream surface computation for balancing work-
load distribution [18]. Moreover, a MapReduce-like hybrid-parallel
particle tracing framework, DStep [16], was proposed, which em-
ploys a two-layer synchronous communication to improve scala-
bility. Further LASP [11] andeFLAA [12] redesigned the DStep
framework [16] for Lagrangian-based attribute space projection and

ensemble �ow analysis, respectively. In this work, we modify the
DStep framework [16] to generate high-order access dependencies,
and we demonstrate their advantages in both full-range and local-
range analyses by a task-parallel particle tracing framework with
high-order data prefetching.

3 HIGH-ORDER ACCESS DEPENDENCIES IN UNSTEADY
FLOW FIELD

The pipeline of our work is illustrated in Figure 1. In our approach,
we �rst trace pathlines in a preprocessing stage in order to compute
the high-order access dependencies. The raw data is partitioned into
small blocks indexed by their spatiotemporal locations, which are
also units in the computation of high-order access dependencies.
For each block, the high-order access dependencies are computed
according to the pathlines starting from this block. The data ac-
cess patterns then are recorded in high-order access dependencies
permanently.

The high-order access dependencies support more accurate pre-
dictions of next data accesses in pathline computation because of
the higher data locality achieved. Many unsteady �ow visualiza-
tions can take advantage of the computed high-order access depen-
dencies. In this work, we apply a parallel particle tracing frame-
work that performs high-order data prefetching for ef�cient pathline
computation. When advecting pathlines, the next data accesses can
be predicted and prefetched with higher accuracy compared with
the �rst-order access dependencies-based method (called the �rst-
order method for short). Details are described in Section 4.

3.1 Basics of High-Order Access Dependencies

The theoretical and mathematical foundation of high-order access
dependencies can be modeled with a high-order Markov chain [25].
A Markov chain is a mathematical system that describes a series of
states and the transitions from one state to another. The conditional
probabilities associated with state transitions are called transition
probabilities. For a high-order Markov chain, the next state not
only depends on the current state but also relies on the past states.
In our work, accessing one data block is called onedata access,
which is similar to the de�nition of a state in a Markov chain.

Suppose there aren+ 1 data accesses,B1; B2; : : : ; Bn; Bn+ 1.
Among them,B1; B2; : : : ; Bn� 1 are the historical data accesses,Bn
is the current data access, andBn+ 1 is the next data access. In previ-
ous methods based on �rst-order access dependencies [10, 5, 3, 13],
the next data access and historical data accesses are independent.
The relationship between these data accesses is formulated as

P(Bn+ 1 = b j Bn = bn; Bn� 1 = bn� 1; : : : ; B1 = b1) =
P(Bn+ 1 = b j Bn = bn); (1)

which means that the next data access depends only on the cur-
rent data access in �rst-order access dependencies. In high-order
access dependencies, however, the historical data accesses are also
taken into account to guide more accurate prediction of the next
data access. Similar to transition relationships between states in a
high-order Markov chain, we have the following equation for the
mth-order access dependencies(m> 1):

P(Bn+ 1 = b j Bn = bn; Bn� 1 = bn� 1; : : : ; B1 = b1) =
P(Bn+ 1 = b j Bn = bn; Bn� 1 = bn� 1; : : : ; Bn� m+ 1 = bn� m+ 1);

(2)

which means the next data access is determined by both the histor-
ical (m� 1) data accesses and the current data access.

Figure 2 illustrates the difference between a �rst-order and high-
order (second-order in the �gure) access dependency model. In
the directed graphs, each node represents a data access, and each

Unsteady Flow
Data

...

U(t,z,y,x)
V(t,z,y,x)
W(t,z,y,x)
...

t=2

U(t,z,y,x)
V(t,z,y,x)
W(t,z,y,x)
...

t=1

Pathlines of Flow
Field

Parallel Particle
Tracing

Data Entry
Storage

High-Order Access
Dependencies

Preprocessing Applications

key=Òid_1Ó

value=Ò...Ó

depens={...}

key=Òid_0Ó

value=Ò...Ó

depens={...}

...

Figure 1: Pipeline of our work. In the preprocessing stage, particles are uniformly seeded and traced by the input of the raw �ow data. The high-
order access dependencies are further computed according to the generated pathlines. We further integrate high-order access dependencies
into data blocks. A parallel particle tracing framework that performs high-order data prefetching is employed to demonstrate that our method
achieves better ef�ciency than that of the �rst-order metho d.

(a) (b)

1 2 3

50% 30%
20%

00

31 2

4 5

80%
20%

0

3 1 2 3

4 5

90%
10%

0

Figure 2: Comparison between the (a) �rst-order and (b) seco nd-
order access dependencies using graph models.

edge represents the dependency between two data accesses. In Fig-
ure 2(a), node 0 has an access-dependent relationship with three
neighboring nodes 1, 2, and 3. Thus, there are three different prob-
abilities for a particle to continue advecting from node 0. In Fig-
ure 2(b), according to the historical data access, the number of prob-
abilities of next data access is reduced to two. If the historical data
access is node 4, we can consider just nodes 1 and 2 as the next pos-
sible data accesses and ignore node 3. If the historical data access
is node 5, nodes 2 and 3 are taken into consideration while node 1
is ignored. The prediction accuracy is improved when integrating
the historical data access information.

3.2 High-Order Access Dependency De�nition

In high-order access dependencies, the next data access dependson
both the historical data accesses and the current data access. Ac-
cording to Equation 1, we de�ne onemth-order access dependency
(m> 1) formally as

�
Bpm� 1; Bpm� 2; : : : ; Bp1; Bc

	 p
�! Bf ; (3)

whereBpm� 1; Bpm� 2; : : : ; Bp1 are them� 1 (m > 1) data blocks
accessed in the past,Bc is the current data block, andBf is the data
block that may be accessed in the immediate future.p is the ac-
cess transition probability fromBpm� 1; Bpm� 2; : : : ; Bp1 andBc to
Bf , which generally represents the probability that a particle trav-
els fromBpm� 1; Bpm� 2; : : : ; Bp1 andBc to Bf . In other words, a
high-order access dependency provides the prediction of the next
data access with certain probability according to the historical and
current data access information.

The number of high-order access dependencies for a data block
is dominated by the variety of historical and next data access in-
formation. In the preprocessing stage, the high-order access depen-
dencies of each data block all will be computed.

3.3 High-Order Access Dependencies Computation

Given an unsteady �ow data, the entire data domain is evenly parti-

(a) (b) (c)
Figure 3: Illustration of (a) forward pathlines and (b) backward path-
lines. In (c), the forward and backward pathline seeded in the same
position are considered as one pathline.

tioned into blocks, each containing an equal-size spatial range with
sequential timesteps. Particles are uniformly seeded in different po-
sitions within each data block. Because the historical access infor-
mation is also needed in high-order access dependencies, tracing
particles along one direction all the time is no longer applicable.
Instead, each particle is traced in both forward and backward di-
rections starting from the same seed position. The corresponding
pathline generated is calledforward pathlineandbackward path-
line, respectively. Step by step, forward pathlines are traced by
increasing the time while backward pathlines are traced by decreas-
ing the time. Figure 3 shows forward and backward pathlines. The
forward and backward pathline seeded in the same position can be
considered as one pathline that integrates both historical and next
access information, as shown in Figure 3(c).

There are several strategies to reduce the preprocessing time
when tracing pathlines. Because high-order access dependencies
are generated according to the data access information recorded in
pathlines rather than the pathlines themselves, we do not need to
trace complete and accurate pathlines. For a forward pathline, when
it travels from the originating block to next block, the advection is
stopped, because we want to know only which is the next data ac-
cess. For a backward pathline, the number of blocks it traveled
should not be larger than the order of access dependencies which is
speci�ed in advance. During pathline tracing, the �rst-order Runge-
Kutta (RK1) instead of an RK4 method can be used, and the step
size can be set relatively larger.

Considering the current data block, all pathlines including for-
ward and backward pathlines started from this block are gathered
for the computation of corresponding high-order access dependen-
cies. The data access information has been recorded in these path-
lines. As illustrated in Figure 3(c), we merge each pair of forward
and backward pathlines that are seeded in the same position to form
a new pathline. For the merged pathlines, excluding the originating
block, the data blocks accessed by corresponding backward path-
lines are considered as the historical access information, while the
blocks accessed by corresponding forward pathlines are seen as the
possible access information in the immediate future.

historical nextcurrent

key = (2, 1)

dependencies = {
 { (2, 1) } -> (3, 1), 66.7%;
 { (2, 1) } -> (2, 0), 33.3%;
 { (2, 2), (2, 1) } -> (3, 1), 100%;
 { (1, 1), (2, 1) } -> (3, 1), 50%;
 { (1, 1), (2, 1) } -> (2, 0), 50%;
 { (0, 1), (1, 1), (2, 1) } -> (3, 1), 75%;
 { (0, 1), (1, 1), (2, 1) } -> (2, 0), 25%;
 { (1, 0), (1, 1), (2, 1) } -> (2, 0), 100%;
}

1st-order access dependencies :
 { (2, 1) } -> (3, 1), 66.7%;
 { (2, 1) } -> (2, 0), 33.3%;

(a) (b)

(c)

2nd-order access dependencies :
 { (2, 2), (2, 1) } -> (3, 1), 100%;
 { (1, 1), (2, 1) } -> (3, 1), 50%;
 { (1, 1), (2, 1) } -> (2, 0), 50%;

3rd-order access dependencies :
 { (0, 1), (1, 1), (2, 1) } -> (3, 1), 75%;
 { (0, 1), (1, 1), (2, 1) } -> (2, 0), 25%;
 { (1, 0), (1, 1), (2, 1) } -> (2, 0), 100%;

(d)

(2, 2)

(2, 1)

(1, 1)

(0, 1)

(1, 0)

(3, 1)

(2, 0)

0 1 2 3 4

0

1

2

Figure 4: 2D example to show the computation of �rst-order an d
high-order access dependencies. (a) The nine pathlines originated
from block (2, 1); (b) The graph model of access dependencies
recorded in the pathlines from (a); (c) The individual access depen-
dencies from 1st- to 3rd-order of block (2, 1); (d) The 3rd-order “ac-
cumulated” access dependencies of block (2, 1), which include all
access dependencies with 1st, 2nd, and 3rd order.

In order to generate access dependencies with speci�ed order
m (m> 1), the merged pathlines with the amount of historical ac-
cessed blocks equal tom� 1 are taken into account. Because the
historical access information of these pathlines may still be differ-
ent, we cluster these pathlines into groups. For the pathlines in
each group, the historical access information is the same, but the
probabilities of the next data access may be various. Suppose there
aren probabilities of the next data access in total, in our method,
each possible next data accessBfi associated with the same access
history Bp (short for the sequence ofBpm� 1; Bpm� 2; : : : ; Bp1) and
current accessBc corresponds to one high-order access dependency.
The corresponding access transition probabilitypi is de�ned as the
ratio between the number of pathlines traveling to this next block
and the total number of pathlines traveling from the same historical
blocks to all possible next blocks, formally

pi =
Nf Bp; Bcg! Bfi

å n
k= 1Nf Bp; Bcg! Bfk

; i = 1; 2; :::; n: (4)

The computation of �rst-order and high-order access dependencies
with a 2D example is shown in Figure 4.

In the preprocessing stage, the order is speci�ed before tracing
pathlines. To make full use of pathlines, we calculate all access
dependencies with the order lower than the speci�ed value, and we
store them using the data structure implemented by Google proto-
buf library1. For example, if the order is set tom(m> 1), the access
dependencies with orderm; m� 1; : : : ; 1 are all computed. With
this approach, the access dependencies with different orders can be
employed in real applications after only one round of computation
of a speci�ed order. In the rest of this paper, the high-order access
dependencies mean this kind of “accumulated” access dependen-
cies unless otherwise noted. An example is shown in Figure 4(d).

3.4 Parameter Evaluation

Two important parameters in�uence the effectiveness of the gen-
erated high-order access dependencies. One is the block size. A
suitable block size setting is important, because it may affect the

1http://code.google.com/p/protobuf

Order
5th4th3rd2nd1st

85

80

75

P
re

ci
si

on
 (

%
)

90

8 ! 8
7 ! 7
6 ! 6
5 ! 5
4 ! 4

Figure 5: Prediction precision of next data accesses under different
block size and order settings using simple 2D synthetic data.

prediction accuracy of high-order access dependencies and the cost
in preprocessing. It also has strong effects on the number of I/O
requests and the memory footprint in runtime applications. The
second vital parameter is the order. Theoretically it would be bet-
ter to use a higher order to achieve more accurate prediction of next
data accesses. However, the computation of higher-order access de-
pendencies will induce a larger cost in the preprocessing stage. On
the other hand, the prediction accuracy do not always increase as
the order increases. Figure 5 shows the precision of predicting next
data accesses tested by simple 2D synthetic �ow data with a reso-
lution of 70� 70 under different block size and order settings. The
value of the prediction precision is calculated by dividing the total
number of hit (i.e., correct prediction) blocks by the total number of
blocks all particles have traveled when tracing pathlines randomly
in the entire domain. With each block size setting, the precision in-
creases as the order increases. But when the order is high enough,
the precision becomes stable gradually because few particles have
enough historical access information to contribute a higher preci-
sion. Therefore, it is important but also dif�cult to select a proper
level of border for these parameters to balance the gain in predic-
tion accuracy and the computational cost in real applications. This
issue is discussed in Section 5.

4 PARALLEL PARTICLE TRACING WITH HIGH-ORDER AC-
CESS DEPENDENCIES

We apply high-order access dependencies to parallel particle tracing
to demonstrate the effectiveness of our method. The parallel com-
putation framework is a modi�ed version of Guo et al.'s work [13],
which employs a two-layer cache scheme for task-parallel path-
line advection in an out-of-core manner with limited computing
resources. In our work, high-order data prefetching is employed
to improve I/O ef�ciency. The high-order access dependencies are
calculated only in the preprocessing stage. No access dependencies
will be newly generated during runtime pathline advection, unlike
Guo et al.'s work [13].

4.1 Structure of Data Entry

The high-order access dependencies constructed in the preprocess-
ing stage are independent of the storage of data. When performing
data prefetching, the data and the high-order access dependencies
are both required. To avoid accessing them in different �les, we in-
tegrate high-order access dependencies into data blocks during data
partition in the application of parallel particle tracing.

In our method, each block corresponds to a data entry in the
storage. The data entry maintains the information of the block
itself and the high-order access dependencies associated with it.
Formally, based on the traditional model of key-value store, the
structure of each data entry is organized as<key, value,
dependencies> , where key and value represent the spa-
tiotemporal index and the actual data of corresponding block, re-
spectively. In a data entry,dependencies consists of the high-
order access dependencies associated with the corresponding block.

According to Equation 3, eachmth-order access dependency
(m > 1) in dependencies that is associated with the data en-

(a) (b)
0 1 2

0

1

2
key=(0,0)

value=Ò...Ó

dependencies={
Ê{(0,0)}
ÊÊ->(0,1) ,(1,0),...;Ê
Ê...
}

key=(0,1)

value=Ò...Ó

dependencies={
Ê{(0,0),(0,1)}
ÊÊ->(1,1) ,(0,2),...;Ê
Ê...
}

key=(1,1)

value=Ò...Ó

dependencies={
Ê{(0,0),(0,1),(1,1)}
ÊÊ->(2,1) ,(1,2)...;Ê
Ê...
}

key=(2,1)

value=Ò...Ó

dependencies={
Ê{(0,0),(0,1),(1,1),
ÊÊ(2,1)}-> (2,2) ,...;Ê
Ê...
}

,1)}
depe

key=(2,2)

value=Ò...Ó

dependencies={
Ê{(0,0),(0,1),(1,1),
ÊÊ(2,1),(2,2)}->...;Ê
Ê...
}

1st level 2nd level 3rd level 4th level

Figure 6: Recursive prefetching of multiple data entries at a time. In this example, we set the prefetching depth to four and prefetch only one
data block at each prefetching depth level. When requesting block (0, 0), blocks (0, 1), (1, 1), (2, 1) and (2, 2) will be predicted one by one and
are then prefetched together. At each prefetching depth level, the historical access information is updated.

try indexed by akeycan be formulated as

f keym� 1; : : : ; key2; key1; keyg
p

�! key0; (5)

wherekeym� 1; : : : ; key2; key1 are the indices of them� 1 historical
accessed data blocks,key0is the index of the data block possibly ac-
cessed next, andp is the access transition probability. Because the
same historical access information may correspond to various prob-
abilities of the next data access, themth-order access dependency
(m> 1) can be further expressed as

f keym� 1; : : : ; key2; key1; keyg ! key01; key02; : : : ; key0n; (6)

wherekey01; key02; : : : ; key0n are the indices of then probabilities of
data blocks that may be accessed next. For convenience, these keys
are sorted in descending order of access transition probability. In
dependencies of each data entry, all associated access depen-
dencies are structured by using an unordered map for fast retrieve.

4.2 Runtime Data Prefetching

In runtime applications, particles are assigned evenly to processes
and are advected in a task-parallel mode. Each process maintains
a cache with least-recently used (LRU) policy, and onlykey and
value parts of data entry (i.e., the own information of data block)
are kept in the cache. During pathline computation, the correspond-
ing data is loaded on demand from the disk according to the block
that the particle currently sits. When loading a data entry that is
not in the cache, a prefetch request is issued. By using the exact
historical data accesses of the particle to match the high-order ac-
cess dependencies independencies of the loaded data entry,
the indices of data blocks that have a higher access transition prob-
ability than others are found. These blocks are considered as the
next possible accessed blocks and are then prefetched together at
a time. In practice, a particle may not have enough historical data
accesses to match the access dependencies with the speci�ed order.
In this case, we use the whole historical access information to do
the matching. When the number of historical data accesses is equal
to or larger than the order, we use the latest access information. The
number of historical data accesses used is always controlled to be
no more than the order. This is also the reason that we compute all
access dependencies with the order lower than a speci�ed value in
the preprocessing stage.

We can specify the maximum depth of prefetching in order to
prefetch multiple data blocks at a time for the next few advection
steps rather than just one step in the immediate future. The data
entries are prefetched recursively by a breath-�rst search according
to the high-order access dependencies independencies . The
prefetched result at the lower prefetching depth level is taken as
a part of new historical access information to guide the prefetch-
ing at the higher prefetching depth level. On the other hand, ac-
cording to Expression 6 that there may be more than one possible
data blocks to be accessed next, we can also prefetch multiple data

(a) (b)
Figure 7: The (a) Isabel dataset and (b) GEOS-5 dataset used in our
experiments.

blocks with higher probability than others at each prefetching depth
level. So a prefetch request actually consists of two parameters, i.e.,
the prefetching depthD and the number of blocks prefetched at each
prefetching depth levelN. The total number of blocks prefetched
at a time for a prefetch request is the product of these two param-
eters, i.e.,D � N. Figure 6 shows an example of high-order data
prefetching. In this example, only one block with highest probabil-
ity is prefetched at each prefetching depth level. Theoretically, in
order to ensure that the required data is hit, prefetching more blocks
seems to be necessary. However, loading too much data at a time
will incur a large number of I/O requests and decrease the data us-
age because of the �nite-size memory in each process. In Section 5,
we evaluate and discuss these parameters.

5 RESULTS

In this section, we present the evaluation results. Two datasets are
used: Isabel (Figure 7(a)) and GEOS-5 (Figure 7(b)). The Isabel
data is a hurricane simulation from the National Center for Atmo-
spheric Research in the United States. The spatial resolution of
this dataset is 500� 500� 100, which covers a physical range of
2;139 km� 2;004 km� 19:8 km. There are 48 timesteps, which
are hourly saved in separated �les. The GEOS-5 simulation is an
atmospheric model from the NASA Goddard Space Flight Center.
This model has a spatial resolution of 1� � 1:25� with 72 vertical
pressure levels ranging from 1 atm (near to the terrain surface) to
0.01 hPa (about 80 km). The output of this model consists of 24
monthly averaged simulation results from January 2000 to Decem-
ber 2001 and is stored in hybrid-sigma pressure grid.

We test the performance and scalability on a cluster with a par-
allel computing environment. The platform consists of eight com-
puting nodes, one I/O node, and a RAID6 disk array that includes
sixteen 2TB HDDs. Each computing node is equipped with two In-
tel Xeon E5520 CPUs (operating at 2.26GHz) and 48GB RAM. A
Lustre parallel �le system is shared by the I/O node to the comput-
ing nodes. The intercommunication link between nodes is In�ni-
Band QDR, which has a 40Gbps theoretical bandwidth.

5.1 Preprocessing

In the preprocessing stage, we calculate high-order access depen-
dencies by employing a redesigned MapReduce-like parallel com-

Dataset Dimension Data Size # Blocks Storage Overhead Time Cost
1st 2nd 4th 6th 1st 2nd 4th 6th

Isabel 500� 500� 100� 48 13.4GB 2,425,059 72MB 0.9GB 5.7GB 20GB 230s 515s 622s 736s
GEOS-5 288� 181� 72� 24 1.34GB 171,396 6MB 54MB 388MB 1.2GB 22s 38s 43s 51s

Table 1: Properties and preprocessing performance of two datasets used in our experiments. In the columns of storage overhead and time cost,
the four numbers represent 1st-, 2nd-, 4th-, and 6th-order access dependencies, respectively.

(a)

1st-Order
2nd-Order
4th-Order
6th-Order

65.9%

65.0%

58.9%

46.7%

58.6%

56.2%

47.0%

34.0%

(b)

70

467.4
288.9

250.5

213.3
84.5

52.7

43.7
39.8 37.0

1st-Order
2nd-Order
4th-Order
6th-Order

5 10 2
Running!Time!-!Isabel

Processes
6432168

102

10

T
im

e!
(s

ec
on

ds
)

220.7

Data!Usage!-!Isabel

Processes
6432168

60

50

40

30

20

P
er

ce
nt

ag
e!

(%
)

60

Data!Usage!-!GEOS-5

Processes
6432168

80

70

60

P
er

ce
nt

ag
e!

(%
)

90

1st-Order
2nd-Order
4th-Order
6th-Order

(d)

85.3%
85.0%

84.2%

82.8%

66.5%
68.3%

69.4%

Running!Time!-!GEOS-5

Processes
6432168

102

10

T
im

e!
(s

ec
on

ds
)

156.6
139.8125.1
117.8

116.8 68.5
62.3

57.8
53.9

(c)

2 10 2

1st-Order
2nd-Order
4th-Order
6th-Order

Optimal!Scaling
No!prefetching

Optimal!Scaling
No!prefetching

Figure 8: Running time and data usage of full-range analysis with dif-
ferent numbers of processes. Here the number of blocks prefetched
at each prefetching depth level is initially speci�ed as one .

puting framework [16]. For each dataset, a block is set to contain
8� 8 � 8 � 1 cells (9� 9 � 9 � 2 grid size). Seeds are placed per
2 � 2 � 2 � 1 grids in each block. Table 1 shows the preprocess-
ing performance of both datasets with 64 processes, including the
storage overhead and time cost for the computation of access de-
pendencies with different orders. The number of access dependen-
cies directly relates to the number of blocks and the characteristics
of �ow �eld. As mentioned in Section 3.3, it is unnecessary to
trace complete and accurate pathlines, which largely reduces the
cost in the preprocessing stage. Note that the preprocessing is done
only once for each dataset, and the generated high-order access de-
pendencies are reusable for further various applications of pathline
tracing.

5.2 Runtime Performance

In our experiments, both full-range and local-range analyses are
performed on two datasets by using the parallel particle tracing
framework. The cache in each process is set to 1GB, which can
accommodate 61,624 Isabel blocks and 45,996 GEOS-5 blocks, re-
spectively. For prefetching parameters, we choose the prefetching
depth as two for Isabel and �ve for GEOS-5 because of differ-
ent data properties, and the number of blocks prefetched at each
prefetching depth level is evaluated. We explore the bene�ts of
high-order (second-, fourth-, and sixth-order) access dependencies
in parallel pathline computation and compare them with two base-
line methods: the �rst-order method and the method without data
prefetching.

5.2.1 Full-Range Analysis

The full-range analysis gives an overview distribution of the �ow
�eld. Because particles are uniformly seeded over the entire �eld,
the I/O requests in the full-range analysis are always intensive. We
place 6,250 seeds evenly in the domain and advect particles for each
dataset. Initially, we specify the number of blocks prefetched at
each prefetching depth level as one, which means the data block

(a)
Processes

T
im

e
(s

ec
on

ds
)

Running Time - Isabel

6432168

102

10

Data Usage - Isabel

6432168

60

50

40

30

20

Optimal Scaling

N = 1
N = 2

5!10 2

325.4

213.3

37.0

59.8

(b)

Processes

P
er

ce
nt

ag
e

(%
)

N = 1
N = 2

65.9%

70

48.6%

58.6%

39.4%
41.9%

32.1%

N = 3

N = 3

380.9

70.7

Data Usage - GEOS-5

Processes
6432168

90

70

60

50

40

30

P
er

ce
nt

ag
e

(%
) 80

(d)

N = 1
N = 2
N = 3

85.3%

71.7%

66.6%

69.4%

47.1%

40.0%

Running Time - GEOS-5

Processes
6432168

102

10

T
im

e
(s

ec
on

ds
)

(c)

2!1 02

Optimal Scaling

N = 1
N = 2
N = 3

146.1

116.8

134.4

67.6
61.3

53.9

Figure 9: Running time and data usage of the sixth-order method
in full-range analysis when the number of blocks prefetched at each
prefetching depth level N is different.

with highest probability will be selected.
The performance results under different numbers of processes

are displayed in Figure 8(a) and 8(b). The scalability is shown to
be good as the number of processes increases. For both datasets,
we can clearly see that the running time decreases as the order in-
creases, which demonstrates that the high-order method achieves
better ef�ciency. We can also observe that the improvement rate of
ef�ciency decreases gradually when the order changes to be higher.
The result is compatible with the discussion in Section 3.4 that the
prediction precision becomes stable as the order increases to a cer-
tain level. In this experiment, the optimal order for Isabel is sixth.
For GEOS-5, the curves that represent the fourth- and sixth-order
methods almost coincide with each other. Considering the prepro-
cessing cost, the fourth-order method is determined to be optimal
for this dataset.

For further exploration, we compare the usage of prefetched data
between different-order methods. The data usage is the percentage
of prefetched data that is really used. With higher data usage, less
data will be loaded because the data is more likely to be used in-
stead of being replaced by new data. Therefore, the data usage
has great impact on the I/O cost. Figures 8(c) and 8(d) show that
using higher-order access dependencies achieves higher prefetched
data usage. As a result, for Isabel, compared with the �rst-order
method that loads around 0.38 million data entries, the highest-
order method saves about 15% data entries to read from the stor-
age. Thus, our method can reduce I/O requests, and improve the
ef�ciency of pathline computation.

From these results, we notice that the improvement of perfor-
mance and data usage from the �rst-order method to higher-order
method for GEOS-5 is not as signi�cant as that for Isabel. In the
best case, the sixth-order method saves 31.1% and 55.6% time for
Isabel compared with the �rst-order method and the method with-
out data prefetching, respectively. The corresponding time savings
for GEOS-5 are just 16.5% and 25.4%. Actually, the effectiveness
of high-order access dependencies largely depends on the variety

(c)

78.0%
77.8%

74.8%

(d)

Running Time - GEOS-5

Processes
6432168

102

10

1st-Order
2nd-Order
4th-Order
6th-Order

Optimal Scaling
No prefetching

T
im

e
(s

ec
on

ds
)

2!10 2

72.6

71.9
38.5

36.734.8

34.6

103.2

45.4

82.0

Data Usage - Isabel

Processes
6432168

70

60

50

P
er

ce
nt

ag
e

(%
)

(b)

80

1st-Order
2nd-Order
4th-Order
6th-Order

77.7%

77.0%

73.4%

66.6%

68.2%

67.0%

61.6%

53.1%

Running Time - Isabel

Processes
6432168

10

T
im

e
(s

ec
on

ds
)

102

(a)

1st-Order
2nd-Order
4th-Order
6th-Order

Optimal Scaling
No prefetching

26.7

22.3

20.0
18.6

17.8

98.180.6
72.4

67.264.3
76.8

Data Usage - GEOS-5

Processes
6432168

70

60

50

P
er

ce
nt

ag
e

(%
)

1st-Order
2nd-Order
4th-Order
6th-Order

80

76.9%

62.4%

60.9%

63.6%

Figure 10: Running time and data usage of local-range analysis
with different numbers of processes. Here the number of blocks
prefetched at each prefetching depth level is initially speci�ed as one.

of historical access information. If pathlines started from one data
block always share common historical data accesses, there will be
no distinction between the �rst-order and high-order access depen-
dencies which are generated according to these pathlines. In our
experiments, the number of high-order access dependencies gen-
erated from GEOS-5 is much less than that from Isabel. This is
also the reason that the difference of data usage for GEOS-5 be-
tween �rst-order and higher-order methods is small, as shown in
Figure 8(d).

We also compare the timings and data usage of prefetching dif-
ferent numbers of blocks at each prefetching depth level. Figure 9
shows the corresponding results of the sixth-order method. We can
see that the performance and data usage of prefetching multiple
blocks at each prefetching depth level are even worse than that of
prefetching one block for both datasets. The reason is that at each
prefetching depth level, only one data block is required for the next
advection of a particle. Prefetching more blocks will induce larger
number of I/O requests and much lower data usage, therefore reduc-
ing the ef�ciency of the pathline computation. So for the number of
blocks prefetched at each prefetching depth level, the optimal value
is one.

5.2.2 Local-Range Analysis

The local-range analysis provides a local visualization and anal-
ysis for �ow �elds, which is typically used in source-destination
queries [16]. Different from full-range analysis, particles are re-
quired to be seeded in a speci�ed spatiotemporal domain, thus in-
creasing the probability of particles passing through the same data
blocks during advection. In our experiment, we randomly select a
region and trace 4,096 pathlines starting from this region for each
dataset. We use the same prefetching strategy initially as in the
full-range analysis.

Figure 10 shows the performance results with different numbers
of processes. Similar to the results shown in Section 5.2.1, our
method always achieves higher performance compared with the
�rst-order method and the method without data prefetching. As
shown in Figure 11, for local-range analysis, prefetching more than
one blocks at each prefetching depth level also decreases the data
usage and is infeasible for improving the ef�ciency. In this ex-
periment, the optimal order is also sixth for Isabel and fourth for
GEOS-5.

(b)(a)

(d)(c)

Running Time - Isabel

Processes
6432168

10

T
im

e
(s

ec
on

ds
)

N = 1
N = 2

Optimal Scaling
N = 3

102

64.3

76.2

87.5

28.6

24.6

17.8

Running Time - GEOS-5
102

Processes

T
im

e
(s

ec
on

ds
)

6432168
10

N = 1
N = 2

Optimal Scaling

71.9

34.6

80.4

37.9

87.9

40.9

N = 3

Data Usage - GEOS-5

Processes

P
er

ce
nt

ag
e

(%
)

80

6432168

70

60

50

40

30

N = 1
N = 2

78.0%

58.8%

63.6%

43.7%

N = 3

52.3%

37.9%

Data Usage - Isabel

Processes
6432168

70

60

50

40

30

P
er

ce
nt

ag
e

(%
)

80

N = 1
N = 2
N = 3

77.7%

65.1%

58.1%

68.2%

52.4%

45.5%

Figure 11: Running time and data usage of the sixth-order method in
local-range analysis when the number of blocks prefetched at each
prefetching depth level N is different.

We can also see that the improvement of performance and data
usage in Figures 10(a) and 10(c) is smaller than that in Figures 8(a)
and 8(c). For example, with 8 processes, the full-range analysis of
Isabel saves 26.2% time in the sixth-order method compared with
the �rst-order method, whereas the local-range analysis saves only
20.2% time. The corresponding increases of data usage are 19.2%
and 11.1%, respectively. Unlike full-range analysis that spreads
particles over the entire domain, in local-range analysis particles
are originated from a local region and advected in a relatively con-
centrated area. Usually, the data prefetched inaccurately by one
particle is more likely to be used by other neighboring particles be-
fore being dumped. Hence, the ef�ciency of the high-order method
in local-range analysis is not as signi�cant as in full-range analysis.
This is always reasonable (e.g., in the experiments of Isabel). How-
ever, for datasets with less dispersive �ow characteristics to gener-
ate enough valuable high-order access dependencies, this difference
between full-range and local-range analyses is not so apparent, as
shown in Figures 10(b), 10(d) and Figures 8(b), 8(d) for GEOS-5.

5.3 Discussions

By taking the historical access information into account, high-order
access dependencies enable more accurate predictions of data ac-
cess patterns than the �rst-order access dependencies. With higher
data locality achieved by high-order access dependencies, pathline
computation for various visualization applications becomes more
ef�cient. In our experiments, both full-range and local-range anal-
yses can bene�t from high-order access dependencies and achieve
higher performance than the �rst-order method does.

In addition to the impact of the dataset itself on high-order access
dependencies, there are two other limitations in our work. First,
in order to obtain more comprehensive high-order access depen-
dencies, the preprocessing stage requires tracing a large number of
pathlines uniformly in the domain, which makes it time-consuming.
For large-scale unsteady data, preprocessing will spend even more
time. Therefore, better seeding strategies that sample smaller num-
ber of seeds while maintaining the effectiveness of high-order ac-
cess dependencies are worth further study.

The second limitation concerns the selection of parameters. The
block size and prefetching depth are two parameters that impact
the performance of our experiments. As mentioned in Section 3.4,
achieving optimal parameter settings is dif�cult. Because we focus
on the analysis of fractal �ow patterns, the block size should not be

too large. However, the block size should also not be too small. A
smaller block size setting leads to a larger number of blocks par-
titioned, which greatly increases the time and storage costs in the
preprocessing stage. For the prefetching depth, a large value results
in overwhelming the bandwidth [27, 13]. In addition, because data
blocks are prefetched recursively based on previous predictions, the
accuracy will decrease gradually as the prefetching depth increases.
In our experiments, we empirically choose different parameter set-
tings for the two datasets according to the data properties. We will
study the parameters and their relationship to further improve the
ef�ciency of high-order access dependencies.

6 CONCLUSIONS AND FUTURE WORK

In this work, we exploit the advantages of high-order access depen-
dencies for ef�cient unsteady �ow visualization. The historical ac-
cess information is integrated to support more accurate predictions
of data access patterns, thus greatly improving the data locality. We
apply high-order access dependencies to a parallel particle tracing
framework with high-order data prefetching for pathline computa-
tion. Results demonstrate that our method achieves better ef�ciency
in both full-range and local-range analyses than the �rst-order ac-
cess dependencies-based method does.

We would like to extend our work to support irregular and un-
structured grid data for more complex visualization tasks. Cur-
rently, the high-order access dependencies are directly associated
in data blocks that are stored in random order. To achieve better
I/O ef�ciency, we would like to reorganize the data according to
the high-order access dependencies for sequential data access.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments. This work
is supported by NSFC No. 61170204 and partially by the Strate-
gic Priority Research Program - Climate Change: Carbon Budget
and Relevant Issues of the Chinese Academy of Sciences Grant
No. XDA05040205. This work is also supported by the U.S. De-
partment of Energy, Of�ce of Science, under contract number DE-
AC02-06CH11357.

REFERENCES

[1] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp. Parallel
I/O prefetching using MPI �le caching and I/O signatures. InSC08:
Proceedings of the ACM/IEEE Conference on Supercomputing, pages
44:1–12, 2008.

[2] B. Cabral and L. C. Leedom. Imaging vector �elds using line integral
convolution. InProceedings of SIGGRAPH 1993, pages 263–270,
1993.

[3] C.-M. Chen, B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Flow-
guided �le layout for out-of-core pathline computation. InProceed-
ings of IEEE Symposium on Large Data Analysis and Visualization
2012, pages 109–112, 2012.

[4] C.-M. Chen and H.-W. Shen. Graph-based seed scheduling for out-of-
core FTLE and pathline computation. InProceedings of IEEE Sym-
posium on Large Data Analysis and Visualization 2013, pages 15–23,
2013.

[5] C.-M. Chen, L. Xu, T.-Y. Lee, and H.-W. Shen. A �ow-guided�le lay-
out for out-of-core streamline computation. InProceedings of IEEE
Paci�c Visualization Symposium 2012, pages 145–152, 2012.

[6] L. Chen and I. Fujishiro. Optimizing parallel performanceof stream-
line visualization for large distributed �ow datasets. InProceedings of
IEEE Paci�c Visualization Symposium 2008, pages 87–94, 2008.

[7] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp. Hiding I/O
latency with pre-execution prefetching for parallel applications. In
SC08: Proceedings of the ACM/IEEE Conference on Supercomputing,
pages 40:1–10, 2008.

[8] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and
C. Ware. Surface-based �ow visualization.Computers & Graphics,
36(8):974–990, 2012.

[9] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Ef�cient computa-
tion and visualization of coherent structures in �uid �ow applications.
IEEE Computer Graphics and Applications, 13(6):1464–1471, 2007.

[10] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C. H. Bischof.
VIRACOCHA: An ef�cient parallelization framework for large-scale
CFD post-processing in virtual environments. InSC04: Proceed-
ings of the ACM/IEEE Conference on Supercomputing, pages 50:1–
12, 2004.

[11] H. Guo, F. Hong, Q. Shu, J. Zhang, J. Huang, and X. Yuan. Scalable
Lagrangian-based attribute space projection for multivariate unsteady
�ow data. In Proceedings of IEEE Paci�c Visualization Symposium
2014, pages 33–40, 2014.

[12] H. Guo, X. Yuan, J. Huang, and X. Zhu. Coupled ensemble �ow
line advection and analysis.IEEE Transactions on Visualization and
Computer Graphics, 19(12):2733–2742, 2013.

[13] H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng,
and J. Pan. Advection-based sparse data management for visualiz-
ing unsteady �ow.IEEE Transactions on Visualization and Computer
Graphics, 20(12):2555–2564, 2014.

[14] G. Haller. Distinguished material surfaces and coherent structures
in three-dimensional �uid �ows. Physica D: Nonlinear Phenomena,
149(4):248–277, 2001.

[15] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross. To-
ward a general I/O layer for parallel-visualization applications. IEEE
Computer Graphics and Applications, 31(6):6–10, 2011.

[16] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson.
Simpli�ed parallel domain traversal. InSC11: Proceedings of the
ACM/IEEE Conference on Supercomputing, pages 10:1–11, 2011.

[17] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and
D. Weiskopf. The state of the art in �ow visualization: denseand
texture-based techniques.Computer Graphics Forum, 23(2):203–222,
2004.

[18] K. Lu, H.-W. Shen, and T. Peterka. Scalable computation of stream
surfaces on large scale vector �elds. InSC14: Proceedings of the
ACM/IEEE Conference on Supercomputing, pages 1008–1019, 2014.

[19] T. McLoughlin, R. Laramee, R. Peikert, F. Post, and M. Chen. Over
two decades of integration-based, geometric �ow visualization. Com-
puter Graphics Forum, 29(6):1807–1829, 2010.

[20] C. Müller, D. Camp, B. Hentschel, and C. Garth. Distributed parallel
particle advection using work requesting. InProceedings of IEEE
Symposium on Large Data Analysis and Visualization 2013, pages 1–
6, 2013.

[21] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka. Par-
allel particle advection and FTLE computation for time-varying �ow
�elds. In SC12: Proceedings of the ACM/IEEE Conference on Super-
computing, pages 61:1–11, 2012.

[22] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-balanced parallel
streamline generation on large scale vector �elds.IEEE Transactions
on Visualization and Computer Graphics, 17(12):1785–1794, 2011.

[23] T. Peterka, R. B. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. A study of parallel particle tracing for
steady-state and time-varying �ow �elds. InIPDPS11: Proceedings
of IEEE International Symposium on Parallel and Distributed Pro-
cessing, pages 580–591, 2011.

[24] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch. The
state of the art in �ow visualization: Feature extraction and tracking.
Computer Graphics Forum, 22(4):1–17, 2003.

[25] A. E. Raftery. A model for high-order Markov chains.Journal of the
Royal Statistical Society. Series B (Methodological), pages 528–539,
1985.

[26] H.-W. Shen and D. L. Kao. UFLIC: a line integral convolution algo-
rithm for visualizing unsteady �ows. InProceedings of IEEE Visual-
ization 1997, pages 317–322, 1997.

[27] R. Sisneros, C. Jones, J. Huang, J. Gao, B.-H. Park, and N. F. Sam-
atova. A multi-level cache model for run-time optimization of re-
mote visualization.IEEE Transactions on Visualization and Computer
Graphics, 13(5):991–1003, 2007.

[28] H. Yu, C. Wang, and K.-L. Ma. Parallel hierarchical visualization
of large time-varying 3D vector �elds. InSC07: Proceedings of the
ACM/IEEE Conference on Supercomputing, pages 24:1–12, 2007.

