
Access Pattern Learning with Long Short-Term Memory for Parallel

Particle Tracing

Fan Hong1 Jiang Zhang1 Xiaoru Yuan1,2*

1) Key Laboratory of Machine Perception (Ministry of Education), and School of EECS, Peking University, Beijing, China
2) Beijing Engineering Technology Research Center of Virtual Simulation and Visualization, Peking University, Beijing, China

ABSTRACT

In this work, we present a novel access pattern estimation approach
for parallel particle tracing in flow field visualization based on deep
neural networks. With strong generalization ability, we develop
a Long Short-Term Memory (LSTM)-based model, which is ca-
pable of learning accurate access patterns with only a few train-
ing samples and representing the learned patterns with small stor-
age overhead. Equipped with prediction and prefetching functions
driven by the developed model, our parallel particle tracing frame-
work employs CPUs and GPUs together for particle tracing tasks.
We demonstrate the accuracy and time efficiency of our approach
with various flow visualization applications in three different flow
datasets.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Scientific visualization;
Computing methodologies—Machine learning—Machine learning
approaches—Neural networks

1 INTRODUCTION

In flow visualization and analysis, particle tracing is one of the most
fundamental techniques. Many applications require massive tracing
of field lines, such as source-destination analysis [19], finite-time
Lyapunov exponent (FTLE) computation [15], field line or surface
rendering [8], etc. However, particle tracing is very computational-
expensive, especially for large and complex unsteady flow fields.
When the data cannot fit into the machine memory, tracers have
to either load data from external storage or communicate with other
tracers to exchange data. Existing studies have shown that I/O costs
could take up to 90% of the computation time, due to the compli-
cated and intricate data access patterns which are hard to predict.

To reduce I/O costs in particle tracing, one key idea is to improve
data locality while advecting seeds [4–6]. Data access pattern mod-
eling is one type of solutions for this purpose. Access dependencies
between data blocks are usually considered, that is when a particle
has already visited a block or some blocks, which block it probably
moves to. After estimating the access dependencies, data locality
can be improved with feasible techniques, such as file layout reor-
ganization [4,5], finer data management [14], data prefetching [29],
etc. However, it is a non-trivial task to obtain an accurate estimation
of the access dependencies.

Among the existing methods [4, 14, 29], frequency-based ap-
proaches are usually used. In the simplest case, these approaches
assume the probability of accessing one data block only depends on
the previously visited block, which is named as 1st-order dependen-
cies [29] or 1-hop transitions [4]. When advecting a particle, 1st-
order dependencies is capable of predicting the next visiting block
based on the probability distribution bound to its current resided

*Xiaoru Yuan is the corresponding author. e-mail: {fan.hong,

jiang.zhang, xiaoru.yuan}@pku.edu.cn.

block. To make the prediction more accurate, high-order depen-
dencies are considered, i.e. the probability of accessing one block
depends on more than one passed blocks. Due to the lack of gen-
eralization, all valid cases have to be recorded with their transition
probabilities, which causes a large storage overhead. As reported,
the storage of 6th-order dependencies can be larger than the original
data in certain flow fields [29].

In this work, we propose a new approach to model data access
patterns with Long Short-Term Memory (LSTM) which has strong
generalization capability. LSTM is a kind of recurrent neural net-
works (RNNs) [10, 17] which allow forward and backward connec-
tions between neurons. General RNNs are not suitable for handling
long-term dependencies because of the gradient vanish problem [1].
Instead, LSTM architecture remembers values over arbitrary inter-
vals. LSTM aims at learning representation with long-term depen-
dencies from sequences for tasks such as speech recognition [30],
machine translation [7], and text generation [27], and has already
achieved incredible success. As for the access pattern estimation
task in particle tracing, LSTM can naturally involve all historic foot-
prints of particles as sequences and estimate their access dependen-
cies. Our LSTM-based model can learn access dependencies with
fewer sampled data and represent them with a neural network of
smaller storage.

We further develop a parallel particle tracing framework with pre-
diction and prefetching functions driven by our model. We sample
several pathlines by placing seeds in the domain, and feed them
to train our LSTM-based model. Data access dependencies are
learned through the training process. In parallel particle tracing, our
model is employed for data block prefetching to reduce I/O costs.
Given the passed blocks of particles, the next blocks are predicted
with a high accuracy and are prefetched in advance. In addition,
since the trained model are deployed in GPUs, our framework is
a new manner of combining CPUs and GPUs together for particle
tracing tasks.

Although the basic idea of employing LSTM to learn from se-
quences is natural, the concrete solution for particle tracing tasks
is non-trivial. Deep learning models are famous for their high per-
formance in various applications, but they are built upon the good
quality of training data and suitable network architectures. These
challenges also apply to our tasks. First of all, caution must be
taken to prepare our data by transforming the original particle tra-
jectories, i.e. spatiotemporal coordinates, to the sequences fed to
the model. It is desirable that more original information is directly
fed into the model. But it requires a larger capacity of the model,
which could make the training time unendurable or the network un-
allocable. In our approach, we derive the sequences of movements
between blocks instead of original blocks for usage, which greatly
reduces the size of the model.

Furthermore, the network architecture needs careful design as
well as its hyper-parameters. The network is built around the LSTM
layer to accept transformed sequences and to generate probabilities
of the next movements. We conduct experiments to explore the
design space of model hyper-parameters and give an adequately
excellent configuration. Our experiments with various flow visu-

alization applications have shown that the data access patterns can
be learned with high accuracy. The learned patterns then drive ef-
fective prefetching and improve time efficiency in parallel particle
tracing.

In summary, the novelty and contributions of our paper include:

• An LSTM-based model to learn access patterns in particle
tracing, which obtains comparable accuracy to previous ap-
proaches but using fewer training samples and smaller storage
overhead;

• A time-efficient particle tracing framework with prefetching
driven by our model, which is also a novel form of CPU/GPU
collaboration for particle tracing tasks.

In the remainder of this paper, we review the background of this
work in Section 2. In Section 3, we introduce our LSTM-based
model in detail and evaluate its hyper-parameters. Section 4 de-
scribes the parallel particle tracing framework with the prediction
and prefetching functions driven by our model. Results are shown
in Section 5 to demonstrate the effectiveness and efficiency of our
approach. At last, we give some discussions on our approach and
present our conclusion.

2 RELATED WORK

We first review literature related to particle tracing and data access
patterns in flow fields. Then we introduce the background concern-
ing deep learning and LSTM.

2.1 Particle Tracing and Data Access Patterns

Particle tracing is a fundamental technique to retrieve integral
curves in flow fields visualization and analysis. As the data in-
creases to a large scale, particle tracing becomes an inevitable bot-
tleneck [18]. Parallel computation is an efficient solution. Three
parallel strategies are usually adopted, i.e. task-parallelism, data-
parallelism, and hybrid-parallelism. Task-parallelism mainly fo-
cuses on the workload balance across different tracers [22, 24, 26],
while data-parallelism focuses on the data partition [6, 23]. More
recently, hybrid-parallelism becomes popular [2, 21]. DStep [19] is
a MapReduce-like particle tracing framework, which has become
one of the most scalable methods. Some flow analysis methods are
built on DStep [12, 13] to improve their scalability and efficiency.
There are a few works combining CPUs and GPUs for tracing com-
putation, whose idea is to involve GPUs for the integration com-
putation [3, 25]. Camp et al. [3] conducted a study to access the
benefits and limitations brought by GPUs.

Besides parallel computation, access patterns estimation is an
effective way to improve the performance of particle tracing. It
can work with or without parallel computation. In particle trac-
ing, block access dependencies are usually considered as the access
patterns, i.e. the behavior of particles moving from blocks to other
blocks. Access dependency graph is widely used to optimize data
storage [5], to provide sparse data management [14], to prefetch
data [29], or to dynamically balance workload [24]. Their purpose
is to improve data locality in particle tracing, so that I/O cost is
reduced.

In this work, we adopt a neural network model to learn data ac-
cess patterns in flow fields. Our results show that our approach has
achieved an excellent estimation for access dependencies. We fur-
ther employ our model to drive prediction and prefetching functions
for out-of-core particle tracing to reduce I/O costs. Our approach
also embodies a new form of CPU/GPU collaboration, where the
learning model is deployed on GPUs for access pattern predictions.

2.2 Deep Learning and LSTM

Deep learning is part of machine learning methods aimed at learn-
ing data representations with deep neural networks. Deep learning
architectures have been applied to various fields, and have achieved

results which are comparable or even superior to human experts. In
this work, we are interested in a special type of deep learning archi-
tectures, named recurrent neural networks (RNNs) [20]. Compared
to classical feed-forward neural networks, RNNs allow connections
between neuron units to form a directed cycle, which enables them
to represent dynamic temporal behaviors. Long short-term mem-
ory (LSTM) is one type of RNNs, which has achieved state-of-
the-art performance in speech recognition [30], machine transla-
tion [7], text generation [27], etc. The key part in LSTM is the
memory unit, which is capable of keeping values for arbitrary time
periods without iterative modification [10, 17]. This property gives
LSTM models the ability of remembering, which makes it very suit-
able for learning from temporal sequences. There exist some varia-
tions of LSTM, like peephole LSTM [9] and Gated Recurrent Unit
(GRU) [7]. However, none of the variants can improve upon the
standard LSTM architecture significantly [11]. There is also some
sophisticated usage of LSTM being proposed, such as seq2seq [28]
and Encoder-Decoder [7]. We do not use these models mainly for
two reasons: our target problem does not involve the “translation”
between two different sequences, instead, only prediction tasks in
one sequence; and the intermediate representation could cause in-
formation loss compared to the direct usage.

In this work, we make a novel adoption of LSTM for the esti-
mation of access patterns in particle tracing. Exploration on the
mapping from particle trajectories to sequences data and the model
architectures are made, without prior experience in this problem.
We believe it is the first work which employs deep learning tech-
niques to tackle the challenges in particle tracing.

3 LSTM-BASED LEARNING MODEL FOR DATA ACCESS DE-
PENDENCIES

In the following, we present the technical details of our LSTM-
based model for access patterns estimation. We first present how we
formulate the access pattern estimation problem into a classification
problem that could be effectively handled by machine learning mod-
els, and the according data transformation. We discuss the rational-
ity behind our choices at the same time. Then, we introduce the ba-
sics of Long Short-Term Memory (LSTM) and technique details of
our neural network model built upon the LSTM layer. We provide
a description of the model architecture, and how we train and test
it. At last, we conduct experiments to evaluate hyper-parameters
related to our model.

3.1 Mapping from Particle Trajectories to Sequences

The particle trajectories are naturally sequences of real-valued coor-
dinates, but they are infeasible to be directly fed to a machine learn-
ing model. There are a few choices must be made when preparing
our data for the model. In the following, we present how the par-
ticle trajectories are mapped to sequences of movements and the
rationality of our choices. Meanwhile, the access patterns estima-
tion problem is formalized as a classification problem.

3.1.1 Continuous or discrete data type?

The first choice we have to make is the type of data fed to the model.
For the data access patterns problem in flow fields, we usually con-
sider the access dependencies between blocks. Previous approaches
also manipulate data from the level of blocks, either for file lay-
out reorganization, data sparse management, or for data prefetching.
Therefore, we expect our learning model to process blocks directly.
Under such precondition, the access pattern estimation problem be-
comes a classification problem: for one particle, given the history
of its passed blocks, we expect our model to predict which block
the particle will enter next. Although working with real-valued co-
ordinates may also be used to predict blocks, it demands higher
precision for the model. For example, if the predicted coordinates
have small errors near the borders between blocks, the prediction of

blocks could be totally wrong. Therefore, we decide to transform
the coordinates sequences into block sequences, in which blocks
are identified using block indices. In a 3D unsteady flow field, the
block indices are tuples of 4 integers, where 3 for spatial indices
and 1 for timestep.

3.1.2 Sequences of blocks or movements?

The block sequences still have difficulty being directly processed
by a learning model, because the number of unique blocks in an
unsteady flow field data is usually too large. For example, in the
Hurricane Isabel dataset with a domain size of 500×500×100 and
48 timesteps, there are 1,200,000 blocks if we set the block size
to 10× 10× 10. It means a classification problem of 1,200,000
classes, which is rarely seen in classical machine learning prob-
lems. Such a huge number will make the predictions very difficult
and turn the number of parameters in the model to be very large. A
large number of parameters will make it formidable to train such a
model, due to either unendurable training time or large GPU mem-
ory occupation.

0 1 2 3 4 5 6 7

0

1

2

3

S(0,2) (0,1) (1,0) (1,0) (1,0) (0,-1) (0,-1) (-1,0) (-1,0) (0,1) (1,0)

S(6,1) (-1,0) (0,1) (0,1) (1,0) (1,0) (0,-1) (0,-1) (-1,0) (-1,0)

S(7,1) (-1,0) (0,-1) (-1,0) (-1,0) (-1,0) (-1,0) (-1,0) (0,1) (-1,0)

(7,1) (6,1) (6,0) (5,0) (4,0) (3,0) (2,0) (1,0) (1,1) (0,1)

Figure 1: An illustration of the mapping from particle trajectories to
sequences. The passed block sequence of the blue particle is trans-
formed to a sequence of movements prepended by its seeding block.
The passed blocks of the yellow and green particles are totally differ-
ent, but their movement sequences share a common subsequence
highlighted in red boxes.

In our approach, we transform the block indices sequences into
movement directions sequences. We consider how particles move
from one block to its neighboring blocks. Figure 1 gives an illustra-
tion of our approach using a 2D flow field without the time dimen-
sion. One particle moves from one block to one of its neighboring
8 blocks, if the current block is not on the boundary of the domain.
The differences of the block indices are used to recognize this move-
ment. There are only 8 different cases in normal situations. In a
3D domain, 26 different movements happen. If time dimension in-
volved, the number is doubled plus one, since the particle either
stays in the same timestep or proceeds to the next one. There are
rare cases where a particle moves so fast to pass through neighbor-
ing blocks and reaches other blocks, due to a large integration step
and a small block size. The number of different movements could
increase to hundreds. Yet, it is still a significant reduction compared
to original block indices-based representation.

One additional benefit of the movement representation is that
indirect access dependencies of blocks could be learned. For ex-
ample, in Figure 1, yellow and green particles start from different
blocks, but show similar swirling movements. In their movement

representations, they share a common subsequence (highlighted in
red boxes) representing such swirling patterns. Existing works have
shown that LSTM-based models can learn these patterns effectively,
since they are explicitly exposed in the sequences. In the prediction
phase, if an unseen particle shows similar swirling behaviors, al-
though not exactly in the same blocks, the model can still predict
its movement well. In contrast, in previous approaches, the access
patterns are strictly bound to block indices. It is impossible for
them to transfer the access dependencies learned from particles in
one block to those in another block.

3.1.3 All information preserved?

Although the movement representation described above can greatly
reduce the storage or time cost of the model, not all information
of particles is preserved, if compared with the block indices-based
representation. From only the movement sequence of one parti-
cle, it is not possible to restore the whole block indices sequence
of its history. To overcome this limitation, we prepend the indices
of seeding blocks of particles to their movement representations.
In the Figure 1, the seeding blocks are represented using “S” plus
the block indices. The passed blocks of one particle can be fully
restored by accumulating the movements on its seeding block se-
quentially. This makes sure that no information is lost after our
mapping compared to the original block sequences.

Under the above choices we have made, particle trajectories are
mapped to movement representations for the model training and
inference phases.

3.2 Basics of Long Short-Term Memory (LSTM)

LSTM is one kind of recurrent neural networks (RNNs), which is
very unlike feed-forward neural networks. In feed-forward neural
networks, information flows only in one direction, from the input
neurons, passes through hidden neurons if any, to the output neu-
rons. There is no direct relations between the outputs from different
inputs. In contrast, RNNs are able to maintain certain information
by forming cycles between neurons. However, general RNNs are
not suitable for handling long-term dependencies because of the gra-
dient vanish problem [1]. LSTM is one type of RNN architectures,
in which a special memory unit is used to maintain information ex-
tracted from previous inputs. The stored values are not modified as
the learning proceeds, so LSTM can learn long-term dependencies
from the sequences. The maintained information or the stored val-
ues are denoted as hidden states in our following description. As
hidden states involved, when the items of a sequence are fed to an
LSTM network sequentially, the outputs are actually determined by
not only the current item but also all items prior to it.

x
i

y
i

h
i

x
0

y
0

h
0

x
1

y
1

h
1

x
n

y
n

h
n

unroll

...

Figure 2: Illustration of an LSTM network, and its unrolled view.

Figure 2 gives the illustration of an LSTM network and its un-
rolled view. The unrolled view shows how an LSTM processes a
sequence. Inside an LSTM, there are complex structures, such as in-
put, output, forget gates, and their computations, to enable the func-
tions of remembering and forgetting. These structures are simpli-
fied as the hidden states hi of LSTM units in the illustration, which
we will not give mathematic details. We introduce the behaviors of
LSTM from the high level.

We denote the input sequence as x = {x0,x1, · · · ,xn}. At the be-
ginning, the hidden states of the LSTM are randomly initialized or

just set to 0. When it accepts input item x0, its hidden states change
to h0. Then, as the input item x1 comes, the hidden states update to
h1. This procedure continues until all items in the sequence are pro-
cessed. We obtain a sequence of hidden states h = {h0,h1, · · · ,hn}.
The update mechanism, i.e. the parameters of LSTM, is learned
through the training process. From the hidden state sequence h, the
output sequence is derived using certain functions, which we de-
note as y = {y0,y1, · · · ,yn}. Therefore, each yi is decided together
by the inputs x0,x1, · · · ,xi, and the initial hidden states h0. Note that
x(.),y(.) and h(.) are high-dimensional vectors with the same size.

The output sequence y can further be processed by other neural
layers for specific tasks. For example, if we want to adopt yi for
classification tasks, we can add several layers to transform yi to
probability distributions over the set of classes.

3.3 Model Architecture

With the data preparation discussed in the previous subsection, the
particle trajectories are formulated as sequences of movements plus
seeding block indices. All possible movements and seeding blocks
are denoted as Dm and Ds respectively. They make up a whole set
of possible elements in the sequences, which is called D. Remark
that, in our proposed learning model, the exact values of movements
or seeding blocks do not contribute to the computation. They are
treated as categorical values, so the model only needs to determine
whether two elements are identical or not.

[n×1] [n×embed_size] [n×hidden_size] [n×|D|] [n×|D|]

Embedding

Layer
LSTM

Layer
s

i

Linear

Layer

ReLu

Layer
SoftMax

Layer
P

i

Figure 3: LSTM-based network architecture used in our approach.
Sizes of input and output data are shown between layers.

Figure 3 gives an illustration of the network architecture of
our LSTM-based model. The input is a movement sequence s =
{s0,s1, · · · ,sn−1} with length n. At the beginning, every element
in the sequence is transformed into a real-valued vector through an
embedding layer. This is a necessary step because most neural lay-
ers handle numerical values only rather than categorical values. In
the embedding layer, all elements in the dictionary D are projected
into another space of embed size dimensions. However, the projec-
tion conducted here is different from those in other techniques like
principal component analysis (PCA) or multidimensional scaling
(MDS). In the embedding layer, the learned projection parameters
form a direct mapping from categorical values to real-valued vec-
tors, while PCA or MDS learn a transformation for original high-
dimensional data. Moreover, the embedding parameters are learned
together with other parameters in the model, rather than by analyz-
ing statistical features of data.

After the embedding layer, the sequences of high-dimensional
vectors are fed into an LSTM layer. The number of dimensions
of the hidden states in the LSTM layer is denoted as hidden size,
which is equal to embed size. As we have described in the previ-
ous subsection, the LSTM layer outputs a sequence of vectors of
hidden size dimensions corresponding to each item in the input se-
quence.

To transform the output of the LSTM layer for the classification
task on D, several layers are appended. A full-connected linear
layer transforms every item in the output sequence to a vector of
length |D|. Then a ReLU activation function, i.e. f (x) = max(0,x),
is further used to rectify those negative values to 0. Till now, the vec-
tors convey non-negative values, which can be treated as “weights”
for each element in D. At last, a softmax layer follows to rescale
these weights, so that they all lie in the range (0,1) and sum to 1.
Softmax is defined as fi(x) = exi/∑ j ex j , where xi is the component

in the original vector, and fi(x) is its transformed value. Therefore,
for each input item, its corresponding output vector is the probabil-
ity distribution Pi over all elements in D.

The size of the model can be further reduced to decrease the
training time and storage size. Since the next movements of par-
ticles are chosen from Dm only, we can calculate the probabilities
only for them. The output size of the linear layer and following
ReLU layer and SoftMax layer can reduce to n×|Dm|. But for the
embedding layer, we still need to process |D| elements.

In summary, our model accepts a sequence of the movement rep-
resentation s = {s0,s1, · · · ,sn−1}, and outputs a sequence of prob-
ability distributions P = {P0,P1, · · · ,Pn−1}. Due to the property of
the LSTM layer, each Pi is determined not only by si, but also by
s0,s1, · · · ,si−1. Therefore, under our mapping, the Pi stands for the
probability distribution of next movement conditioned by all previ-
ous movements and the seeding block. These probability distribu-
tions are further used in our parallel particle tracing framework for
data block prefetching.

3.4 Model Training and Testing

To train the model, a few particles are sampled from the orig-
inal flow field data. Their trajectories are transformed to se-
quences of movements and seeding blocks. Since we only need
the blocks/movements sequences rather than the original coordi-
nates for the training, these trajectories do not need to be very ac-
curate. They are generated with a relatively larger integration step
and less accurate integration method like 1st-order Runge-Kutta, so
the computation of the training samples is fast. We denote the se-
quence of one particle as s = {s0,s1, · · · ,sn}, where s0 ∈ Ds is the
seeding block index, while other si ∈ Dm represent the movements.
The model outputs vectors of probabilities of next movement, i.e.
{P0,P1, · · · ,Pn}, where Pi is the probability distribution over all
possible movements Dm. For each movement si where 0 < i ≤ n,
P(i−1)(si) is the probability of right prediction. Usually, negative

log-likelihood is used as the loss function, i.e. − log(P(i−1)(si)).
Then, for sequence s, the total loss is

Loss(S) = ∑
0<i≤n

− log(P(i−1)(si)).

Note that Pn is not involved into the loss function calculation, be-
cause no ground truth sn+1 provided.

In the training process, the optimizer calculates the sum of losses
using a specific set of training samples and derives its gradients on
model parameters. The learner then updates parameters based on
gradients with certain strategies. The total loss is expected to be
minimized after multiple iterations. Thanks to the highly devel-
oped deep learning frameworks, we no longer need to implement
the backward propagation algorithm, as well as its optimizer and
parameter learner. Instead, we only need to select suitable ones
from various options.

For the optimizer, mini-batch gradient descent is chosen, in
which only a small subset is chosen for total loss calculation. Com-
pared to stochastic gradient descent, where only one randomly
picked example is chosen in each iteration, fewer updates apply
to the model to keep computational efficiency. While compared to
the full-batch approach, the model’s update frequency is higher, al-
lowing a more robust convergence to avoid local minima. So mini-
batch gradient descent is a compromise of full-batch and stochastic
approaches. In our training process, the batch size is set to 200 to
balance convergence and training time. The number of epochs is
set to 10, that is the model goes through the whole training set 10
times. The current setting is sufficient to achieve good convergence
compared with smaller batch sizes or more epochs.

Together with mini-batch gradient descent, RMSProp (Root
Mean Square Propagation) is chosen as the learner for model pa-
rameters because of its recognized good performance. RMSProp

can automatically adjust the learning rate so that it keeps on the
same scale of the gradients. It has shown excellent adaptation of
learning rate in different applications.

In the testing process, we calculate the prediction accuracy
through a validation dataset. Negative log-likelihood is not used
as the accuracy measure, although it is suitable for model training.
In the application scenario of data prefetching, it is possible that
multiple blocks are prefetched once a time based on the prediction
results. The probability of the hit is thus increased as unexpected
data fetching avoided. Therefore, from the probability distribution
Pi, one or multiple movements with top probabilities are extracted,
which we denote as the set predi. We then test if the next movement
is included in predi, i.e si ∈ predi−1. For each sequence s, the hit
ratio is defined as

hit ratio =
∑0<i≤n I[si ∈ predi−1]

n
, (1)

where I[·] is the indicator. For the whole test dataset, we take the
average of hit ratio as the measurement of the model performance.

3.5 Parameter Evaluation

There are lots of factors affecting the model performance, including
the hyper-parameters of the model, the quality and size of training
dataset, block size, and so on. Fully exploration of all possibil-
ities to obtain an optimal one is usually unrealistic. In classical
deep learning tasks, like image classification or object identifica-
tion, researchers have accumulated abundant experience for hyper-
parameter configurations. For us, learning access dependencies in
flow fields is a totally new scenario, where no previous works exist.
It is unknown whether existing experience or rules of LSTM-based
models or general deep learning models still apply to our scenario.
We extensively studied the influences of hyper-parameters, sizes of
training samples, and block sizes under our current network archi-
tecture, and report our results in the following. The accuracy is
measured using hit ratio in Equation 1. We use the Hurricane Is-
abel dataset as an example to demonstrate our evaluation process.
Isabel data has a domain of size 500×500×100 and 48 timesteps.
We only consider particle trajectories seeding at the first timestep.

3.5.1 Number of training samples

Usually, a larger training dataset could give better performance, but
may also cause overfitting. As in our application scenario, since
our overall goal is to accelerate particle tracing tasks, using a large
number of samples is undesirable in the preprocessing stage. We
intend to find a balance between these two aspects. We sample two
sets of particles trajectories from flow fields. One set contains par-
ticle trajectories with uniformly located seeds. For the Hurricane
Isabel dataset, we partition it into blocks of size 10× 10× 10, and
use the trajectories seeding at the center of these blocks. There are
25,000 trajectories in total. It makes sure that the training samples
cover the domain roughly to avoid uncovered regions. The other set
of trajectories are randomly sampled in the whole domain without
duplicates to increase the number of training samples. In our exper-
iments, the model performance is tested under different numbers of
samples.

The results are shown in Figure 4(a). We observe from the re-
sults that with more training data, the hit ratio is not guaranteed
to improve. Although with 1,025,000 samples the model obtains
the best hit ratio, the accuracies of other options are very close.
Only for 525,000 samples, the model performs slightly worse. One
reason could be the similarities between training samples. Classi-
cal machine learning applications usually require the training sam-
ples to be as diverse as possible to improve the model performance.
While in our scenarios, the diversity of particle trajectories are lim-
ited due to the spatial coherence. The results indicate that modifi-
cation of the network architecture is required for further extracting

Block size vs. hit ratio

#predictions

H
it

 R
at

io
 (

%
)

54321

95

85

75 5x5x5
8x8x8

12x12x12
10x10x10

15x15x15
65

#predictions

H
it

 R
at

io
 (

%
)

#training samples vs. hit ratio

54321

65

75

85

95
Hidden size vs. hit ratio

#predictions

H
it

 R
at

io
 (

%
)

54321

32
64

256
128

512

(d)

(a) (b)

70

80

90

70

80

90

#layers vs. hit ratio

50

70

60

80

90

#predictions
(c)

54321

H
it

 R
at

io
 (

%
)

60

75,000
125,000

525,000
225,000

1,025,000

60

65

75

85

95

70

80

90

60

1 layer

2 layers

4 layers

3 layers

5 layers

Figure 4: Hit ratios under different numbers of predictions using the
model of different (a) numbers of training samples, (b) hidden sizes
of the LSTM layer, (c) numbers of stacked LSTM layers, and (d) block
sizes.

useful information from large training sets. Considering both the
experiment results and the generalization ability, though smaller
training sets can also give good results, we decide to use 1,025,000
sampled trajectories for future experiments. It is only 32% of the
training samples used in high-order work [29], but can achieve com-
parable accuracy as shown in Section 5.

3.5.2 Width and depth of LSTM layer

In neural network architectures, especially convolutional neural net-
works (CNNs) in image-related tasks, wider and deeper networks
usually brings better performance, though sophisticated designs are
required. We would like to study whether the width and depth affect
our network performance. In the LSTM layer, the width denotes the
size of hidden states, i.e. hidden size, of the LSTM layer. A larger
hidden size means higher-dimensional vectors are used to store the
information extracted from the data. At the same time, multiple
LSTM layers can also be stacked to increase its depth. The output
sequences of one LSTM layer are not directly used for tasks. In-
stead, they are fed to another LSTM layer as inputs. It is possible
that additional layers learn higher levels of abstraction of the data.
But as for our tasks, it is still unknown what a wider and deeper
LSTM layer could bring to the performance.

Figure 4(b) and (c) show results of the hit ratio of different sizes
of hidden states and different numbers of stacked LSTM layers. As
for the hidden sizes, we observe there are no significant differences
between the options. A hidden size of 256 is slightly better, while
smaller hidden sizes give almost the same performance. When
the hidden size increases to 512, the hit ratio starts to drop visi-
bly. From the accuracy of training and validation sets, we think the
reason could be the overfitting, which is a common issue of deep
learning architectures with wide layers. Since the difference is not
significant in our testing, we just choose the option 256. For the
numbers of layers, we can observe the hit ratio drops when more
layers stacked. Especially, when stacking 4 or 5 layers, there is al-
most 10% drop compared to using 1 layer. Overfitting could still be
the reason, as the training samples may not provide more informa-
tion for the network to extract due to their limited diversity. Even

in classical applications, like image recognition, some works [16]
have reported that deeper networks do not always bring better per-
formance, instead, degradation could be introduced. Based on the
above results, we decide to choose 1 LSTM layer. The shorter train-
ing time is also its advantage.

3.5.3 Block size

Though the block size is not a direct hyper-parameter of the deep
learning model, it is an important factor in our overall approach.
Previous works [14, 29] have shown that block sizes influence the
final tracing performance greatly. The influence of the block size
to our model is even more complicated, since it affects not only the
precision of the model itself but also its input data and the usage
of its outputs. Modeling the trajectories with a small block size
preserves more precise information, so the model could be more
accurate. But a small block size requires the model to make more
accurate predictions, even with movement representations as par-
ticles could move beyond neighboring blocks. Besides, the input
sequences are also changed with different block sizes. Therefore, it
is necessary to investigate the influence of different block sizes

Figure 4(d) shows accuracy testing results under different sizes
of blocks. Different options produce larger differences than previ-
ous hyper-parameters. We find the block size of 8×8×8 gives bet-
ter accuracy. A large block size of 12× 12× 12 and 15× 15× 15
give very close results to the best option. But 10× 10× 10 gives
very bad accuracy, especially when the number of predictions is
less than 3. Overall, the results show no obvious correlation be-
tween the block sizes and accuracies, because their relations are
complicated as we have discussed in the last paragraph. For now,
we use a block size of 8×8×8 for the following usage.

From above experiments, we found that the block size influences
the performance most, the number of stacked LSTM layers takes
the second place, and other factors least. But for now, the network
architecture is fixed for simplicity. A complete design study involv-
ing variations of model architectures is desirable to obtain a better
understanding of deep learning models in our tasks. Right now, our
current configuration could reach a hit ratio of ∼ 76% with 1 pre-
diction for the Hurricane Isabel dataset. It matches the accuracy
achieved by the high-order work [29], but with fewer training sam-
ples and smaller storage. When the number of predictions increases
to 3, more than 90% of the particles’ movements are in the predic-
tion, which could avoid lots of unexpected data fetching in particle
tracing tasks.

4 DEEP LEARNING MODEL-DRIVEN PREFETCHING FOR

PARALLEL PARTICLE TRACING

Based on the proposed deep learning model, we further develop a
prefetching component and employ it for parallel particle tracing
computation. The parallel computation part is based on Zhang et
al.’s work [29] and Guo et al.’s work [14]. In Guo et al.’s work,
a two-layer cache scheme is proposed for task-parallel out-of-core
particle tracing with limited computation resources. The cost of
I/O requests is reduced greatly by the cache mechanism and the
prefetching based on 1st-order block access dependencies. In the
following Zhang et al.’s work, high-order dependencies, i.e. more
than one historical visited blocks, are used to predict and prefetch
future possible blocks. The data usage of prefetched blocks is im-
proved, so as the time efficiency.

Compared to the high-order work [29], our framework has two
major differences. The prediction part is now driven by our LSTM-
based model, which could involve the whole history of particles
for prediction. In addition, the learned patterns are represented and
stored with smaller storage overhead, so they can reside in (GPU)
memory in long-term. While in the high-order work, tracers have to
request disks frequently to retrieve high-order dependencies bound
to blocks. In addition, our framework combines CPUs and GPUs

for particle tracing, because the deep learning model is deployed
on GPUs to make predictions for particles. It is a new and potential
form of CPU/GPU collaboration for particle tracing tasks, where
only a small amount of data transferred between the main memory
and GPU memory.

4.1 Workflow

The overall workflow of our approach is similar with Zhang et al’s
work, so our introduction to the tracing framework is concise. The
workflow of our model-driven particle tracing framework is illus-
trated in Figure 5. The raw data is partitioned into blocks indexed
by spatiotemporal locations. In the preprocessing stage, a small set
of pathline samples are generated to train our LSTM-based model.
The configuration of the network and training process is chosen
based on the experiments described in the previous section. In the
application stage, when advecting particles, our model can predict
next blocks of particles based on their histories of passed blocks.
Tracers then prefetch blocks based on predictions. Since the I/O
requests and latency are reduced and hidden, the time efficiency of
parallel particle tracing is improved.

4.2 Runtime Particle Tracing with Prefetching

In the framework, particles are traced in a task-parallel way, i.e. the
particles are assigned to tracers evenly and are advected. In the
resource-limited scenario, data of blocks are loaded from disks and
cached into main memory when needed or prefetched, and purged
with a least-recently-used (LRU) policy. When one particle enters
a block whose data is not in the cache, a prefetch request is issued.
The historically passed blocks of this particle are transformed to se-
quences and fed into our model as described previously. Our model
then makes predictions of the next movement, and gives several
candidate blocks. These blocks are prefetched from disks together
at a time. Unlike high-order approaches, whose dependencies are
too large to be loaded into main memory all at once, our approach
needs no additional disk read operations for dependencies.

4.3 Implementation and Deployment of Our Model

The original particle tracing framework is implemented using
C/C++ language. While our LSTM-based model is implemented
in Python language using PyTorch1. To utilize our model for pre-
diction and prefetching in our framework, we glue them using the
C/C++ embedding feature of Python.

Our LSTM-based model is deployed on GPUs, where PyTorch
handles the data transfer between CPUs and GPUs. In our usage,
the transferred data only includes movements sequences (CPUs to
GPUs) and predicted movements (GPUs to CPUs), whose sizes are
very small. We can further save the transferred data as well as the
prediction time thanks to the property of LSTM. After our model
makes predictions for one particle, the hidden states of the model
are saved. When the particle needs prefetching the second time, it
surely passes more blocks. Thus, the model only needs to process
those new movements starting from the saved hidden states. Both
transferred data and prediction time is greatly reduced. Note that
these saved states still reside in GPU memory, so there is no data
transfer for them. To avoid the GPU memory to be filled by the
saved states, we purge those recently unused states every few sec-
onds.

5 RESULTS

In this section, we present the evaluation results of our approach on
various flow visualization applications. Three datasets are used in
the evaluation (Figure 6): Hurricane Isabel Dataset, GEOS-5 Simu-
lation Dataset, and Ocean Simulation Dataset. The Isabel data is a

1http://pytorch.org/

0 1 2 3 4 5 6 7

0

1

2

3

Training Pathlines Movement Sequences

S(0,3) (0,1) (1,0) (1,0) (1,0) ...

S(5,2) (-1,0) (0,1) (0,1) (1,0) ...

S(0,1) (1,0) (0,-1) (1,0) (1,0) ...

......
x

0

y
0

h
0

x
1

y
1

h
1

x
n

y
n

h
n

...

LSTM-based ModelUnsteady Flow Data
...

U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

...

t=2

U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

...

t=1

Preprocessing

Paralle Particle Tracing

Mapping TrainingTracing

Partial PathlinesPartial Pathlines Prefetched Blocks

Mapping Predicting

Inference

Tracing

Complete PathlinesSeeds

Tracing

Prefetch-

ing

Placing

Figure 5: Workflow of our parallel particle tracing framework with deep learning model-driven prediction and prefetching. The processing steps
in preprocessing and tracing stages are distinguished by colors of arrows.

hurricane simulation from the National Center for Atmospheric Re-
search in the United States. Its spatial resolution is 500×500×100.
There are 48 timesteps, which are hourly saved in separate files.
The GEOS-5 simulation is an atmospheric model from the NASA
Goddard Space Flight Center. The spatial resolution is 1°× 1.25°
with 72 vertical pressure levels contained. The data consists of 24
monthly averaged simulation results from January 2000 to Decem-
ber 2001. The Ocean data comes from global ocean simulation,
which has a very high spatial resolution of 1801×842 and 55 depth
levels. The temporal resolution is 1 day. We use 28-day of data for
our testing, whose size is about 27GB.

(a) (b) (c)

Figure 6: Three datasets used in our performance testing: (a) Hurri-
cane Isbael, (b) GEOS-5 Simulation, and (c) Ocean Simulation.

We test the runtime performance on a symmetric multiprocess-
ing node, with two Intel Xeon CPU E5-2650 v4 CPUs operating at
2.4 GHz supporting at most 24 processes or 48 threads with hyper-
threading. The node is equipped with 8 NVIDIA M6000 graphics
cards, with 3072 CUDA cores and 12GB memory each. The data is
stored in a local disk with 2TB capacity.

In our performance testing, we compare our approach with
two baseline methods, particle tracing without prefetching, and
prefetching with high-order dependencies [29], which we call it
high-order work for short in the following. For the high-order work,
4th-order dependencies are used for comparison, and we follow the
parameters reported in the paper. We choose 4th-order dependen-
cies only because they show closer runtime performance to our ap-
proach. But the required storage of 4th-order dependencies is much
larger (50× ∼ 230×) than our approach. 6th-order dependencies
can be even larger than the original data. In case the flow data is
very large, high-order approach could be prohibited due to its stor-
age cost. If we require the high-order work to use the same storage

as ours, its performance will be much worse than ours.

Our framework is designed for parallel computing environment
where each process obtains limited computing resources, i.e. main
memory and GPU memory. Unfortunately, we do not possess a
cluster of computation nodes, where each node is equipped with a
high-end graphics card, for our framework to deploy on. Therefore,
a symmetric multiprocessing node is employed, which could reduce
the communication and data read costs considerably. To make the
testing fair for two baseline methods, they are deployed on the same
platform for testing.

5.1 Preprocessing

In preprocessing, the hyper-parameter selection is conducted as de-
scribed in Section 3.6 for each dataset. The results is reported in Ta-
ble 1. In the test, more training samples are used for Isabel dataset
and Ocean dataset, because of their high spatial resolution. How-
ever, the average sequence length, which represents the average
blocks particles visit, in GEOS-5 dataset is the almost double of
that in Isabel dataset, because these two datasets have very differ-
ent time extents and time scale. Ocean dataset has smaller average
sequence length, due to the large block size which comes from its
large spatial resolution. Above two factors make the differences of
the storage and training time of the model. Comparing with the
high-order work, our method requires much fewer training samples
and costs much smaller storage overhead. For example, for Isabel
dataset, our trained model only occupies 53MB, while 4th-order
dependencies need 5.7GB, and 6th-order occupies 20GB, which is
even larger than the raw data. At the same time, our model only
uses about one third of the training samples in the high-order work
to obtain comparable accuracy.

5.2 Runtime Performance

In our experiments, we test both local- and full-range analyses
on three datasets using our model-driven parallel particle tracing
framework as shown in Figure 6. We measure the performance
from two aspects: running time and data usage. The data usage
is defined as the percentage of prefetched data really used. Unlike
the hit ratio defined previously, the data usage drops when using
more predictions, because only one block is expected to be really
used by the corresponding particle. However, the prefetched blocks

Table 1: Preprocessing results of Isabel, GEOS-5 and Ocean datasets.

Dataset Dimensions Data Size Block Size
#Training
Samples

Ave. Seq.
Length

Storage Training
Time

Ours 4th-order [29] 6th-order [29]

Isabel 500×500×100×48 13.4GB 8×8×8 1,025,000 51.1 53MB 5.7GB 20GB 6030.0s
GEOS-5 288×181×72×24 1.34GB 8×8×8 458,278 92.8 9.6MB 388MB 1.2GB 8148.9s
Ocean 1801×842×55×28 27GB 20×20×10 1,134,017 25.6 16MB 3.6GB 12GB 5999.8s

can be shared by other particles, which increases the data usage. In
the testing, we evaluate how the number of predictions influences
the running time and data usage. At the same time, we test how
the performance changes with increasing number of processes and
particles to investigate its scalability. In the evaluation, the cache
size of every process is set to 1GB, and the GPU memory for saved
hidden states is limited to 512MB per process.

5.2.1 Local-range Analysis

In the local-range analysis, seeds are densely placed in a lo-
cal region for visualization and analysis of flow fields. Source-
destination queries [19] is one typical local-range analysis. Since
the seeds are spatially neighbors, their visited blocks are expected to
be similar. In our experiments, we select a region and trace 500,000,
87,500, and 800,000 pathlines for three datasets respectively.

Isabel

#processes

T
im

e
 (

se
co

n
d

s)

50

40

150

100

150

200

GEOS-5

#processes

65

85

60

GEOS-5

#processes

(a) (b)

(e)

100

24168 484032

24168 48

Isabel

#processes

D
a

ta
 U

sa
g

e
 (

%
)

70

80

60

(d)

4032
50

60 24168 484032

70

80

24168 484032

75

no prefetch

#pred = 1

#pred = 2

optimal scaling

#pred = 3

high-order

#pred = 1

#pred = 2

#pred = 3

high-order

no prefetch

#pred = 1

#pred = 2

optimal scaling

#pred = 3

high-order

#pred = 1

#pred = 2

#pred = 3

high-order

Ocean

Ocean

#processes
(c)

#processes
(f)

75

100

150

60

24168 484032

no prefetch

#pred = 1

#pred = 2

optimal scaling

#pred = 3

high-order

60

70

80

24168 484032

#pred = 1

#pred = 2

#pred = 3

high-order

Figure 7: Local-range analysis results of running time (a-c) and data
usage (d-f) under different #processes.

Figure 7 shows the results of running time and data usage un-
der different #processes. From Figure 7(a-c), we can clearly see
that our approach shows significant performance improvement com-
pared to tracing without prefetching. Compared with the high-order
work, our approach shows slightly better time-efficiency. From Fig-
ure 7(d-f), the data usage of high-order approach is close to that of
our approach with 1 or 2 predictions in different datasets. Gen-
erally, higher data usage usually gives shorter running time, but
the prefetching mechanisms also influence the performance. High-
order work could be slowed down by more disk read operations. We
notice that there is a sharp turning of running time using 24 and 32
processes in our method and two baseline methods. This is caused
by the configuration of our computation node, as the hyperthread-
ing technique is used to support more than 24 processes. When the
number of threads is not large enough, the benefits brought by hy-
perthreading do not overcome its costs. However, we can observe,
except these points, our approach actually shows good scalability.

At the same time, we observe, with more predictions and
prefetched blocks once a time, the improvement of our approach is
not significant. The reason comes from the property of local-range

analysis, where the consistency of access patterns between particles
is already high. The data fetching costs cancel the benefits brought
by multiple predictions. From current results, 2 and 3 predictions
almost coincide with each other in terms of running time.

Isabel

#seeds

T
im

e
 (

se
co

n
d

s)

62,500 125,000 250,000 500,000

150

50

#seeds

80

75

70

Isabel

100

10

D
a

ta
 U

sa
g

e
 (

%
)

100

200

50

170,00021,250 42,500 87,500

GEOS-5

85

70

80

75

65

GEOS-5

#seeds

#seeds
(a) (b)

(d) (e)

62,500 125,000 250,000 500,000

#proc = 8

#proc = 16

#proc = 24

optimal scaling

#proc = 48

25

#proc = 8

#proc = 16

#proc = 24

#proc = 48

#proc = 8

#proc = 16

#proc = 24

optimal scaling

#proc = 48

65

#proc = 8

#proc = 16

#proc = 24

#proc = 48

350

90

170,00021,250 42,500 87,500

Ocean

Ocean

#seeds
(c)

#seeds
(f)

100

200

50

20

#proc = 8

#proc = 16

#proc = 24

optimal scaling

#proc = 48

1,600,000200,000 400,000 800,000

70

80

75

65
1,600,000200,000 400,000 800,000

#proc = 8

#proc = 16

#proc = 24

#proc = 48

Figure 8: Local-range analysis results of running time (a-c) and data
usage (d-f) under different #seeds.

In Figure 8, we further show the running time and data usage of
our approach under different #seeds. Because of the hyperthread-
ing issue, we skip the results with between 24 and 48 processes.
From Figure 8(a-c), linear or superlinear scaling is observed for
all datasets, even when the number of seeds is large. With more
seeds, prefetched blocks are reused by other seeds in a higher prob-
ability, which leads to better acceleration. The data usage plots in
Figure 8(d-f) give support to this explanation. As the number of
seeds raising, the data usage increases stably.

5.2.2 Full-range Analysis

Isabel

#processes

T
im

e
 (

se
co

n
d

s)

80

24168 48

40

150

Isabel

#processes

D
a

ta
 U

sa
g

e
 (

%
)

60

40

50

30

60

80

150

100

GEOS-5

#processes

70

80

60

GEOS-5

#processes

(a) (b)

(d) (e)

100

60

4032
20

24168 484032 24168 484032

24168 484032

40

no prefetch

#pred = 1

#pred = 2

optimal scaling

#pred = 3

high-order

#pred = 1

#pred = 2

#pred = 3

high-order

no prefetch

#pred = 1

#pred = 2

optimal scaling

#pred = 3

high-order

#pred = 1

#pred = 2

#pred = 3

high-order

Ocean

24168 484032

#processes
(c)

#processes
24168 484032

(f)

Ocean

300

800

500

100

50

70

30

no prefetch

#pred = 1

#pred = 2

optimal scaling

#pred = 3

high-order

#pred = 1

#pred = 2

#pred = 3

high-order

60

40

65

75

85

Figure 9: Full-range analysis results of running time (a-c) and data
usage (d-f) under different #processes.

In the full-range analysis, seeds are uniformly placed in the
whole domain with strides to give an overview distribution of the
flow fields. Since the spatial locations of seeds are widely dis-
tributed, their visited blocks are more different from each other than
in the local-range analysis. Reuse of prefetched blocks is thus weak-
ened under limited memory. In our experiments, seeds are placed
with strides of 20× 20× 10, 4× 4× 4, and 10× 10× 10 in three
datasets respectively.

Figure 9 shows the running time for all datasets and correspond-
ing data usage. From Figure 9(a-c), it it clear to see that our fetch-
ing function could improve the time efficiency greatly compared
to tracing without prefetching. Moreover, unlike local-range analy-
sis, with more predictions and prefetched blocks, the performance
continues increasing. Although, from Figure 9(d-f), the data us-
age starts at lower values and drop faster compared to those in
local-range analyses, the prefetched data still brings considerable
improvement of running time. This is because the full-range anal-
ysis is a more difficult task, so prefetching could bring greater ben-
efits. When using more processes, our approach still suffers from
the limitations of hyperthreading. However, the scalability is still
nearly linear, if not considering those points. As for the high-order
work, they give slightly better performance than ours in most cases.
But their data usage is lower than ours with 1 prediction in Isabel
data, and almost the same in GEOS-5 and Ocean data. The compu-
tation cost of model inference could increase the running time.

#proc = 8

#proc = 16

#proc = 24

optimal scaling

#proc = 48

Isabel

#seeds

T
im

e
 (

se
co

n
d

s)

6,250 12,500 25,000 50,000

800

100

#seeds

60

45

55

50

Isabel

500

50

D
a

ta
 U

sa
g

e
 (

%
)

50

100

30
29,160 58,320 116,640 233,280

GEOS-5

90

75

85

80

GEOS-5

#seeds

#seeds

400

(a) (b)

(d) (e)

#proc = 8

#proc = 16

#proc = 24

optimal scaling

#proc = 48

#proc = 8

#proc = 16

#proc = 24

#proc = 48

29,160 58,320 116,640 233,280

#proc = 8
#proc = 16
#proc = 24
#proc = 48

40
6,250 12,500 25,000 50,000

Ocean

Ocean

#seeds
(c)

#seeds
(f)

10,080 20,160 40,320 80,640

10,080 20,160 40,320 80,640

100

200

50

400

65

45

60

50

600 #proc = 8

#proc = 16

#proc = 24

optimal scaling

#proc = 48

55

#proc = 8

#proc = 16

#proc = 24

#proc = 48

Figure 10: Full-range analysis results of running time (a-c) and data
usage (d-f) under different #seeds.

We further test the running time and data usage of our approach
under different #seeds. As shown in Figure 10(a-c), in all datasets,
our approach shows excellent scaling. For Isabel dataset, the ac-
celeration is even more significant with 24 and 48 processes, and
so as the Ocean dataset. From the corresponding data usage plot
in Figure 10(d), we find that the increase of data usage helps a lot
to the acceleration. The reuse of prefetched blocks increases due
to more visiting blocks shared between particles, since seeds are
placed more densely. For the GEOS-5 dataset, it also shows super-
linear scalability. However, its acceleration becomes attenuated, as
well as the data usage shown in Figure 10(e). This is because the
data reuse is already high enough due to their data properties.

Comparing the results of local and full range analysis, we find
our approach shows slightly better performance in local-range anal-
ysis, while high-order outperforms a bit in full-range analysis.
Since the configurations of both approaches are fixed for each
dataset, this difference should come from the nature of both ap-
proaches. The generalization nature of our learning model makes it
more suitable for a bundle of neighboring particles, i.e. the situation
in local-range analysis, as it tends to learn and predict the common
behaviors of particles. While the honest recording nature of high-

order approach makes it predict more accurately for more separated
particles, i.e. the case in full-range analysis.

In summary, the experiments above have demonstrated that our
framework driven by the deep learning model can improve the time
efficiency significantly compared to tracing without prefetching.
Especially, the excellent scalability under different #seeds brought
by our prefetching function is very impressive. In addition, com-
pared with high-order work with 4th-order dependencies, our ap-
proach acquires adequate prefetching accuracy and data usage. Be-
cause of different prefetching mechanism, our approach achieves
better performance in local-range analysis, while high-order work
is slightly better in full-range analysis. However, our model can
achieve such high accuracy and improvements with fewer training
samples and much smaller storage overhead.

6 DISCUSSION

In this section, we mainly compare our LSTM-based model with
previous literature concerning data access patterns, and discuss mer-
its and limitations of our approach. We also give a discussion about
our approach from the aspects of the deep learning model.

The most significant difference is that our approach learns the
data access patterns through an LSTM-based deep neural network.
The learning ability means the capability of generalization. Our
approach benefits from the generalization from two aspects: fewer
training samples and small storage overhead, as shown in previous
sections. The generalization also brings some limitations, that is,
to avoid overfitting, the access patterns are not recorded honestly.
This property makes it achieve better performance when predicting
for groups of neighboring particles, such as the scenarios of local-
range analysis. Yet, we still believe with finer tuning, our model is
able to achieve better performance in the future.

Right now, the generalization of our LSTM-based model is lim-
ited to single datasets. Models are trained for different datasets sep-
arately. The main reason is the seeding block indices, which implic-
itly convey unique positional information of each dataset, involved
in the movement representation. A more universal representation
of initial conditions is desired if we want to train a unified model.
The overfitting problem we currently encounter is also expected to
be alleviated with more diverse datasets.

Our framework is also novel in terms of its parallel mechanism,
i.e. a new way of CPU/GPU collaboration for the particle tracing
task. The idea of previous approaches [3, 25] is to move the ex-
pensive integration computation from CPU cores to GPU cores.
However, massive data transfer is required from main memory to
GPU memory for integration. The poor data locality makes the I/O
costs even higher, since a same block of data could be transferred
to GPUs multiple times. While in our approach, only movement
sequences and predictions are transferred to GPUs, which allevi-
ates the data transfer burden greatly. We believe our approach can
inspire more time-efficient CPU/GPU collaboration in the future.

As the model itself, it is the first trial which adopts LSTM in par-
ticle tracing tasks to the best of our knowledge. Our target problem
is different from those classical applications. One significant dif-
ference is that the data dependencies estimation is just a sub-task of
particle tracing. The prediction accuracy of the model cannot reflect
the overall performance of our parallel framework directly. There-
fore, we need to prepare our data as the model inputs carefully, and
utilize the model outputs wisely, since they are also tightly bound to
the final performance. Besides, the diversity of training samples in
our application is limited due to spatiotemporal coherence, which
is less common in classical application. The experiment results in-
dicate that more sophisticated techniques should be employed to
squeeze more information to overcome overfitting.

As a new effort to deploy deep learning in flow visualization, al-
though we have explored the influence of several hyper-parameters,
our exploration is still very limited in considering the full space.

We have found the relations between parameters and the prediction
accuracy are complicated and behave different from those classical
applications. Right now, it is necessary to generate variations of pa-
rameters as many as possible and then to choose better options. Be-
sides, the neural network architecture is fixed in our work for now,
after considering the training time and required memory. We also
tried utilizing other types of layers, like batch normalization layers
or drop-out layers, into the network, but did not obtain significant
improvements. In the future, we can either systematically investi-
gate architecture variations or adopt more from the state-of-the-art
techniques [7, 9, 28]. Nonetheless, the capability and potential of
deep learning models has been successfully demonstrated in access
pattern estimation and particle tracing tasks.

7 CONCLUSION AND FUTURE WORK

In this work, we present an LSTM-based model to estimate access
patterns in particle tracing tasks, which is the first work of em-
ploying deep learning techniques to tackle flow visualization chal-
lenges. A parallel particle tracing framework with prefetching func-
tion driven by our model is further developed, where CPUs and
GPUs collaborate for the tasks. The effectiveness and potential of
our deep learning model has been demonstrated by various flow vi-
sualization applications.

In the future, we would like to explore more possibilities of our
method in two directions. The hyper-parameters of the model archi-
tecture, including the configurations in data mapping and training,
are worth a thorough design study. At the same time, we could try
more possibilities based on the learned patterns, such as file reor-
ganization, data partitioning, etc., to improve particle tracing tasks
and even general flow visualization.

ACKNOWLEDGMENTS

This work is supported by NSFC No. 61672055, the National
Program on Key Basic Research Project (973 Program) No.
2015CB352503, and the National Key Research and Development
Program of China (2016QY02D0304). This work is also supported
by PKU-Qihoo Joint Data Visual Analytics Research Center.

REFERENCES

[1] Y. Bengio, P. Y. Simard, and P. Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE Trans. Neural Net-

works, 5(2):157–166, 1994.

[2] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy. Parallel

stream surface computation for large data sets. In Proc. of IEEE Sym-

posium on Large Data Analysis and Visualization, pp. 39–47, 2012.

[3] D. Camp, H. Krishnan, D. Pugmire, C. Garth, I. Johnson, E. W.

Bethel, K. I. Joy, and H. Childs. GPU Acceleration of Particle Ad-

vection Workloads in a Parallel, Distributed Memory Setting. In Proc.

of Eurographics Symposium on Parallel Graphics and Visualization

(EGPGV), pp. 1–8, 2013.

[4] C.-M. Chen, B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Flow-

guided file layout for out-of-core pathline computation. In Proc. of

IEEE Symposium on Large Data Analysis and Visualization, pp. 109–

112, 2012.

[5] C.-M. Chen, L. Xu, T.-Y. Lee, and H.-W. Shen. A flow-guided file lay-

out for out-of-core streamline computation. In Proc. of IEEE Pacific

Visualization Symposium, pp. 145–152, 2012.

[6] L. Chen and I. Fujishiro. Optimizing parallel performance of stream-

line visualization for large distributed flow datasets. In Proc. of IEEE

Pacific Visualization Symposium, pp. 87–94, 2008.

[7] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using

RNN encoder-decoder for statistical machine translation. In Proc. of

the Conference on Empirical Methods in Natural Language Process-

ing (EMNLP), pp. 1724–1734, 2014.

[8] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and C. Ware.

Surface-based flow visualization. Computers & Graphics, 36(8):974–

990, 2012.

[9] F. A. Gers and J. Schmidhuber. Recurrent nets that time and count. In

IJCNN (3), pp. 189–194, 2000.

[10] F. A. Gers, J. Schmidhuber, and F. A. Cummins. Learning to forget:

Continual prediction with LSTM. Neural Computation, 12(10):2451–

2471, 2000.

[11] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and

J. Schmidhuber. LSTM: A search space odyssey. CoRR,

abs/1503.04069, 2015.

[12] H. Guo, F. Hong, Q. Shu, J. Zhang, J. Huang, and X. Yuan. Scalable

Lagrangian-based attribute space projection for multivariate unsteady

flow data. In Proc. of IEEE Pacific Visualization Symposium, pp. 33–

40, 2014.

[13] H. Guo, X. Yuan, J. Huang, and X. Zhu. Coupled ensemble flow

line advection and analysis. IEEE Trans. Vis. Comput. Graph.,

19(12):2733–2742, 2013.

[14] H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng, and

J. Pan. Advection-based sparse data management for visualizing un-

steady flow. IEEE Trans. Vis. Comput. Graph., 20(12):2555–2564,

2014.

[15] G. Haller. Distinguished material surfaces and coherent structures

in three-dimensional fluid flows. Physica D: Nonlinear Phenomena,

149(4):248–277, 2001.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proc. of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 770–778, 2016.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, 1997.

[18] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross. To-

ward a general I/O layer for parallel-visualization applications. IEEE

Computer Graphics and Applications, 31(6):6–10, 2011.

[19] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson.

Simplified parallel domain traversal. In Proc. of the International Con-

ference for High Performance Computing, Networking, Storage and

Analysis, pp. 1–11, 2011.

[20] Z. C. Lipton. A critical review of recurrent neural networks for se-

quence learning. CoRR, abs/1506.00019, 2015.

[21] K. Lu, H.-W. Shen, and T. Peterka. Scalable computation of stream

surfaces on large scale vector fields. In Proc. of the International

Conference for High Performance Computing, Networking, Storage

and Analysis, pp. 1008–1019, 2014.

[22] C. Müller, D. Camp, B. Hentschel, and C. Garth. Distributed parallel

particle advection using work requesting. In Proc. of IEEE Symposium

on Large Data Analysis and Visualization, pp. 1–6, 2013.

[23] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka. Par-

allel particle advection and FTLE computation for time-varying flow

fields. In Proc. of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pp. 61:1–61:11, 2012.

[24] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-balanced parallel

streamline generation on large scale vector fields. IEEE Trans. Vis.

Comput. Graph., 17(12):1785–1794, 2011.

[25] M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3D vector

fields. In Proc. of IEEE Pacific Visualization Symposium, pp. 67–74,

2011.

[26] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber. Scal-

able computation of streamlines on very large datasets. In Proc. of the

International Conference for High Performance Computing, Network-

ing, Storage and Analysis, pp. 1–12, 2009.

[27] L. Shang, Z. Lu, and H. Li. Neural responding machine for short-text

conversation. In Proc. of the 53rd Annual Meeting of the Association

for Computational Linguistics ACL, pp. 1577–1586, 2015.

[28] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learn-

ing with neural networks. In Proc. of Annual Conference on Neural

Information Processing Systems (NIPS), pp. 3104–3112, 2014.

[29] J. Zhang, H. Guo, and X. Yuan. Efficient unsteady flow visualization

with high-order access dependencies. In Proc. of IEEE Pacific Visual-

ization Symposium, pp. 80–87, 2016.

[30] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. Laurent, Y. Bengio,

and A. C. Courville. Towards end-to-end speech recognition with deep

convolutional neural networks. In Proc. of Annual Conference of the

International Speech Communication Association, pp. 410–414, 2016.

