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ABSTRACT

We propose UNICON, a UNIform CONstraint based graph layout
framework that supports both soft and hard constraints. We extend
the stress model to accommodate soft constraints by incorporating
them in the objective functions, optimized by stochastic gradient
descent. For hard constraints, such as inequalities or equalities in
the layout space, we utilize a gradient projection method to satisfy
them. A visualization prototype system is implemented based on this
framework for the user to interactively add or remove constraints to
generate the desired layouts. We demonstrate the efficiency, quality,
and flexibility of the framework and the system on a number of
datasets with a wide range of user-defined constraints.

Keywords: Graph visualization, stress model, constraints, stochas-
tic gradient descent

1 INTRODUCTION

Graphs are used to represent a set of entities and their relationships,
such as social networks, citation networks, and traffic connections.
Graph drawing algorithms are used to generate highly readable
graph layouts. Kamada and Kawai [29] introduced a simple and
effective algorithm based on stress model to place nodes in a graph
according to the graph-theoretic distance between them to obtain
an aesthetic visual representation of the graph. However, aesthetics
encompass multiple aspects that are often difficult to satisfy with one
model. The generated layouts may not be user-satisfying when only
considering these distance constraints. Careful considerations of
application-specific layout constraints [11], such as directed edges,
fixed position, non-overlap of clusters, etc., generate the user’s
desired layout.

Various user-defined constraints and constrained graph layout
methods have been proposed in the past decades. Wang et al. [46]
revisited the stress majorization model and reformulated it with edge
vectors. Wang’s framework can only handle constraints that edge
vectors can model. They used the conjugate gradient method to solve
the problem faster than the previous methods. However, Zheng et
al. [48] used stochastic gradient descent to solve the optimization
problem, moving a single pair of vertices at a time, converging faster
than the conjugate gradient method, and generating constrained
layouts more quickly. With the gradient descent method, Ahmed
et al. [1] modeled the aesthetic criteria as objective functions and
optimized them to generate graph layouts with high readability.
However, these existing methods support only a few constraints in a
specific domain.

*e-mail: jiachengyu@pku.edu.cn
†e-mail: yifanh@gmail.com
‡e-mail: xiaoru.yuan@pku.edu.cn (corresponding author)

To define and model constraints efficiently and quickly, we pro-
pose UNICON, a uniform constraint based graph layout framework.
We consider that constraints can be divided into global constraints
and local constraints. For local constraints, they are usually defined
on one node (position constraint), two nodes (distance constraint and
direction constraint), or three nodes (angle constraint). These are the
most fundamental cases of constraints, and most other constraints
can be transformed into them. Thus, we define these as the basic con-
straints and other constraints as advanced constraints. For example,
the constraints defined in the stress model [29] are applied globally
over the graph, but it can be translated into a distance constraint
between each pair of nodes in the graph.

In UNICON, we further divide constraints into soft and hard
constraints. The soft constraints are approximately satisfied, while
the hard constraints are strictly satisfied. We model each soft ba-
sic constraint as an objective function and optimize the objective
functions with stochastic gradient descent. For the soft advanced
constraints proposed by the users, we first transform them into soft
basic constraints so that they can be modeled and solved directly
and quickly using UNICON. For hard constraints, such as equalities
or inequalities in the layout space, we can not model them using
the objective function. Therefore, we use the gradient projection ap-
proach to satisfy the hard constraints by moving the nodes as little as
possible. The direction and distance of movement are defined by the
projection induced by the constraint. And the gradient projection ap-
proach is integrated into the flow of stochastic gradient descent. For
a user-given constraint, we first transform it into basic constraints,
model them as objective functions or projections of constraints, and
then add them to a list of constraints. In the optimization step, one
constraint at a time is randomly selected for optimization by gradient
descent or projection. Based on this stochastic gradient descent and
projection approach, our framework can efficiently handle both soft
and hard constraints to generate high-quality graph layouts that meet
different user expectations. We further design an interactive system
prototype to demonstrate the effectiveness of UNICON.

The main contributions of our work are summarized as follows.
First, we established a taxonomy for constraints in constrained graph
visualization based on the user-defined constraints proposed in the
previous works. Second, we proposed UNICON, a uniform con-
straint based graph layout framework that supports any soft con-
straints that can be modeled by objective functions as well as hard
constraints that can be modeled by equalities or inequalities. Third,
we built an efficient toolkit of the constrained graph layout algo-
rithm based on the proposed framework and an interactive system
prototype for creating and editing constraints to generate the layout
that the user expects.

2 RELATED WORK

In this section, we summarize the related works of this paper, which
include graph layout methods and constrained graph visualization.



2.1 Graph Layout Methods
Many graph layout methods [43] have been proposed to gener-
ate high-quality representations of node-link diagrams. Gibson
et al. [20] categorized the graph layout methods into three ap-
proaches: force-directed methods [16, 17, 29], dimension reduction
methods [3, 23, 32] and multi-level methods [22, 26]. With the emer-
gence and development of deep learning techniques, applications of
deep learning in graph layout appeared [34, 45].

Eades [16] first introduced the spring-electrical model, which
is the basis for all force-directed methods. Fruchterman and Rein-
gold [17] were inspired by Eades’ work and then proposed the
spring-embedder algorithm. Further, Kamada and Kawai [29] treated
the graph layout problem as an optimization problem of stress model,
and the conjugate gradient method [18] was used to solve the prob-
lem faster. Zheng et al. [48] used the stochastic gradient descent
method to move one pair of nodes at a time, which converges faster
and more consistently than the conjugate gradient method. Di-
mensionality reduction methods first embed the nodes into high-
dimensional vectors and then project them onto a two-dimensional
plane. These methods include multidimensional scaling [3], linear di-
mension reduction [23] and t-SNE [32]. Multi-level methods [22,26]
were proposed for high computational scalability while maintaining
high quality when dealing with large graphs. Kwon and Ma [34]
used an encoder-decoder framework with graph neural networks
to systematically visualize a graph in diverse layouts. Our frame-
work extends the stress model [29] to accommodate constraints by
incorporating them in the objective functions.

2.2 Constrained Graph Visualization
Based on the above graph layout methods, especially the force-
directed layout methods, many works [2, 30, 44] further took into
account user-defined constraints and integrated constraint solvers to
generate user-desired graph layouts.

Earlier works mainly focused on drawing hierarchical layouts.
Sugiyama et al. [42] considered vertical and horizontal positions
separately, first determining which layer each node is on, i.e., the dis-
crete space on the y-axis, and then deciding the horizontal positions
of nodes to minimize edges crossings. The quadratic programming
method [24] was applied to solve the constraints, and some heuristic
methods [19, 28] were proposed to reduce the computational cost.
Later works [4, 10] considered nodes with continuous y-coordinates
and formed hierarchical constraints in the form of energy functions.

In order to satisfy various user considerations, different con-
straints have been proposed to generate user-desired layouts. Exist-
ing layout algorithms often assume that nodes are ideal points, but
when nodes have a certain radius, they may cause node overlapping
problems. Wang and Miyamoto [44] discouraged node overlapping
by setting the attractive force between nodes to zero and increasing
the repulsive force when two nodes overlap. Marriott [35] modeled
node overlapping constraints as objective functions and used con-
strained optimization to eliminate node overlapping in graph layout.
ImPrEd [39] proposed by Simonetto et al. improved the force-
directed algorithm to prevent nodes from crossing edges. Huang and
Eades [27] improved the clustering effect of the force-directed layout
by adding a virtual spring between the nodes and the virtual center
of its cluster. Ko and Yen [31] later formulated clustered drawing
using the stress model. Dwyer et al. [11] extended force-directed lay-
out algorithms to support separation constraints, including directed
edges, alignment or distribution, fixed position, and other constraints
mentioned above.

Dwyer et al. [14] took an initial feasible layout and improved
it while retaining its topology. Yuan et al. [47] merged many sub-
graphs of the large graph while maintaining the topological informa-
tion of each sub-graph by Laplacian constrained distance embedding.
The topology-preserving method [5] was applied to dynamic graph
visualization to preserve a coherent mental map of the changing

graphs. High-Dimensional Layout Stitching [41] was applied to
connect small layout patches to generate the final layout for dynamic
views of large static graphs. By revisiting the stress model, Wang et
al. [46] reconstructed the model with edge vectors and proposed a
uniform framework that allows modeling constraints as edge vectors
and solving the problems by conjugate gradient descent. Readability
metrics [8,33,38] can also serve as constraints. Ahmed et al. [1] used
gradient descent to optimize readability criteria modeled as objective
functions. Devkota et al. [7] modeled edge crossings, crossing angle,
and constraints for preserving upwardness as objective functions and
used gradient descent to optimize stress plus those terms. However,
these existing methods support only certain types of constraints. For
example, Wang et al. [46] only handled constraints that edge vectors
can model.

The above methods can handle soft constraints that can be trans-
lated into objective functions but can not handle hard constraints.
Dwyer et al. [9] extended the constraints to inequalities or equalities
in the Euclidean space, which are also known as hard constraints,
which can not be satisfied by the previous layout method. Gra-
dient projection method [12] was proposed to handle these hard
constraints by moving the minimum distance of nodes to satisfy the
inequalities or equalities after each iteration of the layout method.
Procrustes projection method [15] extended the gradient projection
to deal with non-linear constraints. Our method uses the similar
method of Dwyer et al. [9] to deal with hard constraints. However,
we use stochastic gradient descent to optimize the stress functions
and objective functions for modeling user-specific constraints, mak-
ing our framework more flexible and efficient.

For user-friendly specification of constraints, Guchev and
Gena [21] presented a simple and intuitive gesture-friendly interface
with sketching techniques for user-guided refinement of the force-
directed graph layout. For domain-specific graph data, high-level
constraints [25] are proposed to reduce specification effort. A Crowd
sourcing system [40] provided design guidelines and editing tools
to help novice workers perform like experts in biological network
visualizations. For large graphs, exemplar-based fine-tuning tech-
niques [37] took in user modifications on sub-graphs and transferred
the constraints to other similar substructures.

3 USER-DEFINED CONSTRAINTS

In UNICON, users can define various constraints to achieve desirable
layouts. These constraints can be defined on the graph at the global
level or the local level. At the global level, constraints are applied
to all nodes and/or edges in the graph. For example, a user wants
the layout to look like a subway diagram, which requires all edges
in the graph to satisfy certain conditions. The local level means the
constraints are relevant to only a subset of nodes in the graph.

We define and illustrate some basic constraints and explain how
advanced constraints can be decomposed to basic constraints. De-
pending on whether the constraints could be optimized by incorpo-
rating them as objective functions or must be satisfied as inequalities
or equalities, we classify the constraints into soft constraints and
hard constraints.

3.1 Basic Constraints

y

x

Position Constraint

i

The constraints defined at the global level
could be converted into constraints on the lo-
cal level. Particularly, constraints that only
involve one node, two nodes, or three nodes
are more basic and serve as the cornerstone
of advanced constraints. We define basic con-
straints as follows:

Position Constraint is defined on one
node at a time, but it is common to specify the
positions of multiple nodes. In the case of soft position constraint,
the desired position of node i is (x,y), or it can be defined on the
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Figure 1: Taxonomy of Constraints. The user-defined constraint are first defined into global level and local level. The constraints on the local level
are further divided according to the number of nodes they are defined on. The advanced constraints can be decomposed to basic constraints.

x-axis or y-axis, respectively. In the case of hard position constraint,
it can be defined as either a fixed position constraint or a boundary
constraint. The fixed position constraint indicates the node must be
at position (x,y). The boundary constraint indicates that the position
of node i on the x-axis (or y-axis) must be greater or less than x (or
y), or node’s position must be on a circle of radius r centered on the
position.

Distance Constraint

dx
dy

d

i

j

Distance Constraint is defined on two
nodes which do not necessarily have to be
connected by an edge. In the case of soft dis-
tance constraint, the ideal distance between
two nodes i, j is di j. In the case of hard dis-
tance constraint, it can be defined as either a
fixed distance constraint or a distance bound-
ary constraint. The fixed distance constraint
indicates that the distance between node i and
j must be di j. The distance boundary constraint indicates that the
distance between node i and j must be greater or less than di j. A
distance constraint can also be defined on the x-axis or y-axis.

Direction Constraint

αi

j

Direction Constraint is defined on two
nodes. In the case of soft direction constraint,
the ideal angle of the edge between node i
and j with respect to the x-axis is α . In the
case of hard direction constraint, it can be
defined as either a fixed direction constraint
or a direction boundary constraint. The fixed
direction constraint indicates the angle of the
edge between node i and j with respect to
the x-axis must be equal to α . The direction boundary constraint
indicates that the angle of the edge between node i and j with respect
to the x-axis must be greater or less than α .

Angle Constraint

α

Angle Constraint is defined on three
nodes. These three nodes are connected by
two edges which form an angle. In the case
of soft direction constraint, the ideal angle is
α . In the case of hard angle constraint, it can
be defined as either a fixed angle constraint or
a angle boundary constraint. The fixed angle
constraint means the angle must be α . The
angle boundary constraint indicates that the
angle must be greater or less than α .

3.2 Advanced Constraints
In addition to the basic constraints defined above, many other con-
straints are commonly used to satisfy various application scenarios.
These advanced constraints are more complex than the basic con-
straints. However, they can be expressed in terms of basic constraints,
some can even be decomposed in different ways. We illustrate some
advanced constraints and explain how they can be converted to
different basic constraints.

3.2.1 Position-based Constraints
Some advanced constraints are relative to node positions, and we
can convert them to position constraints.

Cluster Constraint

(a)

(b)

Cluster Constraint. Node spread [8] is
a heuristic to measure the node dispersion,
modeling the distance of each node from the
center of its cluster. A smaller node spread
indicates compact drawing within the cluster.
So for each node in the cluster, we want it to
be close to the center of its cluster. Therefore,
we can model cluster constraint by using the
position constraint on each node with its cluster’s pseudo center
position.

Circle Constraint. The circle is an aesthetically pleasing shape.
The circle constraint forms the nodes over a circle. That is, each
node only needs to be at the same distance from the center position.
That is a position constraint, where the center position and the radius
of the circle are defined by the user.

3.2.2 Distance-based Constraints
Some advanced constraints can be converted to distance constraints.
The following three distance-based constraints are commonly used
in constrained graph layout.

Sub-graph Constraint. Maintaining the topology of the given
initial layout helps to preserve the mental map of dynamic graph
visualization [5], as well as merging sub-graphs of many users [47].
The sub-graph constraint aims to preserve the topology of the given
sub-graph by maintaining the relative distance between each pair
of nodes in the sub-graph. Thus, it can be represented in terms of
distance constraints. It can be a soft or hard constraint defined by
user specifications for various application scenarios. When using
distance constraints to represent sub-graph constraint, the sub-graph
is free to rotate.

Edge Length Variation Constraint. Uniform edge length is an
effective criterion when measuring the quality of a graph layout [33].
Edge length variation constraint wants a uniform edge length. We
can add a distance constraint for each edge in the graph with an ideal
distance equal to the average edge length of all edges to represent
this constraint.

Node Overlapping Constraint. Miyamoto [44] discouraged
node overlapping by adjusting attractive force and repulsive force
when two nodes overlap. However, node overlapping constraints
can be illustrated as hard distance constraints between two nodes.
That is, the distance between them must be greater than the sum of
their radii.

3.2.3 Direction-based Constraints
Some advanced constraints are composed of many direction con-
straints. Here we give a few examples.

Vertical Constraint
Vertical Constraint. When drawing a di-

rected graph in flow-style, we ensure that the
start node of each directed edge is above its
end node [13]. This vertical constraint can be
converted to direction constraint ensuring that
the edge is downward pointing. According
to the definition in Sect. 3.1, that is α equals
− π

2 .



Metro Constraint
Metro Constraint. Nöllenburg and

Wolff [36] applied a design rule for metro
maps that all edges should be restricted to the
four octilinear orientations horizontal, verti-
cal, and ±45°-diagonal. The metro constraint
conforms to the design rule. We build metro
constraints with direction constraints on each
edge, determining the direction of them based
on the location of the stations they are connected to. Thus, the metro
constraint could be converted to hard direction constraints.

Crossing Minimization 
Crossing Minimization. It is important to

minimize edge crossings to generate a high
quality layout. We can use direction con-
straints to reduce edge crossing. For a de-
tected crossing, as shown in the dash lines,
we can rotate the edges to prevent them from
crossing each other. The target direction is set
to make the two edges parallel to each other.

Sub-graph Constraint. When decomposing the sub-graph con-
straint, we can additionally use direction constraints to preserve the
rotation of the sub-graph, while the distance constraints help pre-
serve the shape of the sub-graph. It is a case of direction constraint
that require both the direction and the distance, and we will further
discuss it in Section 4.2.3.

3.2.4 Angle-based Constraints

Some advanced constraints can be converted to angle constraints.
Those angle-based constraints are usually designed to maintain a
certain symmetry of the graph.

Circular Constraint
Circular Constraint. Circular structures

are often found in biological pathways, where
nodes are uniformly distributed on a circle.
To form a uniformly distributed circle, the
circular constraint is converted to angle con-
straint between the adjacent edges and the
center of the nodes. For the selected n nodes,
the angle is set to 2π

n .

Star Constraint

Star Constraint. Purchase [38] proposes
to maximize the minimum angle from one
center node to generate a pleasing layout.
Ahmed [1] model the angular resolution by
an energy function by minimizing the angular
energy, the group of nodes forms like a star.
However, we can convert the star constraint
to angle constraint between each pair of the
nodes on the periphery and the center node.
For n+1 nodes selected, the angle is set to 2π

n .

3.2.5 Other Constraints

Some advanced constraints like maximizing crossing-angle and
preventing edges from passing through node may not be able to
be converted to the basic constraints. On the other hand, if some
constraints can be modeled by derivative objective functions, they
could be solved by stochastic gradient descent in our proposed
framework.

4 THE UNIFORM FRAMEWORK

We propose UNICON, a uniform framework (Fig. 2) to generate the
user-desired graph layout with user-defined constraints. Based on
the stress model, we incorporate each soft constraint as an objective
function, using stochastic gradient descent for optimization. For
hard constraints, we utilize the gradient projection method to satisfy
them. In this way, UNICON is capable of dealing with both soft and
hard constraints.
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Figure 2: The uniform constraint based graph layout framework. For
a graph, the graph-theoretic distance is first calculated and modeled
as a stress function to generate an initial layout. The user can select
sub-graphs from the graph and specify soft or hard constraints. The
soft constraints are modeled as objective functions, while the hard
constraints are converted into projections. The initial layout is further
optimized using stochastic gradient descent of the objective function
with gradient projection of hard constraints to generate the final layout
after certain iterations.

4.1 Stress Model and Stochastic Gradient Descent
Our framework is based on the stress model proposed by Kamada
and Kawai [29]. For a given Graph G = (V,E), where V denotes a
set of n nodes and E denotes a set of m edges. We place the nodes
on a 2D plane, and X denotes the coordinates of each node. Each
pair of node i and j has an ideal distance di j, which is the default
graph-theoretical distance, which can be calculated by the shortest
path algorithm. The stress function of the system is

Stress(X) = ∑
i< j

wi j
(
∥Xi−X j∥−di j

)2 (1)

where ∥ . . .∥ is L2-norm of the vector, and wi j = d−2
i j to produce

the best drawings in common scenarios. By minimizing the stress
function, we generate a initial layout for the given graph, which
serves as the base layout for adding constraints later.

To solve the optimization problem, we apply Zheng et al.’s
stochastic gradient descent method [48] in which one pair of nodes
is moved at a time. We rewrite the stress function Equation 1 as

Stress(X) = ∑
i< j

Ei j(X) (2)

Ei j(X) = wi j(∥Xi−X j∥−di j)
2 (3)

The full gradient of a stress term Ei j is ∂Ei j/∂X is

∂Ei j

∂Xk
=


4wi jr, if k = i
−4wi jr, if k = j
0, otherwise

(4)

where

r =
∥Xi−X j∥−di j

2
Xi−X j

∥Xi−X j∥
(5)

We apply stochastic gradient descent to minimize stress by itera-
tively selecting Ei j and moving the nodes according to the gradient,
with a hard upper limit proposed by Zheng et al. [48].

∆Xi =−∆X j =−µr

µ = min{wi jη ,1}

where η is a step size with an exponential annealing.
Our framework extends the stress model and stochastic gradient

descent method to incorporate various soft constraints.

4.2 Constrained Stochastic Gradient Descent
In our framework, to take into account user-defined constraints, we
model the soft constraints as objective functions. We first model the



four basic soft constraints and then show how to model the advanced
constraints by the set of objective functions of the basic constraints.

As shown in Algorithm 1, for each constraint defined by the user
or the default constraint derived from the stress model, we push
them into a list of constraints for further optimization. Then we
randomly shuffle the constraint list and pick the constraint from the
constraint list. For each soft constraint, we compute the gradient of
its objective function and perform the gradient descent. For hard
constraints, we apply gradient projection to satisfy them, which will
be introduced in the Sect. 4.3.

Algorithm 1 Constrained Stochastic Gradient Descent with Projec-
tion
Input:

Graph G = (V,E);
List of user-defined soft constraints C So f t;
List of user-defined hard constraints C Hard;

Output:
2-D layout X with n nodes;

1: X ←− RandomMatrix(n,k)
2: di j←− ShortestPaths(G)
3: for each i, j : i < j do
4: C So f t.push(Distance Constraint(i, j,di j))
5: end for
6: for η in step size annealing schedule do
7: for constraint in C So f t in random order do
8: Gradient Descent(constraint)
9: end for

10: for constraint in C Hard do
11: Projection(constraint)
12: end for
13: end for

4.2.1 Position Constraint
For soft position constraint, suppose the ideal position of node i is
Pi. We model the energy function based on the distance between Xi,
that is, the position of node i and the ideal position Pi:

Ei = wi∥Xi−Pi∥2 (6)
where wi is a user-defined coefficient. The gradient is calculated as
follows:

∂Ei

∂Xi
= 2wi(Xi−Pi) (7)

4.2.2 Distance Constraint
As mentioned in the previous Sect. 3.1, for soft distance constraint,
the ideal distance between node i and j is di j . If we do not consider
distance on the x-axis or y-axis separately, the objective function is
defined the same as in the stress model:

Ei j = wi j(∥Xi−X j∥−di j)
2 (8)

The gradient of Ei j is calculated as follows:

∂Ei j

∂Xk
=

{
4wi jr, if k = i
−4wi jr, if k = j

(9)

where r is the same in Equation 5.
However, suppose we consider the distance on the x-axis or

y-axis separately . In that case, the objective function is rewritten as
follows based on the difference between the distance between two
points and the ideal distance on the x-axis (dxi j) or on the y-axis.

Exi j = wi j(|xi− x j|−dxi j)
2 (10)

Here we only explain the case on x-axis, the case on y-axis is similar.
The gradient is calculated as follows:

∂Exi j

∂xk
=

{
4wi jr, if k = i
−4wi jr, if k = j

(11)

where

r =
|xi− x j|−dxi j

2
xi− x j

|xi− x j|
(12)

To obtain the desired graph layout, we need to carefully consider
the coefficients wi j in front of the objective function. Here, we set
the default wi j based on the average weight of node i and node j
computed in the initial step on graph-theoretic distance. However,
the users can adjust the weight of wi j to achieve their desired layout.

4.2.3 Direction Constraint

For a direction constraint, it can be divided into two cases according
to the actual requirements. One is to require the direction and the
distance, that is, and the other is to require only the direction. In the
first case, the ideal distance di j is considered, the objective function
is defined as follows, simultaneously ensuring the satisfaction of
both direction constraint and distance constraint:

Ei j = wi j

[
(xi− x j−di j sinα)2 +(yi− y j−di j cosα)2

]
(13)

The gradient is calculated as follow:
∂Ei j

∂xk
=

{
4wi jr, if k = i
−4wi jr, if k = j

(14)

where

r =
xi− x j−di j sinα

2
(15)

If di j is not specified or we do not consider ideal distance, we
can calculate d′i j at each iteration, and the corresponding objective
function is defined as follows:

Ei j = wi j

[
(xi− x j−d′i j sinα)2 +(yi− y j−d′i j cosα)2

]
(16)

where

d′i j =
√
(xi− x j)2 +(yi− y j)2 (17)

Otherwise, the objective function can also be defined on the angle
of the edge between the two nodes with respect to the x-axis, which
we denote as θ :

Ei j = wi j(θ −α)2 (18)

The gradient of the angle is calculated as:
∂Ei j

∂θ
= 2wi j(θ −α) (19)

We then rotate the edge from its midpoint according to the gradient.
This movement allows moving the nodes as short a distance as pos-
sible to get the desired angle while keeping the distance between the
two points constant. We will illustrate the rationale in a subsequent
Sect. 4.3.

4.2.4 Angle Constraint

Suppose the current angle of the two edges is θ , we use an objective
function based on the angle instead of distance.

Ei jk = wi jk(θ −α)2 (20)
The gradient is calculated as follows:

∂Ei jk

∂θ
= 2wi jk(θ −α) (21)

By calculating the gradient, we rotate the direction of two edges
from the angle bisector. Note that the coefficient wi jk can be adjusted
by the user to generate their desired layout.



4.3 Gradient Projection

For hard constraints, we apply gradient projection to satisfy them.
After each iteration of stochastic gradient descent, we project the
nodes according to the hard constraints. That is, the nodes are moved
at the shortest distance to satisfy the constraint. Dwyer et al. [9] use
gradient projection to deal with Euclidean distance constraint. Here
we define the projection problem and then introduce its solution for
each basic constraint.

Denote Q the hard constraint on position Xi, P(·) is the projection
operator, and itself is an optimization problem defined as follows:

PQ(Xi) = arg min
Xi∈Q

1
2
∥Xi−Xi0∥2 (22)

where Xi0 is the result of the position of the node after each iteration
of stochastic gradient descent. This optimization problem finds
a point Xi on the constraint boundary that is closest to Xi0. The
solution to this problem is thus a projection of the node that satisfies
the constraint. It is hard to find a general solution to an arbitrary
Q. However, we can find particular solutions in the case of four
basic constraints. We are going to introduce variants of projection
operation for each basic constraint and the simplified solutions to
the problems.

4.3.1 Position Constraint

For a hard position constraint, if the given constraint is a fixed
position constraint on position Pi, there is no doubt that the solution
is that the position of the node i is moved to Pi. In the case of given
fixed Px or Py, it is apparent that we should move the node to the
specified position in the direction parallel to the y-axis or x-axis,
which is the shortest path to move the node to the given position.

The linear boundary position constraint can be expressed in the
form of inequalities:

AiXi +bi ≥ 0 (23)

where Ai and bi are parameters to define the boundary. On a two-
dimensional plane, we can fit this inequality with different param-
eters to define various position boundary constraints as shown in
Fig. 3. The node must be on one side of the line, and the special
case is that the line is parallel to the x-axis or y-axis. However, the
special cases are more commonly used.
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Figure 3: Projection of position boundary constraint. (a) generalized
situation; (b) constraint on the x-axis; (c) constraint on the y-axis.

From Fig. 3, we can conclude that the solution to this projection
optimization problem is to move the node along the vertical line to
the boundary line if the constraint is not satisfied.

4.3.2 Distance Constraint

For a hard distance constraint, the projection operator is associated
with node i and j, and it can be expressed as:

PQ(Xi,X j) = arg min
Xi,X j∈Q

1
2

(
wi∥Xi−Xi0∥2

2 +w j∥X j−X j0∥2
2

)
(24)

where wi and w j are the weight of two nodes. The fixed distance
constraint can be written as:

∥Xi−Xj∥= di j (25)

Essentially, this optimization problem finds two points Xi, X j on
the constraint boundary that are closest to Xi0 and X j0, respectively.
Thus this represents a projection of Xi0 and X j0 to the nearest
constraint surface.

As shown in Fig. 4, we can solve the problem by moving the two
nodes in the direction of the edge between them until the distance
between them is equal to di j . In the situation of equal weight, that is
when wi equals w j . The solution is to move the two nodes an equal
distance in the opposite direction. The vector of movement of nodes
i and j are ri and r j:

ri =−r j =
∥Xi−X j∥−di j

2
Xi−X j

∥Xi−X j∥
(26)

dij

Xi

Xj

ri

rj

dij

Xi

Xj

ri

rj

(a) (b)

Figure 4: Projection of hard distance constraint. (a) the distance
between two nodes is less than the given distance; (b) the distance
between two nodes is greater than the given distance

The distance boundary constraints are in the form of
∥Xi−Xj∥(≤,≥)di j (27)

If the inequality is already satisfied before the projection, we need
to do nothing. Otherwise, we should move the nodes in the same
way as the fixed distance constraint till the inequality is satisfied.

Xi

Xj

Xi0

Xj0

θα

Xi

Xj

Xi0

Xj0

θ

α

Xk

(a) (b)

Figure 5: (a) Projection of hard direction constraint. Rotate the edge
on the axis of its midpoint to satisfy the hard direction constraint. (b)
Projection of hard angle constraint. Rotate the two edges on the axis
of the vertex from their bisector to satisfy the hard angle constraint.

4.3.3 Direction Constraint
For a hard direction constraint, the projection operator is defined as
Equation 24. However, the constraint here is different. In a fixed
direction constraint, the angle of the edge between node i and j with
respect to the x-axis must be α . When moving the two nodes, the
distance between them should be preserved.

As shown in Fig. 5 (b), in the situation of equal weight, we derive
the solution to the problem. That is to rotate the two nodes on the
axis of the midpoint of the edge. For direction boundary constraint,
we do a minimum angular rotation of the edge to meet requirements.

4.3.4 Angle Constraint
To solve the projection problem of angle constraint, we need to
consider the angle-based advanced constraints. In the star constraint,
we do not expect the center node to move. So in the projection
of the decomposed hard angle constraint, we consider not moving
the angle’s vertex. Thus, the projection operation is the same as
Equation 24 with a different constraint. For fixed angle constraint,
the angle is to be equal to α .



Figure 6: Interface Overview. (a) Constraint Configuration Panel; (b) Data Manipulation Panel; (c) Constraint Manipulation Panel; (d) History
Constraint Panel; (e) Graph Layout View.

As shown in Fig. 5 (b), in the situation of equal weight, we derive
the solution to the problem. That is to rotate node i and j around
the vertex of the angle, by the same angle from its bisector. We
do a minimum angular rotation of the edges for angle boundary
constraint to meet requirements.

5 INTERACTIVE PROTOTYPE SYSTEM

To demonstrate the strength of our framework, we implement an
interactive system for constrained graph visualization based on the
uniform framework. Users can efficiently select nodes in the graph
and apply desired constraints with a few clicks to instruct the system
or abandon constraints if not satisfied. The system can save and load
user-defined constraints for convenient exploration.

The user interface in Fig. 6 consists of five parts: graph layout
view, data manipulation panel, constraint configuration panel, con-
straint manipulation panel , and history constraint panel. We briefly
describe the supported user interactions below.

In the graph layout view, the layout of the graph is displayed. The
user is able to drag and drop nodes. The positions of nodes and links
are updated in real time according to the user’s interaction. Thus the
user can easily adjust them to the ideal position. The user can select
or deselect a node by clicking it. Then, the user is allowed to perform
further operations on the selected nodes. In the data manipulation
panel, the user is able to choose and load the dataset through the drop-
down selection box. The “Node Name” switch below allows the user
to toggle the display of node names. With the “Node Size” and “Link
Width” drag bars, the user is able to adjust the size of nodes and the
width of links in the graph layout view. The constraint configuration
panel contains the function buttons to define constraints. The buttons
are used to select constraints, and illustrations are provided on the
button to help the user understand the constraints to select. In the
bottom toolbar, the user is able to switch between soft constraint
and hard constraint and apply the defined constraint. The constraint
manipulation panel displays the applied constraints, which allows
the user to make further modifications to their defined constraints.
The history constraint panel can record the history of user defined
constraints.

After the data of the graph is loaded, the rendered graph will be
displayed in the graph layout view. The user will be able to click to

select one or several nodes in the graph layout view, and the selected
nodes will be displayed in red. Then the program will highlight the
constraints that are allowed to be added according to the number of
selected nodes. For example, the position constraint requires the user
to select at least one node, and the angle constraint requires the user
to select exactly three nodes. In order to add constraints, the user
needs to drag the selected nodes in the graph to the desired position
and select a constraint rule by clicking the corresponding button in
the constraint configuration panel. After clicking the “Apply” button,
a new constraint will be created based on the nodes and constraint
button selected by the user. The graph will then be refreshed, and the
relevant nodes will be displayed in green as shown in Fig. 6 (c). We
designed different highlights for different constraints. For example,
we have straight lines and arrows highlighting position constraints
and convex hulls highlighting sub-graph constraints. Each constraint
that has been added will be displayed in the form of a list in the
constraint manipulation panel. By checking the checkbox, the user
can easily enable or disable a constraint. The name of the constraint
is editable. Thus the user can customize it for easy management. A
drag bar is displayed to adjust the weight for soft constraints.

6 CASE STUDY

We implemented a JavaScript version of our algorithm for building
the interactive prototype system. In the previous Sect. 4, we illustrate
how our framework deals with soft and hard constraints. Here,
we apply different constraints for different graphs and observe the
change in graph layout to confirm the satisfaction of the constraints.
To demonstrate the capability of our method to deal with soft and
hard constraints, we evaluated from three aspects. First, we used
several synthesized dataset to verify the effect of our framework on
soft constraints and hard constraint. Then we tested the sub-graph
constraints for merging graphs and compared with Yuan et al. [47]
on a biochemical metabolic pathway dataset. We also tested our
framework on a dataset Bus1138 [6] with 1138 nodes and compared
results with previous works, an incremental procedure for layouts
with separation constraints (IPSep) [11], a scalable, versatile and
simple constrained graph layout (SV) [9] , and Wang et al. [46]
using edge vectors. Finally, we evaluated the metro constraint on
the dataset of the Beijing subway map.



6.1 Distance Constraints
For distance constraints, we conducted experiments on a dataset used
by [44]. As shown in Fig. 7, we apply soft or hard constraints to four
parts of the graph in different colors. For edges in blue and edges
in green, we apply soft distance constraints. For each edge in blue,
we add distance constraints that are smaller than its original ideal
distances. While for each edge in green, we set a larger distance
constraint than its original ideal distance. We can observe that the
shape of these two parts becomes smaller or larger respectively after
applying the constraints.

d

(a) (b)

Figure 7: Applying distance constraint. (a) unconstrained layout; (b)
layout with both soft and hard distance constraints.

For nodes connected by red and yellow lines, we apply hard
distance constraints that can be written as follows:

a2.y = a3.y = a4.y
a1.y = a5.y = a2.y+d
c1.y = c2.y = c4.y = c5.y

(28)

That is the distances among nodes a2,a3,a4 on the y-axis should
be zero, and so are those among nodes c1,c2,c4,c5. In addition,
nodes a1 and a5 should be position at a distance of d above node a2.
In the constrained layout (Fig. 7 (b)), those nodes that need to be
on the same level are placed strictly along a horizontal line, and the
distance between node a1 and a2 on the y-axis is realized at d.

6.2 Star Constraints
For the graph shown in Fig. 8, there are two star-like shapes high-
lighted in blue and green. However, in the unconstrained lay-
out (Fig. 8 (a)), the star shape is not clearly observable. To see
the shape of the star more clearly, we apply the star constraint to
each of the two stars. First, we apply a soft constraint to the graph,
the constrained layout in shown in Fig. 8 (b). We can observe that
the star shape is more pronounced than the unconstrained layout.
We further test the hard star constraint. As shown in Fig. 8 (c). It
can be seen that the angles in the star are exactly equal.

(a) (c)(b)

Figure 8: Applying star constraints. (a) unconstrained layout; (b) soft
star constraint; (c) hard star constraint.

6.3 Sub-graph Constraints
Here, we merge sub-graphs while preserving their topology using
sub-graph constraints. And we compare our method with Yuan et
al. [47] on a biochemical metabolic pathway dataset. As shown in
Fig. 9(a) is the desired layouts of sub-graphs, in Fig. 9(b) is the
unconstrained layout of our method. Yuan et al. [47] used Laplacian
constrained distance embedding to preserve the topological infor-
mation of the input sub-graph. In UNICON, we can use either soft
or hard sub-graph constraints, the results are shown in Fig. 9(c) and
Fig. 9(d). We use the similarity scores to measure how well the sub-
graph structures are preserved in the merged layout. And for the two
sub-graphs, the results of UNICON using hard sub-graph constraints
are both 1.00, better than 0.91 and 0.96 in Yuan et al. [47]. This
indicates the hard constraints can better preserve topology when
merging sub-graphs.

1.00

1.00

(a) (b) (c) (d) (e)

Figure 9: Merging sub-graphs compared with Yuan et al. [47]. (a)
Given sub-graphs; (b) Our method without any constraint; (c) Our
method with soft sub-graph constraint; (d) Our method with hard sub-
graph constraint; (e) Yuan’s method.

6.4 Vertical Constraints
We ran our algorithm on data Bus1138 [6], which contains 1138
nodes and 1458 edges. As shown in Fig. 10, first, no constraints are
applied to the graph. Then, we apply constraints to achieve vertical
constraints in two ways in UNICON. The first is to translate the
vertical constraint into a distance constraint on the x-axis, which
means that the distance in x-axis between two adjacent nodes would
ideally be zero. The second is to transform it into a direction
constraint, where the direction of the directed edge is the vertically
downward direction. Here we utilize vertical edges (VE) [46] to
measure the constraint satisfaction degree.

V (X) = ∑
(i, j)∈E

∣∣∣∣〈 Xi−X j

∥Xi−X j∥
, x⃗
〉∣∣∣∣ (29)

where x⃗ = (1,0) is the direction vector along the x-axis. This mea-
sures the sum of absolute inner products between the edge direction
and the positive x-axis. The smaller the VE is, the better the layout
satisfies the vertical constraint. VE measure is a real number, and
here we rounded our results to compare with the prior works. IPsep
has a VE number of 714, SV of 757, and Wang’s method of 714.
Our method using the direction constraint results in a VE number
of 714. And with the distance constraint, our method results in
the smaller VE number of 703. This indicates our approach using
distance constraints better satisfies the vertical constraints.

6.5 Metro Constraints
We first convert metro constraint to hard direction constraint, accord-
ing to the original location of stations. We give a list of available
directions, in this case horizontal, vertical, or ±45°. The algorithm
automatically chooses the direction of each edge from the given list,
which is closest to its original direction based on the positions of
its connecting subway stations. The result is shown in Fig. 11 (a),
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Figure 10: Comparison of the layout of the Bus1138 graph data with
vertical constraints generated by different methods: (a) unconstrained
layout; (b) IPSep [11]; (c) SV [9]; (d) Wang et al. [46]; (e) UNICON
with distance constraint; and (d) UNICON with direction constraint.
Here VE is the metric defined in (29), smaller = better. We ran our
algorithms for several times and the results with a median VE were
chosen.

we can see that almost all the edges are satisfied with the direction
constraint.

However, if we zoom in on the metro map, there are still some
flaws. At an interchange station, if two subways pass along a similar
direction, for example, along the near horizontal. We notice that in
this situation, the two subway lines will overlap. However, this is not
a problem with our framework but rather a lack of thoughtfulness in
constructing the constraints. We can avoid this situation by adjusting
the direction of the subway line when specifying the constraint.

We can further add edge length variation constraint on the graph,
which makes the lengths of edges as uniform as possible as shown
in Fig. 11 (b). For edges that are originally extremely long or short,
this constraint will force them to a medium length. However, since
the constraint is soft, and there are existing constraints on the length
of each edge, the lengths of edges are not perfectly uniform.

(a) (b)

Figure 11: The map of Beijing subway stations with 340 nodes and
381 edges. (a) Metro constraints applied. The direction of the edges is
chosen automatically from horizontal, vertical, or ±45°. (b) Additional
edge length variation constraint applied.

7 DISCUSSION AND FUTURE WORK

Our framework is able to handle both soft and hard constraints by
modeling them with objective functions or by gradient projection
methods. While Ahmed et al. [1] and Devkota et al. [7] can not
handle hard constraints. In our proposed taxonomy, we divided the
constraints into basic and advanced constraints, and we introduced
how to convert advanced constraints to basic constraints. With

the position constraint and angle constraint, our framework is able
to handle constraints on a single node and angles while Wang et
al. [46] could not by using edge vectors. However, there are still
some advanced constraints that can not be translated into basic
constraints. For example, constraints on maximizing crossing-angle
and preventing edges from passing through nodes, etc. We will try to
decompose them into basic constraints in the future. Compared with
Dwyer et al. [9], we use stochastic gradient descent in optimization
instead of steepest descent. This makes our framework more flexible
and efficient, and one can add any differentiable objective functions
to generate their desired layouts.

For soft constraints, because of the stochastic gradient descent
approach used, our framework is order invariant. For any constraints
defined by the user, they are pushed into a constraint list which
will be used as input to the gradient descent algorithm. For hard
constraints, our framework uses a projection approach to satisfy
them. But the order of iterations can have a significant impact on
the satisfaction of these constraints, especially in the case of random
order of constraint selection for projection. In every iteration, each
hard constraint will be projected only once, and hard constraints
selected later will tend to be satisfied, while those selected earlier
are easily destroyed by later projections. This situation can be more
obvious in the case of constraint conflicts and may even lead to
non-convergence. However, the current design of our framework is
based on the case where the user is given reasonable constraints. We
plan to design a conflict detection algorithm to handle conflicting
constraints. Given a priority list of hard constraints, in the case that
multiple hard constraints cannot be satisfied at the same time, the
hard constraint with the higher priority is guaranteed first.

The interactive prototype system we implemented is designed to
help users specify the desired constraints efficiently. Currently, a
number of constraints can be specified interactively, and we have
implemented a set of constraints that the prototype system can not
support at the moment. In future work, we will develop more in-
teraction forms to help users quickly specify constraints that are
not currently available, including boundary constraints and other
advanced constraints.

Currently, our toolkit is implemented using the JavaScript pro-
gramming language. This facilitates the building of the interactive
prototype system without the need to consider the communication
between the front-end and back-end. However, due to the speed
of the JavaScript, this can bring some efficiency problems for the
constrained layout of very large graphs. If we were to consider very
large graphs and multi-person collaboration, we would choose to
use a python back-end with C++ as the underlying code to improve
the efficiency of the framework.

8 CONCLUSION

In this paper, we propose UNICON, a uniform constraint based
graph layout framework. UNICON accommodates soft constraints
by incorporating them in the objective functions based on the stress
model, and optimizes them with stochastic gradient descent. It
handles hard constraints, such as inequalities or equalities in the
layout space, by gradient projection. An interactive constrained
graph layout system is implemented based on UNICON. With this
system, the user can easily add or remove constraints to generate the
desired layouts. We have tested the efficacy of UNICON in dealing
with soft constraints as well as in satisfying hard constraints and
have demonstrated the ability of this approach to generate pleasing
graph layouts on a number of application cases.
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