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Figure 1: Interface of our system. (a) Map view and (b) timeline view provide a unified exploration space for the heterogeneous
dataset. (c) Matrix view and (d) curve view are used to extract disturbance patterns from example DEMETER time-series. (e)(f)
Parameter control panels for query, including spatial and temporal extent and resolution, DEMETER attributes, etc.

ABSTRACT

In seismic research, a hypothesis is that ionosphere disturbances
are related to lithosphere activities such as earthquakes. Domain
scientists are urgent to discover disturbance patterns of electromag-
netic attributes in ionosphere around earthquakes, and to propose
related hypotheses. However, the workflow of seismic researchers
usually only supports pattern extraction from a few earthquakes.
To explore the pattern-based hypotheses on a large spatiotemporal
scale meets challenges, due to the limitation of their analysis tools.
To tackle the problem, we develop a visual analytics system which
not only supports pattern extraction of the original workflow in a
way of dynamic query, but also extends the work with hypotheses
exploration on a global scale. Domain scientists can easily utilize
our system to explore the heterogeneous dataset, and to extract
patterns and explore related hypotheses visually and interactively.
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We conduct several case studies to demonstrate the usage and ef-
fectiveness of our system in the research of relationships between
ionosphere disturbances and earthquakes.
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1 INTRODUCTION

Long-term effort has been taken in seismic community to under-
stand the process of earthquake generation and subsequently to re-
duce the damage and casualty caused by strong shocks. Recently, ob-
servation and research have shown that anomalous electromagnetic
signals may have association with seismic activities. One hypoth-
esis is that before earthquakes occur, the anomalies of structures
in the epicenter and its tectonic zone can lead to electromagnetic
radiance releasing into the air, together with other acoustic and
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geochemical effects. Such effects can introduce seismo-ionosphere
phenomena of disturbances in the ionosphere. DEMETER is the first
satellite devoted to the study of the ionosphere disturbances related
to seismic and human activity, as well as the pre- and post-seismic
effects in the ionosphere.

The study on ionosphere disturbances usually involves two kinds
of heterogeneous data, i.e. the earthquake catalog data and the
DEMETER data. Earthquake catalog data record information about
seismic events, e.g. location, magnitude, etc. DEMETER data collect
several electromagnetic attributes in the atmosphere with times-
tamps and locations. Analysis on the heterogeneous dataset can
help domain scientists understand the spatiotemporal relationship
between ionosphere disturbances and earthquakes.

Currently, dozens of seismic works have been published with
their discoveries [Akhoondzadeh et al. 2010; Zhang et al. 2012].
Most of them are on a case-by-case investigation with geographi-
cal and statistic tools. Nevertheless, the workflow of case-by-case
investigations is limited in some aspects due to their analysis tools.
The most important limitation is that the workflow does not con-
sider the popularization of proposed hypotheses to more other
earthquakes, which will lower their value. Besides, because do-
main scientists have no efficient tools to explore the parameter
space of patterns, the disturbance patterns only come from direct
observation and statistics, which may be hard to reveal the intrin-
sic relationships. Moreover, these patterns are usually described
coarsely and imprecisely, due to the lack of a formal formulation.

In this work, we propose a spatiotemporal visual analytics sys-
tem, using query-driven approach to extract disturbance patterns,
to propose pattern-based hypotheses, and to explore hypotheses on
a global scale. Integrated with the original workflow, our system
provides a search-by-example way to assist domain scientists to ex-
tract disturbance patterns from earthquakes. Moreover, our system
has the capability to explore hypotheses in a long time range and
on a global scale. Our system can help scientists to improve their
research efficiency and gain deeper insights on their research. Our
contributions can be summarized as follows:

e We develop a visual analytics system to assist domain scien-
tists to study relationships between earthquakes and iono-
sphere disturbances.

e We propose a workflow to support hypotheses generation,
exploration, and visualization in general seismic research.
® Query-driven approach is utilized to explore the relation-

ships among heterogeneous spatiotemporal datasets.

2 RELATED WORK

In this section, we first review literature on spatiotemporal visu-
alization and query-driven visualization on time-series. Then we
discuss the seismic-related visualization works.

Spatiotemporal Visualization. Both earthquake and observational
data are spatiotemporal data with multivariate information. Lots of
visualization are proposed to visualize spatiotemporal data. Space-
time cube [Hégerstraand 1970] is a basic, yet intuitive 3D visualiza-
tion metaphor. To encode multivariate data, informative glyphs are
used in the spatiotemporal scene [Tominski et al. 2012]. To avoid
visual clutter brought by 3D visualization, some works directly en-
code time information [Andrienko and Andrienko 2011; Shanbhag
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et al. 2005] as well as multivariate information [Bak et al. 2009] on
a 2D map.

To further facilitate exploration and analysis, filtering [Kriiger
et al. 2013], clustering [Andrienko et al. 2009] and aggregation [An-
drienko and Andrienko 2008] methods are applied to spatiotem-
poral data. VIS-STAMP [Guo et al. 2006] involves techniques such
as linked parallel coordinates, SOM to analyze multivariate infor-
mation of spatiotemporal data. Besides, a toolkit proposed by Ma-
ciejewski et al. [Maciejewski et al. 2011] supports prediction on
hotspots regions with statistical techniques. More recently, discus-
sion on heterogeneous spatiotemporal data analysis is emerging.
VASA system [Ko et al. 2014] proposed a comprehensive pipeline
to investigate the correlation among weather, traffic and critical
infrastructure simulation.

The goal of our work is to help domain scientists discover rela-
tionships between earthquakes and ionosphere disturbances. We
provide a unified spatiotemporal scene for the exploration of the
heterogeneous dataset.

Query-driven Visualization on Time-series. Query-driven visu-
alization is effective when dealing with large datasets [Stockinger
et al. 2005]. Dynamic query provides direct interaction and instant
feedback when the user manipulates time-series [Hochheiser and
Shneiderman 2004]. KronoMiner [Zhao et al. 2011] utilized dynamic
query in their circular layout to provide flexible visual comparison
for time-series. Buono et al. [Buono et al. 2005] proposed pattern
search approach on time-series analysis to find similar occurrences,
and also used dynamic query to investigate results. There are other
works automatically detecting special subsequences using query
techniques, for example to find the most unusual time series sub-
sequences based on periodicity [Keogh et al. 2005], or to detect
periodicity and peak/pit [Andrienko et al. 2010]. Besides, Hao et
al. [Hao et al. 2011] conduct prediction on time-series with peak pre-
served. In scientific visualization, a globbing-based query language
is proposed to search user specific pattern in a large number of
time-series [Glatter et al. 2008]. In our system, dynamic query tech-
nique is used to help extract patterns from DEMETER time-series
with instant feedback from examples. We also propose a regular
expression-inspired query language to facilitate pattern search in
our heterogeneous spatiotemporal data.

Seismic Visualization. Research on seismic visualization receives
more attention in recent years. Researchers have studied visualiza-
tion on simulation data and field-measured data using 2D maps [Hi-
rahara et al. 2004] and 3D volumes [Hef3el et al. 2015; Hsieh et al.
2010]. Besides, catalog data provides detailed information about
earthquakes, e.g. location of epicenter, strike time, etc. Yuen et
al.[Yuen et al. 2005] proposed automatic clustering and visualiza-
tion on catalog data, attempting to reveal spatial features and pat-
terns of earthquake events. Dzwinel et. al. [Dzwinel et al. 2005]
also applied cluster analysis on the observed and synthetic catalog
data to find multi-resolution structures of earthquake patterns. In-
tegrating the catalog data with satellite-based observational data,
Yuan et al. [Yuan et al. 2010] proposed to use parallel coordinates
and dimension embedding techniques to study the multi-modal
data. Visualization of seismic-center distribution can also be done
with time-series analysis based on a 3D correlation graph [Naka
et al. 2006]. To our knowledge, there is no previous work analyzing
DEMETER data and earthquake catalog data with advanced visual
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analytics. Domain scientists show urgent needs to analyze their
intrinsic relationships in a more efficient way.

3 DATA DESCRIPTION AND PREPROCESSING

In this work, we develop a visual analytics system to analyze and
visualize the relationships between earthquake catalog data and
DEMETER data. We introduce these two kinds of data at first, then
describe briefly about Kriging interpolation we apply to DEMETER
data.

3.1 Data Description
DEMETER data were collected by the DEMETER satellite, which

was launched on June 29, 2004, and worked on a quasi sun-synchronous

circular orbit with an inclination of 98.23° and an altitude of 710
km. Several scientific sensors are conveyed to measure certain elec-
tromagnetic signals, e.g. electron density, ion temperature, etc. We
illustrate several consecutive tracks within one day in Figure 2(a),
where color encodes the value of electron density. Our DEME-
TER dataset is provided by China Earthquake Networks Center.
DEMETER samples in this dataset have twelve attributes, including
timestamp, longitude, latitude, track number, track direction and
seven other electromagnetic attributes. These attributes include
density of three kinds of ion, i.e. H*, He' and O*, and overall ion
density Nj, electron density N,, and temperature of ion and elec-
tron, T; and T, respectively. The satellite samples these attributes
about every three seconds. Figure 2(c) shows the electron density
along one track. The satellite worked from Oct. 2004 to Dec. 2010
with a total data size of 15GB.

The earthquake catalog dataset is obtained from the Advanced
National Seismic System catalog, which is hosted by the Northern
California Earthquake Data Center. It records the location (latitude
and longitude), timestamp, magnitude and depth of focus of earth-
quakes. In our system, to match DEMETER data, we only consider
earthquakes occurred in the same temporal range, which results in
645,619 earthquakes. DEMETER samples and earthquake records
are registered in a common geographic coordinate system, so that
unified exploration on the heterogeneous dataset is possible.

3.2 Kriging Interpolation for DEMETER Data

DEMETER data was obtained during the satellite circling around the
Earth, which made the data highly anisotropic. Figure 2(b) employs
a spatiotemporal cube for a closer look at the anisotropy. DEMETER
samples are dense along the longitude direction, but very sparse
along the latitude direction and time dimension. The sparsity poses
challenges in existing studies. Existing literatures have to brush
a local region to filter DEMETER samples for temporal analysis.
However, since these filtered samples spread over a local region,
spatial variation could affect the disturbances analysis. At the same
time, the sparsity along the time dimension makes it difficult to
conduct either minutely or hourly and daily analysis. Therefore,
to tackle the sparsity problem, we utilize interpolation to obtain
DEMETER samples for any location and any time.

Our interpolation is based on Kriging interpolation [Krige 1951]
which complies with the first law of geography, that is Everything
is related to everything else, but near things are more related than
distant things. The basic idea of Kriging interpolation is to model
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the relationships between distances and difference values from
existing samples. Then, by a linear combination of these samples,
the estimated value for any position can be obtained. For more
details, please check the original work.

To be specific in our scenario, for a fixed position in 3D space
(time, longitude and latitude), two pairs of tracks are nearest to
it comparing to all other tracks (Figure 2(b)). Every pair of tracks
has the same direction. To capture samples on these four tracks,
we need to set appropriate spatiotemporal extent around the po-
sition. The time span is set to +1, 600 minutes, since these four
tracks cover about 1, 400-1, 600 minutes (approximately one day).
The longitude range is set to +£25°, because each pair of tracks has
an offset of ~ 25° in longitude. As for the latitude range, since the
samples are dense along the latitude direction, we limit it to +5°
empirically. The above description shows a basic settings for inte-
gration. There is a possibility that the ionospheric changes between
day-time and night-time could overwhelm the disturbances cased
by seismic activity greatly [Némec et al. 2008]. So we allow Kriging
interpolation to be apply for day-time and night-time separately.
The interpolation result of attribute N; at a specific timestamp is
shown in Figure 2(d). Since the satellite did not pass by the North
and South Poles, there is no values in high-altitude regions.

The interpolated data provides at least no less information than
the original data, because Kriging interpolation gives exactly the
same values for the positions of existing samples. In our case stud-
ies, we have shown our system is able to reproduce discoveries
found by existing studies with interpolation. Yet, since the analysis
approaches are not the same, the analysis results are not always
consistent. But if we choose to accept The First Law of Geography
and Kriging interpolation based on it, analysis based on interpolated
data should be more reliable, because potential regional variations
are eliminated for the analysis in our approach.

4 OVERVIEW

Currently, the workflow of domain scientists is as follows. First, a
spatiotemporal extent is spotted out around an earthquake. DEME-
TER samples in the spatiotemporal extent are then filtered out for
analysis. Domain scientists will conduct either minutely or secondly
analysis based on the original samples, or hourly and daily analysis
with derived statistics such as mean or standard deviation. After
multiple case-by-case analyses, domain scientists may find some
common disturbance patterns, and then propose some hypotheses
which relate them with the earthquakes. However, there are three
major challenges domain scientists meet:

o Gaps exist between the visualization of the heterogeneous
data, which cost more efforts in analyzing their relationships.

o The parameter space of disturbance patterns lacks sufficient
exploration. The patterns usually come from direct obser-
vations and statistics, which could be hard to reveal the
intrinsic relationships.

o In most seismic literature, the disturbance patterns found in
the case-by-case workflow are not explored on other cases,
which is less convincing.

We proposed a visual analytics system coupled with query-
driven techniques to tackle these challenges. After multiple rounds
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Figure 2: Illustrations of the DEMETER data. (a) Tracks of the DEMETER satellite within one day, color encoding the elec-
tron density Ne. (b) A closer illustration of satellite tracks. (c) A line chart to show electron density N, along one track. (d)

Interpolation result of ion density N; at a specific timestamp.
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Figure 3: System workflow: spatiotemporal exploration, pattern extraction, hypotheses exploration, and pattern refinement.

of discussion with domain scientists, we summarized the following
analysis tasks that our system should provide.

e Support visualization and exploration of the heterogeneous
dataset in a unified spatiotemporal scene.

o Integrate the original workflow of pattern extraction into
our system in a visual query way, in order to provide more
convenient exploration on the parameter space of patterns.

o Extend the original workflow with hypotheses exploration,
so that domain scientists can test the hypotheses in a larger
set of other earthquakes.

The pipeline of our system is shown in Figure 3. The map view
and the timeline view provide a unified scene to visualize and
explore the heterogeneous dataset. Earthquake events are selected
by interactions in these two views, and then time-series around
the epicenters are obtained by Kriging interpolation for pattern
extraction. Users extract and formulate patterns with the help of
the matrix view and the curve view, and then search patterns in
earthquakes on a global scale. The search results are visualized in
the map view, timeline view, and the curve view, where users are
able to refine patterns and conduct search iteratively.

5 SYSTEM DETAILS

Our system has two major parts: the spatiotemporal exploration
part and the pattern extraction and hypotheses exploration part.
Working together with these two parts, domain experts are able to
generate and explore hypotheses.

5.1 Exploration on the Heterogeneous Dataset

Our system focuses on a heterogeneous dataset, which involves
the earthquake catalog data and the DEMETER data. A unified
spatiotemporal scene is constructed to connect earthquakes with
their possible related DEMETER samples. Users are able to explore
their basic relationships in the map view and the timeline view.

Earthquakes and DEMETER samples (within a time span speci-
fied by the timeline view) are visualized on a map. We draw points
to represent earthquakes (Figure 1(a)) or DEMETER samples (Fig-
ure 2(a)). Sizes and colors are used to encode magnitudes of seismic
events or ionosphere attributes of DEMETER samples. A continous
color scale of green-orange-red is used. In the control panel (Fig-
ure 1(f)), users can adjust paramters related with the visualization
of map, seismic events, and DEMETER samples. By brushing a
region, earthquake events and DEMETER samples are filtered out
for the following analysis.

Users can observe the temporal distribution of seimic events, and
control the time range for analysis in the timeline view (Figure 1(b)).
The x- and y-axis represent the strike time and the magnitude of
earthquakes respectively. Earthquakes are drawn with the same
color scale as in the map view. Minor earthquakes (Mg < 3) are
aggregated in the theme-river form to avoid clutter. Besides, our
timeline view is designed to be multi-level to achieve the scalability
in both detail case investigation and long-term pattern analysis.
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5.2 Pattern Extraction and Hypothesis
Exploration

The most important function of our system is to utilize query-driven
techniques to help scientists investigate the relationships between
earthquakes and ionosphere disturbances. Our system not only
supports the workflow of pattern extraction, but also extends it
to explore hypotheses on a global scale (Figure 3). The results of
hypotheses exploration are also visualized to provide intuitive feed-
back about the applicability of hypotheses to help scientists refine
disturbance pattern. We will introduce the definition of the pattern
at first, then describe these steps in the following subsections.

5.2.1 Definition of Patterns. Domain scientists are interested in
certain disturbance patterns which are observed in the evolution
of ionosphere attributes. Such disturbance patterns can be literally
described as bursting, sharply decrease, consistent increase, and so
on. However, this form of description is not accurate for a program
to understand. We provide a mathematical definition to describe a
pattern, which is inspired by the regular expression.

The disturbance pattern is defined as a ordered sequence of in-
tervals, each of which represents the lower bound and upper bound

of a timestep, e.g. P def a1, b1][az, b2] - - - [am, bm], where a; < b;
for every i. For a time-series, (to, t1,- - - , {n), We say a subsequence
{tp,tp+1,"** > tp+m)(0 < p < n — m) matches the pattern P, if the
following condition is satisfied: a; < % —1<b;, for0<i<m.
Here we choose relative values instead of absolute values since sci-
entists care more about changes of values instead of original values.
a(.y, by can also use a literal value min or max to represent +oco re-
spectively. To enhance the descriptive capability of the definition,
is allowed to attach to an interval [a;, b; ], which means the interval
can span multiple timesteps. The * makes it convenient to describe
disturbance patterns of consistent changes. The definition above
acts as an intermediate between users and system, which provides
not only readability but also powerful descriptive capability.

5.2.2  Pattern Extraction. Most existing seismic works extract
interesting patterns from a single or a few earthquakes, and then
propose hypotheses about the relationships between ionosphere
disturbances and earthquakes based on discovered patterns. Our
system supports this search-by-example workflow of pattern ex-
traction.

Retrieve DEMETER time-series. The extraction starts by select-
ing earthquakes from catalog data in the map view as described
before. A spatiotemporal extent is constructed being centered at
each earthquake (both location and time) (Figure 1(a,b)). Then the
spatial region is discretized to grids with certain spatial resolution.
A time-series is sampled at each grid point (location) using Kriging
interpolation with certain temporal resolution. To support differ-
ent analysis requirements, seismic scientists can adjust parameters
such as spatiotemporal extent, spatial resolution, and temporal res-
olution (Figure 1(e)). These retrieved DEMETER time-series are
visualized the matrix view and the curve view for following pattern
extraction steps.

Choose time-series of interest in the matrix view. In the ma-
trix view (Figure 4), every row represents one time-series of an
ionosphere attribute, while each cell corresponds to one timestep,
with color encoding the relative values to a reference timestep. To
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help analyze group behaviors in time-series, we provide sorting
operations according to their geo-locations, their distances to the
epicenter, or their mutual similarities. The similarity metric is de-
fined as the accumulation of timestep-wise differences right now.
Users can focus on a subset of time-series by brushing to extract

disturbance patterns.
Sorting gperations I Attribute selection tab

G Strike time
DEMETER -
time-series —

Increase

Decrease|

Reference time Relative time axis

Figure 4: Fetched DEMETER time series are shown in the
matrix view, where each row represents one time-series. In
the current setting, time-series are ordered based on mutual
similarities.

Adjust temporal range of interest in the curve view. The selected
time-series are visualized in the curve view (Figure 3 - Curve View)
adopting the metaphor of parallel coordinates. Each axis represents
one timestep, while position in the axis indicates the relative values
to a reference timestep. To avoid severe clutter caused by the large
number of time-series, we visualize them in a density-map way,
where light gray color indicates high-density area, and vice versa.
Based on the behaviors of time-series, scientists can move the ref-
erence timestep to where patterns may exist. When moving the
reference timestep, we show curves which represent five-number
summary (median, 1st/3rd quartile, and minimum/maximum) of

every timestep for instant feedback.
Relative
value axis gy

™~
eference
imestep

044 ob)
Relative time axis

Figure 5: Pattern extraction panel in the curve view. User can
extract disturbance patterns by dynamic query with instant
feedback from sample time-series.

Formulate patterns by interaction. Users enter the pattern ex-
traction panel (Figure 5) in the curve view. Only a small window of
time axes after the reference timestep are focused, while others are
squashed. The window represents the to be extracted pattern, while
each time axis corresponds to one interval in the pattern. Users can
freely add an axis to the window or remove one, which indicates an
interval is added or removed in the pattern. To adjust the bounds of
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each interval, users can drag the slider on the corresponding time
axis. Here, we extend the two ends of axes a little to represent min
and max respectively. In addition, users can double-click a time axis
to turn on/off the * mark. Using interactions described above, users
are expected to extract patterns of interest within the window, and
formulate the query using our pattern definition in a visual way.

Our pattern extraction works in a search-by-example way, that is
in the whole process, the example time-series always exist as hints
to assist users. When dragging the sliders, time-series that match
the pattern are highlighted in blue. Besides, the distribution curve
of values is attached on each time axis. For each axis, we also show
how much example time-series have passed the partial pattern
which spans from the first axis till itself. All these features are
designed to help scientists better extract the disturbance patterns.

After the disturbance pattern extracted, scientists are able to pro-
pose certain hypotheses which relate the properties of earthquake
events with the disturbances patterns.

5.2.3 Hypotheses Exploration on a Global Scale. After we extract
disturbance patterns, a natural idea is to test the proposed hypothe-
ses on other earthquakes. Current seismic researches are limited
due to analysis tools, which are unable to explore hypotheses on a
larger spatial and temporal scale. In our system, users are allowed
to explore hypotheses on earthquakes occurred all over the world.
Firstly, the system filter out earthquakes based on users’ setting, e.g.
magnitude range, temporal range, etc. DEMETER time-series are
generated around every earthquake with the same way as described
before. Then, the system searches the disturbance pattern in all
time-series and obtains the matched locations and timesteps.

The search results are visualized in the map view and timeline
view. Earthquakes are colored in yellow or blue to indicate whether
pattern is found or not around the epicenters (Figure 7(a)(b)). When
clicking on one earthquake, a bar chart is used to show the ratio of
matches in every timestep (Figure 7(c)). Here the ratio of matches
is defined as the ratio of matched locations in all interpolated grid
points. In this way, scientists can observe when the disturbances
exist compared to the strike time. Besides, those locations with
patterns found are drawn on the map (Figure 7(c)), which provides
possible hints to relate the locations of disturbances with earth-
quakes. At the same time, those matched time-series are overlaid
in the curve view using a different color (Figure 3 - Visualization of
Matches) which provides hints to refine the disturbance patterns.

6 CASE STUDIES

We conduct three case studies to demonstrate the usage of our
system. At first, we focus on a single earthquake and reproduce
the exploration process from a previous seismic work. Then, we
describe how to use our visual query interface to extract patterns
from example DEMETER samples, and how to explore hypotheses
on earthquakes around the world. At last, we conduct global explo-
ration of two hypotheses which come from seismic literature, and
give some statistical results.

6.1 Analysis on 2008 Wenchuan Earthquake

Wenchuan M; 8.0 earthquake occurred at 06:28 (UTC) on May
12, 2008 and was located in Sichuan Province (31.0°N, 103.4°E),
China. Disturbances in electron density N, were found near the
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epicenter (within +10° in both latitude and longitude) [He et al.
2011]. To be specific, a rectangular region is spotted centered at
the epicenter. DEMETER samples in that region are filtered out.
From these samples, daily averages are calculated to derive a time-
series, where they only consider the time span from 15 days before
the earthquake to 15 days after. Those timesteps whose values
are beyond one standard deviation of the full-time average are
considered as disturbances. In this way, several peaks and valleys
are identified. We try to reproduce the exploration process.

A spatial region is spotted which spans from 22.9°N, 94.4°E to
39.7°N, 111.6°E. Then temporal range is set to 15 days before and
after the strike time. Then time-series are sampled from the spa-
tiotemporal extent using Kriging interpolation. We then set the
disturbance pattern as [0.10, max][min, 0], so as to identify peaks
of N, around the epicenter. We set the temporal resolution to 8
hours for a finer analysis.

15d

Figure 6: Visualization of pattern search results of attribute
Ne for Wenchuan earthquake. Visualization of matched
locations at selected timesteps before (a) and after (b)
Wenchuan Earthquake happened. (c) A bar chart showing
the ratio of matches at each timestep.

Figure 6 shows the visualization results of matched locations
and timesteps in both timeline view and map view. In the map view
(a)(b), those areas with the disturbances pattern found can be clearly
observed. In the timeline view (c), the ratio of matches are visualized
as a barchart. From the visualization, we can identify several high
peaks of disturbances in 15 days, 11-13 days and 2 days before the
earthquake, and in 0-3 days and 5-6 days after the earthquake. Most
of these peaks agree with the discoveries in the previous work [He
et al. 2011], while some are new in our system which we believe
are caused by the differences of the analysis methods.

6.2 Pattern Extraction from Examples and
Hypotheses Exploration

Our system is capable of extracting disturbance patterns from exam-
ple DEMETER time-series, and then exploring these pattern-based
hypotheses globally. In this case, we demonstrate the capability.
Users firstly select several earthquakes from the catalog data. The
spotted regions are shown in Figure 1(a)), and the temporal range
spans from April 24, 2008 to May 14, 2008 (Figure 1(b)). For every
earthquake, users set a spatiotemporal extent centered at the epicen-
ter, in this case +5° for space and +5 days for time. The system then
derives time-series in this extent with interpolation. In the matrix
view, these time-series are sorted based on their similarity (Figure 4).
One group of time-series is observed to have a peak just after the
earthquake happens, and has consistent high values 4 days after the
strike time. The other group shows low values in the second days
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before the earthquake happens. These two groups of time-series
are selected for pattern extraction (Figure 5). In this case, a peak
pattern starting from 2 days before the strike is extracted from
the latter group, and a regular expression [0.34, 0.37][0.14, 0.19] is
formulated to describe such pattern. We search this disturbance
pattern in earthquakes which satisfy 5.0 < M; < 6.0 and occurred
in the year 2008.

The search results are visualized in both the map view and the
timeline view. In the map view (Figure 7(a)), we observe that un-
matched earthquakes are mainly distributed in the low-latitude
region, especially near the equator. By clicking on earthquakes
of interest in the map view or the timeline view, users are able
to investigate where and when the disturbance pattern is found,
which may help scientists to proposed more specific hypotheses. In
Figure 7(c), the earthquake (1) and (3) show very different spatial
distribution of the matched locations, and the pattern is found at
different timesteps. While for the earthquake (2), it shows strong
signals that the disturbance happens just one day before the earth-
quake happens. Based on the observations, scientists are able relate
the properties of earthquake events and the disturbances, such as
the time, location, direction, degree, etc. Then, users can refine
the query conditions based observations on one example, and re-
conduct query again to further study if the proposed relationships
widely exist for all other earthquake events.

0
T . .—;s -
—

2008-01-20 2008-01-20 2008-01-20 2008-09-09 2008-09-09 2008-09-10 2008-08-30 2008-08-30

12:00 14:00 16:00 21:00 23:00 01:00 19:00 22:00
L — A L — N
Earthquake 1) 2) (3)
Location 51.4°N, 98.1°E 20.3°S, 69.2°W 42.7°N, 83.9°E

Timestampe 2008-01-19 07:00 2008-09-10 16:00 2008-08-30 12:00
Magnitude (Ms) 5.1 5.7 53

(0

Figure 7: The pattern search results are displayed on the map
view (a) and the timeline view (b). 3 events are chosen for a
closer investigation of temporal and spatial distributions (c).
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6.3 Exploration of Existing Hypotheses

In this case, we explore two existing hypotheses from seismic lit-
erature, and to investigate how much these hypotheses related to
occurrences of earthquakes. We consider the following two dis-
turbance patterns: peaks in electron density N: the disturbance
pattern is formulated as [0.34, 0.37][0.14, 0.19], and resolution of
time-series is set to 0.8 day; consistent increases in electron den-
sity N [Zhang et al. 2010], which is found in the 2009 Sumatra
earthquake: the pattern is set as [0.03, 0.07][0.20, 0.23][0.40, max].
Earthquakes occurred in the year of 2008 are taken into our consid-
eration, and are grouped based on their magnitudes.

Search results for these two patterns are shown in Table 1. We can
observe that in more than 60 percent of earthquakes the disturbance
pattern of peak is found, while more than 75 percent of earthquakes
have the consistent increase pattern. The consistent increase pattern
is shown to be more common than the peak pattern. We also found
these two disturbance patterns are more common in the group [0-3],
especially for the peak pattern. While for the group [6-9.5], these
two patterns are less likely to be found.

We should note such statistics do not directly indicate correlation
or causality between seismic events and ionospheric disturbances.
A full assessment of the hypotheses is still required. Nevertheless,
our system provides a powerful tool for domain scientists to gain a
deeper understanding of their scientific hypotheses than before.

Table 1: Statistic results of hypotheses exploration.

Pattern 1: peaks
Mag. >6 5-6 4-5 3-4 0-3
Matches 68 395 957 714 399
Total 107 579 1413 1078 500
Ratio 63.6% | 68.9% | 67.6% | 66.2% | 79.8%
Pattern 2: consistent increases
Mag. >6 5-6 4-5 3-4 0-3
Matched 81 465 1129 854 414
Total 107 579 1413 1078 500
Ratio 75.7% | 79.9% | 80.3% | 79.2% | 82.8%

7 EVALUATION AND DISCUSSION

We evaluate the system from multiple perspectives. Firstly, the
results of Kriging interpolation (Figure 2(d)), as the basis of our
system, are confirmed by our domain collaborators. Secondly, we
have reproduced the original workflow with a case which has been
studied in seismic community before. Most results of our approach
agree with those in the previous work. While for our new findings,
we think they come from the different analysis methods, especially
the Kriging interpolation. Right now, because of the lack of ground
truth or auxiliary datasets, we are unable to determine whether
they are false-positive or not. But since Kriging interpolation is
widely used in geography, we have confidence in our approach.
Thirdly, we also received the feedback from our domain collabora-
tors. The unified exploration for the heterogeneous dataset, and the
query-based hypotheses exploration were appreciated. They said
the visualization of both single earthquake exploration and hypothe-
ses exploration gave very direct spatiotemporal indicators for the
relationships between earthquake events and disturbances. Though
powerful enough, the pattern extraction function was complained
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as complicated to learn. At the same time, the exacted patterns, as
well as the following proposed hypotheses based on them, were not
fully recognized from statistic results, as we have shown in Figure 7.
They actually need further investigations, but our system could
not provide adequate guidance. They also suggested to analyze the
relationships with multiple attributes simultaneously. We would
like to improve these features in the future work, and try to balance
the complexity and functionality of our system.

Our system workflow involves lots of parameters to be decided,
e.g. the spatial and temporal resolution when extracting time-series
around earthquakes (Figure 1(e)). Different parameter settings could
influence the analysis results. Currently users can only set these
parameters empirically. But in the future, we need to provide formal
sensitivity analysis for these parameters to help decide their choices.
Yet, for the sensitivity of disturbance patterns, we have provided
lots of derived information from example time-series, which can
be treated as instant sensitivity feedback.

8 CONCLUSION

In this paper, a visual analytics system is proposed to explore the
relationships between ionosphere disturbances and earthquakes.
Our system supports pattern extraction from earthquakes using the
visual query, which improves the efficiency of the original workflow.
Moreover, we extend the workflow with hypotheses exploration
on a global scale, where domain scientists can acquire a deeper
understanding of the intrinsic relationships between earthquakes
and ionosphere disturbances. In the future, we would like to conduct
formal sensitivity analysis for parameters, and multivariate analysis.
We also want to improve the usability of our system.
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