
Dynamic Load Balancing Based on Constrained K-D Tree
Decomposition for Parallel Particle Tracing

Jiang Zhang, Hanqi Guo, Member, IEEE, Fan Hong, Xiaoru Yuan, Senior Member, IEEE,
and Tom Peterka, Member, IEEE

Abstract—We propose a dynamically load-balanced algorithm for parallel particle tracing, which periodically attempts to evenly
redistribute particles across processes based on k-d tree decomposition. Each process is assigned with (1) a statically partitioned,
axis-aligned data block that partially overlaps with neighboring blocks in other processes and (2) a dynamically determined k-d tree
leaf node that bounds the active particles for computation; the bounds of the k-d tree nodes are constrained by the geometries of
data blocks. Given a certain degree of overlap between blocks, our method can balance the number of particles as much as possible.
Compared with other load-balancing algorithms for parallel particle tracing, the proposed method does not require any preanalysis,
does not use any heuristics based on flow features, does not make any assumptions about seed distribution, does not move any data
blocks during the run, and does not need any master process for work redistribution. Based on a comprehensive performance study
up to 8K processes on a Blue Gene/Q system, the proposed algorithm outperforms baseline approaches in both load balance and
scalability on various flow visualization and analysis problems.

Index Terms—Parallel particle tracing, dynamic load balancing, k-d trees, performance analysis.

1 INTRODUCTION

Distributed and parallel particle tracing, which computes the move-
ments of many massless particles that are released in the flow field, is a
fundamental technique in large-scale flow visualization and analysis.
Applications include visualizing streamlines and pathlines, generat-
ing streamsurfaces [9], computing finite-time Lyapunov exponents
(FTLEs) and Lagrangian coherent structures (LCSs) [11], studying
teleconnections [17], and analyzing differences in numerical ensem-
bles [13]. Parallel particle tracing enables these analyses to be run on
clusters or supercomputers and to handle large-scale data generated
from computational fluid dynamics, combustion, climate, weather, and
biomedical simulations.

We focus on the load balance—a known hard problem and key to
achieving scalability—in parallel particle tracing. The load-balancing
problem exists in both task-parallel and data-parallel particle tracing
methods, which are the two basic parallelism strategies. In the task-
parallel methods, particles are statically distributed to parallel processes;
each process has access to the whole data. Processes are unbalanced
because of the early termination of some particles that travel out of the
domain or hit critical points where the velocity is zero. In the data-
parallel methods, the flow data are statically partitioned into blocks and
distributed to processes; particles exchange between processes to finish
the tasks. Processes are unbalanced because some blocks may contain
more complex features than others, such as vortices that trap particles
locally.

In this paper, we propose a dynamically load-balanced algorithm
for parallel particle tracing using k-d (short for k-dimensional) trees.
Our motivation is based on the successful use of k-d trees to balance
workloads in N-body simulations [6], Delaunay tessellations [23], clus-
tering [10], and sort-first parallel rendering [21]. In these applications,
k-d trees are used to evenly (re)distribute particles, data points, or
pixels across parallel processes. As illustrated in a four-process run

• Jiang Zhang, Fan Hong, and Xiaoru Yuan are with Key Laboratory of
Machine Perception (Ministry of Education), School of EECS, Peking
University. E-mail: {jiang.zhang, fan.hong, xiaoru.yuan}@pku.edu.cn.

• Hanqi Guo and Tom Peterka are with the Mathematics and Computer
Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
E-mail: hguo@anl.gov, tpeterka@mcs.anl.gov.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

(Figure 1(a)), each process has a k-d tree leaf node, and particles are
evenly distributed into different processes periodically. However, the
redistribution requires full data duplication over all parallel processes,
because processes may have particles that are located anywhere in the
data domain, making the algorithm not scale on supercomputers.

We overcame this problem by a novel redesign of k-d tree decom-
position, namely, the constrained k-d tree, to redistribute particles in
the data-parallel particle tracing. In this design, each process is as-
signed with (1) a statically partitioned, axis-aligned data block that
partially overlaps with neighboring blocks in other processes and (2)
a dynamically determined k-d tree leaf node that bounds the active
particles for computation. The bounds of k-d tree nodes are constrained
by the geometries of the data blocks. In static data partitioning, we
initially subdivide the domain into n non-overlapping, equal-sized, and
axis-aligned blocks, where n equals the number of processes. We then
expand the blocks to overlap with other blocks as much as possible,
given the memory limit of the process. The expanded parts, called
ghost layers, essentially maximize the overlaps between blocks under
the memory limit and thus enable the k-d tree decomposition with con-
straints. During run time, we periodically redistribute particles based
on the constrained k-d tree decomposition to balance the workload.
The splitting planes in the k-d tree decomposition are limited to the
overlapped regions of the ghost layers. Thus the decomposition ensures
that the redistributed particles are inside the bounds of the correspond-
ing blocks, as shown in Figure 1(b). In the extreme case that each
process can fit the whole data, our algorithm can evenly redistribute the
particles because there are no constraints.

The proposed method can improve load balancing in both full- and
local-range flow visualization and analysis techniques for steady and
unsteady flows. Full-range analyses such as FTLE computation need to
trace densely-seeded particles over the whole domain, while local-range
analyses such as source-destination queries place seeds only locally in
the domain. The constrained k-d tree can be used for both static and
time-varying flows in both 2D and 3D meshes.

We evaluate our method with various flow visualization and analysis
tasks on Vesta, a Blue Gene/Q supercomputer at Argonne National
Laboratory. We show the performance benchmarks with up to 8K
parallel processes. Compared with the baseline data-parallel parti-
cle tracing method, our constrained k-d tree approach significantly
improves the performance in both load balancing and scalability. Com-
pared with other load-balancing algorithms for parallel particle tracing,
the proposed method does not require any preanalysis, does not use
any heuristics based on flow features, does not make any assumptions

Initial distribution Redistribution Redistribution Redistribution

Initial distribution Redistribution Redistribution Redistribution

(a) General k-d tree decomposition

(b) Our constrained k-d tree decomposition

Fig. 1. Example of particle redistribution during parallel particle tracing through the general k-d tree decomposition and our constrained k-d tree
decomposition, respectively. In (a) and (b), the solid lines split the particles as balanced as possible. In (b), the dashed lines show the overlapped
regions of ghost layers that limit the splitting lines.

about initial particle distribution, does not move any data blocks during
the run, and does not need any master process for work redistribution.

In summary, the contributions of this paper are twofold:

• A dynamically load-balanced parallel particle tracing algorithm
based on the redesigned k-d tree decomposition that is constrained
by static data partitions;

• A comprehensive performance study of our algorithm with differ-
ent datasets on a Blue Gene/Q system.

In Section 2 we briefly introduce the background of this work. In
Section 3, we give an overview of our method. The initialization
and run-time load-balanced parallel particle tracing are described in
Section 4 and Section 5, respectively. A detailed performance analysis
is given in Section 6 to demonstrate the effectiveness of our method,
followed by discussion in Section 7. In Section 8, we conclude our
paper and discuss future work.

2 RELATED WORK

In this section, we review related work on load balancing in parallel
particle tracing and on load-balancing algorithms based on k-d trees.
We also review advection-based flow visualization and analysis appli-
cations.

2.1 Load Balancing in Parallel Particle Tracing
Load-balanced parallel particle tracing in large-scale flow data is diffi-
cult because of the varying computation and communication workloads
in both task- and data-parallel methods.

In task-parallel methods, particles are statically distributed to pro-
cesses. The workload among the processes is unbalanced because
the particles have different trajectories. Work stealing and work re-
questing [8, 24] can be used to redistribute tasks among processes.
These methods, however, require a central master process for schedul-
ing, which becomes a bottleneck to scale up. Moreover, task-parallel
methods usually have higher I/O cost than data-parallel methods have,
because processes need to load data out of core when the data is larger
than the memory in each process. Our method is instead based on
data-parallel methods. Compared with the task-parallel load-balancing
methods [8, 24], our method has much lower I/O overhead, and we do
not need any master processes to redistribute tasks.

In data-parallel methods, the input data is partitioned and distributed
to processes statically; particles are exchanged between processes to
finish the tasks. Both static and dynamic load-balancing algorithms
are proposed for data-parallel particle tracing. Static load-balancing
algorithms usually require data preprocessing and flow feature analysis.
Nouanesengsy et al. [26] proposed a method to construct flow graphs
that characterizes both workload and flow directions of the data in
preprocessing and then statically distributes the data blocks based on
the optimized partitioning of flow graphs. Chen and Fujishiro [7] in-
stead partitioned the flow data in irregular shapes based on flow feature
extraction. The irregular partitions can also be achieved by hierarchical
clustering [34]. Dynamic load-balancing algorithms redistribute and
move data blocks periodically during the run. The major costs are
twofold: from the scheduling algorithm that decides how blocks should
be redistributed and from the data movement. For example, Peterka
et al. [28] used a recursive coordinate bisection to repartition the dis-
tribution of data blocks. The repartitioning is performed periodically,
and data blocks are moved on the fly. Lu et al. [19] proposed a work-
stealing approach to achieve dynamic load balancing in streamsurface
generation. Data blocks are moved to the processes that have lower
workload.

To improve scalability, researchers have proposed hybrid methods
that combine task and data parallelism, but the load-balancing issues
are not well studied in these methods. For example, Kendall et al. [17]
proposed the DStep framework that schedules tasks in a multitiered
manner based on static data partitioning. DStep has also been extended
to visualize ensemble differences by pathline advection analysis [13]
and to analyze multivariate unsteady flow data with Lagrangian-based
attribute space projection [12]. Zhang et al. [36] also modified the
DStep framework to generate high-order access dependencies in a
data-preprocessing stage.

We regard our load-balanced particle tracing algorithm as a hybrid
method that distributes data blocks statically and redistributes particles
dynamically. Comprehensive comparisons with previous methods are
discussed in Section 7.

2.2 Load Balancing Based on K-D Trees
A comprehensive review of load balancing for distributed and parallel
computing in general is out of the scope of this paper. We instead focus
on load-balancing algorithms that are based on k-d trees.

The k-d tree, which was invented by Bentley [4], is a data structure

Block expansion with

data overlapping

Collective particle

redistribution

Initial data domain

partitioning

Independent

particle tracing

Flow data

(steady/unsteady)

Load-Balanced ComputationInitialization

Fig. 2. Workflow of our load-balanced parallel particle tracing method. The raw flow data is first partitioned into blocks in the initialization stage.
These blocks are further expanded by adding ghost layers on them to maximize the overlap with other blocks as much as possible. In the computation
stage, collective particle redistribution and independent particle tracing are alternately executed to achieve load balance dynamically.

that splits k-dimensional data for efficient range queries and k-neighbor
queries. The k-d tree data structure is essentially a balanced binary tree;
each leaf node of the tree is a subdomain of its parent.

K-d trees have been used in load balancing of various applications
in computational sciences, database, data analysis, and visualization.
In computational sciences, k-d trees are used to build hierarchies of
particles in order to improve scalability in large N-body cosmology
simulations [3,6] and molecular dynamics simulations [31]. In database
applications, k-d trees can be used for fast query of images [1]. In data
analysis, k-d trees are widely used in distributed and parallel clustering
algorithms, such as k-means [10] and the DBSCAN algorithm [27]. In
visualization, the community has been extensively using k-d trees to
address various load-balancing problems. For example, Morozov and
Peterka [23] proposed a load-balanced Delaunay tessellation algorithm.
Input points are partitioned with k-d trees and distributed to different
processes for load-balanced computation. The positions of these points
are statically fixed when performing the computation of Delaunay
tessellation. In sort-first volume rendering, k-d trees are used to split
the image space to balance the parallel rendering costs [21]. Bounding
volume hierarchies [33] or particle distribution schemes based on z-
ordering [30] that are similar to k-d trees are also used in parallel
volume rendering. The path of each ray in these volume-rendering
methods is determined by its initial position. On the contrary, in particle
tracing, the positions of the particles always change over time, making
it difficult to achieve load balance statically. Our method addresses this
problem by dynamically performing k-d tree decomposition during run
time to redistribute particles.

The implementation of k-d trees must be efficient and scalable
for distributed applications. Serial k-d tree implementations include
nanoflann1, but they are not able to scale in parallel. The previous
version of our work [37] used nanoflann to implement k-d tree de-
composition. Zhang et al. [35] proposed the first scheme to distribute
k-d trees in peer-to-peer systems. Morozov and Peterka [23] further
improved the algorithm to scale k-d tree decomposition for efficient
Delaunay tessellation.

In our study, we redesigned the parallel tree construction algorithm
for constrained k-d trees. We further use the constrained k-d trees to
balance the number of particles in parallel processes in order to achieve
dynamic load balancing.

2.3 Advection-Based Flow Visualization and Analysis
We review advection-based flow visualization and analysis appli-
cations that can benefit from scalable and parallel particle tracing.
Advection-based flow visualization and analysis methods include
texture-based [18], geometry-based [20], and part of feature extraction
and tracking techniques [29]. Based on the distribution of particle seed
locations, we subdivide the techniques into two categories: full-range
analysis and local-range analysis.

In local-range analyses, particles are seeded in sparse and local
regions in order to understand part of the data. For example, seeds of a
streamsurface are usually distributed on a line or curve in 3D flows [9].
A source-destination query [17] needs to seed particles only in a local
region, instead of the whole domain.

In full-range analyses, particle are seeded densely in the entire data
domain in order to analyze and visualize comprehensive features in
the flow. For example, in texture-based visualization, line integral

1https://github.com/jlblancoc/nanoflann

convolution (LIC) [5] and unsteady flow LIC (UFLIC) [32] need to
compute streamlines and pathlines, respectively, from all locations.
Although methods have been proposed to reduce the computational
cost of tracing densely-seeded particles, such as partial path reuse [15]
and adaptive refinement [2], comprehensive analysis of the computation
of FTLEs and LCSs [14] still needs scalable and parallel tracing of
densely-seeded particles [25].

Our study can be used to improve load balancing in both full- and
local-range analyses. Our method is also compatible with both static
and time-varying flows. More details and evaluations are in the follow-
ing sections.

3 OVERVIEW

As described in Algorithm 1 and illustrated in Figure 2, the pipeline of
our method consists of a initialization stage and a computation stage.

The initialization stage has several steps. We first partition the input
data into non-overlapping, equal-sized, axis-aligned blocks and then
expand the ghost layers of each block up to the memory limit of each
process. The blocks are loaded into memory, and the particles are
initialized in the corresponding blocks. More details are explained in
Section 4.

The computation stage is an iterative process that alternately exe-
cutes the particle redistribution and particle tracing. In the particle
redistribution phase, the parallel processes collectively exchange un-
finished particles based on the constrained k-d tree decomposition. In
the particle tracing phase, each parallel process independently traces
its unfinished particles without communication. More details are given
in Section 5.

Algorithm 1 Main function of each parallel process in our method,
where comm is the communicator, and local block and local particles
are the block and particles that are distributed to the process, respec-
tively.

initialize(comm, local block, local particles) . Section 4
while !all done do

redistribute particles(comm, local particles) . Section 5.1
trace particles(local block, local particles) . Section 5.2

end while

4 ALGORITHM INITIALIZATION

We initialize data blocks and particles for the dynamically load-
balanced parallel particle tracing.

Domain partitioning We partition the input data by iteratively
splitting the domain in each dimension; the order of dimensions is con-
sistent with that of k-d tree decomposition. Without loss of generality,
we assume the number of processes n is a power of 2; otherwise we
can subdivide each dimension based on the prime factorization of the
number. For example, in 3D data we evenly subdivide the domain along
the x-axis into two blocks and then further evenly split each block along
the y and z axes. After the z-axis, the next dimension to subdivide is the
x-axis. The iteration stops when the number of blocks equals n. Each
process then owns single block. The outputs of the domain partitioning
are n non-overlapping, equal-sized, axis-aligned data blocks.

Block expansion We maximize the overlaps between blocks by
adding ghost layers on these blocks. As shown in Figure 3, each block is
expanded in all dimensions so that the block overlaps with its neighbor

h

(a) (b)

(c) (d)

Block 1
Block 2

Block 3

Block 4

Ghost layer Ghost layer

Ghost layer
Ghost layer

Fig. 3. Illustration of four expanded blocks in 3D.

Overlapped regions

Non-overlapped regions

Splitting plane

Splitting plane

Splitting plane

Fig. 4. Illustration of constrained k-d tree decomposition in 3D. The
splitting planes are constrained in the overlapped regions of ghost layers.

blocks. The block expansion enables the k-d tree to split the domain in
the overlapped regions, as explained in the next section. The thickness
of the block is bounded by the available memory in the process. In the
extreme case when the memory is large enough to fit the whole dataset,
each process keeps a complete copy of the data.

Block I/O We load the expanded data blocks in parallel. The par-
allel I/O is handled by the block I/O layer (BIL) [16], which essentially
uses parallel I/O to load expanded data blocks in a scalable manner.

Particle initialization We load input particles and distribute them
into different processes. Each particle is assigned to the block whose
“core” region excluding ghost layers contains the particle.

5 LOAD-BALANCED PARALLEL PARTICLE TRACING

The computation stage (the loop in Algorithm 1) of our algorithm
alternates the collective particle redistribution and the serial particle
tracing for dynamic load balancing.

5.1 Particle Redistribution Based on Constrained K-d
Trees

Constrained k-d tree construction is illustrated in Figures 4 and 5. The
algorithm cycles through each dimension to split the data domain. For
each dimension, the algorithm attempts to find an axis-aligned median
plane that can split particles evenly. If the plane is not in the overlapped
regions between the two neighbor blocks, we use the boundary of either

block that can balance the number of particles. As shown in the 2D
example in Figure 5, if the coordinate of the plane is greater than the
upper bound of the red block in x direction, we split the dimension
with the right boundary of the red block; if the coordinate of the plane
is less than the lower bound of the blue block in x direction, we split
the dimension with the left boundary of the blue block; otherwise we
choose the median plane in the overlapped region of the two blocks.
The rule is similar in 3D, as illustrated in Figure 4.

We redesign the distributed k-d tree decomposition [23] to constrain
the splitting planes, as detailed in Algorithm 2. Each iteration has two
key parts: median selection and particle exchange. Initially, we group
all processes in a group. In the first iteration, each process computes a
local histogram of its particles and sends it to a designated root process
within the group for gathering. The root process then picks up a median
plane that is constrained in the overlapped regions, as described above,
and broadcasts it to all other processes within the group. The selected
median value splits all the particles into two parts, trying to make each
part have particles as even as possible under the geometry constraints.
For particle exchange, the processes are divided into two subgroups.
Each process from one subgroup chooses a partner from the other
subgroup to exchange particles, so that half the processes receive the
particles whose projection onto the first coordinate is less than the
picked median value, while the other half receives particles whose
projection is more than the value. Given n processes, the algorithm will
repeat in each process subgroup by cycling through the coordinates for
splitting until log2 n iterations are executed.

Algorithm 2 redistribute particles(comm, local particles)
dim← 0
rank← comm.rank
domain← data.domain . domain of the input flow data
group←{0,1, . . . ,n−1} . n is the number of processes
Nr← log2n . number of iterations
for i < Nr do

root← group[0] . rank of the root process in the group
local histogram← compute local histogram(local particles)
global histogram← comm.gather(group, root, local histogram)

. gather to the root
if rank = root then

range← compute overlapped region(domain, dim) .
overlapped region of ghost layers

median ← compute bounded median(global histogram,
range, dim)

end if
median← comm.broadcast(group, root, median) . broadcast

from the root
partner← root + (rank + group.size/2) mod group.size . rank

of the partner process in the group
particles low← {p ∈ local particles | p[dim] < median}
particles up← {p ∈ local particles | p[dim] > median}
comm.sendrecv(rank, partner, particles low, particles up) .

swap particles
if rank < group.size/2 then . bisect the group

local particles← particles low
group← {x ∈ group | x < group.size/2}

else
local particles← particles up
group← {x ∈ group | x > group.size/2}

end if
domain← bisect domain(domain, median, dim)
dim← (dim + 1) mod k . k is the dimensionality of k-d tree
i← i+1

end for

The constrained k-d tree decomposition splits the particles as evenly
as possible while also ensuring that the particles are bounded in the data
block of the corresponding process. A thicker ghost layer leads to more
even decomposition of the number of particles and better workload

Original domain Initial partitioning Adding ghost layers

Splitting line Splitting line Splitting lineOverlapped region

Fig. 5. 2D example to show constrained k-d tree decomposition with data overlapping between blocks. The splitting line is limited in the overlapped
region of ghost layers.

balance.

5.2 Particle Tracing within Processes
We trace particles inside the local block of each process independently
without communication, as shown in Algorithm 3. After tracing, each
particle is either finished or unfinished. A particle is marked as finished
if it goes out of the data domain, hits a critical point where the velocity
is zero, or reaches the maximum integral steps required by the visu-
alization and analysis algorithm; otherwise the particle is marked as
unfinished. Unfinished particles will be redistributed in the next cycle,
as detailed in the preceding subsection.

Algorithm 3 trace particles(local block, local particles)
for each particle p in local particles do

N← 0
while N 6 Nmax do

p← RK4(local block, p) . one single step of fourth-order
Runge-Kutta numerical integration

N← N +1
if check finish(p) then . check if the particle goes out of the

domain or hits a critical point
local particles.remove(p)
finish particle(p)

else if !local block.contains(p) then . check if the particle
goes out of the local block

break
end if

end while
end for

We limit the maximal number of integration steps (Nmax) that a
particle can be traced in the cycles. This is an important parameter
in our method because it indirectly defines the frequency of particle
redistribution. If the redistribution is performed too frequently, the
workload can be more balanced, but the redistribution cost will increase.
On the contrary, if the redistribution is performed infrequently, our
method cannot sufficiently balance the workloads. More discussion
and evaluation on Nmax are in Sections 6 and 7, respectively.

6 PERFORMANCE ANALYSIS

We conducted a comprehensive performance study with three applica-
tions: tracing densely-seeded streamlines in thermal hydraulics simu-
lation (Nek5000) data, querying source-destinations in GEOS-5 sim-
ulation data, and computing FTLE of Hurricane Isabel data. The
specifications of the data are detailed in Table 1 and the following
subsections.

The implementation of our method is based on C++11. We use the
DIY2 library [22], which wraps MPI for interprocess communication,
to decompose the domain and exchange messages between processes.
We also use the BIL library [16] to efficiently read disjoint data blocks
from different NetCDF files collectively.

The benchmark platform is Vesta, an IBM Blue Gene/Q system at
Argonne National Laboratory. Vesta has 2,048 compute nodes: each has
a 16-core 1.6 GHz PowerPC A2 processor and 16 GB of DDR3 RAM.

The interconnection between compute nodes is a 5D torus network.
The storage of Vesta is GPFS (IBM General Parallel File System). In
our test, we execute 8 processes per compute node, and we use up to
8,192 processes. We study the performance of our method with the
following benchmarks.

• Load balancing We use the maximal workload divided by the
average workload as the load-balancing indicator. The workload
in each process is evaluated as the number of numerical integral
steps for particle tracing. The load is more balanced if the indi-
cator is closer to 1. We also use a Gantt chart to visualize the
computation time of different processes.

• Strong scaling We measure how the total execution time varies
with the number of processes for a fixed total number of particles.
The strong scaling indicates the efficiency of our method by
distributing a constant-size problem on all processes. A linear
speedup is optimal.

• Weak scaling We measure how the total execution time varies
with the number of processes for a fixed number of particles per
process. The weak scaling indicates the efficiency of our method
by assigning each process a constant-size problem. An optimal
weak scaling is achieved if the total execution time is constant as
the number of processes increases.

We also alter the conditions that affect performance:

• Available memory (M). We arbitrarily choose different memory
limits for data blocks per process to test the scalabilities. In
our work, the memory limit indicates the available memory for
accommodating the loaded data block. The thickness of the ghost
layers grows with the memory limit;

• Choice of 3D/4D trees (k). We study whether 3D or 4D trees
perform better in time-varying flows.

• Maximum integral steps per cycle (Nmax). We study the only
parameter that controls the frequency of particle redistribution.

The baseline approach in the performance study is a data-parallel
particle tracing implementation. The initialization stage of the baseline
approach is the same as in Section 4. The computation stage alternates
the independent particle tracing and the collective particle exchange
phases. In the first phase, each particle does not stop until it goes
out of the local block; in the second phase, particles that move to
remote processes are exchanged collectively with MPI Alltoall. The
program exits after all tasks in the system are finished.

6.1 Thermal Hydraulics Data
The thermal hydraulics dataset is from the output of the Nek5000 solver,
which is a large-eddy Navier-Stokes simulation developed by Argonne
National Laboratory. We use a single timestep of the data for the static
flow analysis and trace streamlines from all grid points. Figure 6 shows
the Gantt chart visualization of a run, and Figure 7 shows the timings
of both strong- and weak-scaling results with different memory limits.

Load balance The workload in our method is much more balanced
than in the baseline approach. We collect and visualize in Figure 6

Table 1. Datasets and analyses for the performance study.
Dataset Resolution Size Analysis Seeding Benchmark Alternating Conditions
Nek5000 10243 12 GB Streamlines Full-range Strong/weak scaling M
GEOS-5 288×181×72×24 1.34 GB Source-destination Local-range Strong scaling M, Nmax
Isabel 500×500×100×48 13.4 GB FTLE Full-range Strong scaling M, k

Execution Time

communication

particle tracing
I/O

1
2

4

6

8
Max/Average Workload10

0 245.8s 485.3s

our method
baseline method

Streamline Rendering

Fig. 6. Performance of 64 processes tested by downsampled Nek5000 data. We record the time for I/O, particle tracing computation, and
communication in the Gantt charts and the load balance indicator in the line chart. Top: Gantt chart using the baseline method. Each row in the
Gantt chart represents a process. Middle: Line chart showing the evolution of workload balance. The dashed line represents the baseline method,
while the solid line represents the k-d tree method. Bottom left: Gantt chart using our k-d tree method. The time axises of the two Gantt charts and
the line chart are aligned. Bottom right: Rendering result of the Nek5000 data with 2,000 streamlines. The color encodes the integration steps during
the streamline generation.

the performance data from two 64-process runs with our method and
the baseline method, respectively. We use the down-sampled version
of the original data in order to fit into the small number of processes
(64) for Gantt chart visualization. In the Gantt chart, the horizontal
axis is the execution time, and the vertical axis is the ID of the process.
We also visualize the load balance indicator over the execution time in
the line chart of Figure 6. We can see that each time after the k-d tree
decomposition is performed, the workload becomes more balanced,
and thus the particle tracing takes less time compared with the baseline
method. The Gantt chart of the baseline method shows that one or two
processes are always busy computing while other processes are idle.
We can also see that the particle redistribution time is much less than
the particle tracing time.

Strong scaling We trace 128 million particles in total with 512,
1K, 2K, 4K, and 8K processes to study the strong scalability. As shown
in Figure 7(a), as the number of processes increases, the total execution
time of our method decreases faster than the baseline approach does.
The strong scalability of our method is better than the baseline. With
8K processes, our method performs more than twice as fast as the

baseline. The parallel efficiency of 2K processes with a 48 MB, 96 MB,
and 384 MB memory limit is 46.0%, 48.3%, 76.6%, respectively. In
the baseline method, the parallel efficiency is 39.7%, 41.4%, 42.7%,
respectively. From Figure 7(b), we can also see that the particle tracing
time dominates the execution time, even if the percentage of I/O and
particle redistribution increases as the number of processes increases.

Weak scaling We trace 16K particles per process with 512, 1K,
2K, 4K, and 8K processes in this test. As the number of processes
increases, the execution time of the baseline approach increases much
faster than that of our method does, as shown in Figure 7(c). In other
words, the weak scalability of our method is also better than that of
the baseline. The parallel efficiency of 2K processes with a 48 MB,
96 MB, and 384 MB memory limit in our method is 47.8%, 50.2%,
77.1%, respectively. In the baseline method, the corresponding parallel
efficiency is 40.3%, 41.9%, 43.6%, respectively.

From all tests in Figure 7, we can see that our method performs better
with larger memory limits. Although larger memory limits lead to
thicker ghost layers and eventually result in higher I/O costs, I/O takes
less than 10% of the total execution time in all cases. Larger memory

512 1K 2K 4K 8K
0

500

1,000

1,500

2,000

2,500

512 1K 2K 4K 8K
0%

20%

40%

60%

80%

100%

512 1K 2K 4K 8K
0

200

400

600

800

1,000

1,200

1,400

512 1K 2K 4K 8K
0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

Performance Breakdown (Nek5000, Strong Scaling) Percentage Breakdown (Nek5000, Strong Scaling)

Performance Breakdown (Nek5000, Weak Scaling) Percentage Breakdown (Nek5000, Weak Scaling)

(a) (b)

(c)
P

e
rc

e
n

ta
g

e
(d)

T
im

e
 (

se
co

n
d

s)
T

im
e

 (
se

co
n

d
s)

Processes # Processes

Processes # Processes

communication
particle tracing
I/O

communication
particle tracing
I/O

Fig. 7. Performance breakdown for Nek5000 data analysis. (a) and (b) show the strong-scaling tests, while (c) and (d) show the weak-scaling tests.
Time for I/O, particle tracing computation, and communication are encoded in different colors to reflect the performance. At each kind of process
count, the six stacked histograms represent the baseline method with 48 MB memory, the k-d tree method with 48 MB memory, the baseline method
with 96 MB memory, the k-d tree method with 96 MB memory, the baseline method with 384 MB memory, and the k-d tree method with 384 MB
memory, respectively.

(b)(a)

Fig. 8. (a) Source-destination query on GEOS-5 data. 300 pathlines are
shown in this visualization. (b) FTLE field of Isabel data at time steps 0
within a finite time scope 12.

limits improve both strong and weak scalabilities, because thicker ghost
layers weaken the constraints in our k-d tree decomposition, allowing
the particles to be redistributed more evenly.

6.2 GEOS-5 Simulation Data
The GEOS-5 data is from the simulation output of an atmospheric
model developed by the NASA Goddard Space Flight Center. The
spatial resolution of the model is a 1°×1.25° latitude-longitude grid
with 72 vertical pressure levels that ranges from 1 atm (near the terrain
surface) to 0.01 hPa (about 80 km). The dataset in our experiment con-
sists of the monthly averaged output from January 2000 to December
2001.

We conduct a source-destination query analysis with 8M particles
in the GEOS-5 data. The query results are shown in Figure 8(a). In
this experiment, seeds are densely placed in North America, and we
visualize the distribution of the particle trajectories over time.

Strong scaling The first row of Figure 9 shows the strong-scaling
tests of this case. The optimal scaling curves in this figure show the
linear speedup for reference. Figure 9(a) shows that our method scales
as the number of processes increases, whereas the scalability of the
baseline method is poor. With 8K processes, our method is 3.58 times
faster than the baseline method. Figure 9(c) shows the overall level

of load balance in the run-time particle tracing. In our method, the
load balance indicator slowly increases as the number of processes
increases. It is consistent with the time cost of the constrained k-d
tree decomposition, as shown in Figure 9(b). We can also see that the
curves that represent our k-d tree method are lower and more stable than
those as the baseline method. These results demonstrate that compared
with the baseline approach, our method has better load balance and
scalability.

Parameter Nmax We compare the timings and load balance using
different maximal number of steps in each cycle of tracing (Nmax).
To evaluate the effect of the execution frequency of the constrained
k-d tree decomposition, we use 64 MB memory limit for this test. In
the second row of Figure 9, as Nmax increases, the total running time
decreases continually, and the workload becomes more balanced in
most cases, except when Nmax is 10. Although frequently performing
the constrained k-d tree decomposition can achieve more balanced
workload, it also brings larger overhead. In this case, the optimal Nmax
is 20. More discussion of Nmax is in the next section.

6.3 Hurricane Isabel Data

The Isabel dataset is from an atmospheric simulation conducted by the
National Center for Atmospheric Research. The resolution of this mesh
is 500×500×100, and the dataset has 48 time steps. We compute the
FTLE field (shown in Figure 8(b)) based on the wind (U, V, and W
components) by tracing 24 million particles that are uniformly seeded
in the domain. The optimal Nmax in this experiment is 50.

Strong scaling We also make strong-scaling tests of this case.
As shown in the first row of Figure 10, our method improves the
performance and load balance. In this case, we extract the computation
time of particle tracing from the total running time in Figure 10(b).
The computation is 2.1 times faster compared with the baseline method
using 8K processes. From these results we can also see that the larger
memory limit leads to higher I/O cost because the expanded blocks
are larger, but our method scales better with larger memory limit in
general.

Total Time (GEOS-5)

#Processes

8K4K2K1K512

100

10

T
im

e
 (

se
co

n
d

s)

500

k-d tree, 64MB

k-d tree, 16MB

k-d tree, 8MB

baseline, 64MB

baseline, 16MB

baseline, 8MB

optimal scaling

(a)

K-D Tree Decomposition Time (GEOS-5)

#Processes

8K4K2K1K512

10

1

T
im

e
 (

se
co

n
d

s)

50

k-d tree, 64MB

k-d tree, 16MB

k-d tree, 8MB

(b)

Load Balance (GEOS-5)

#Processes

8K4K2K1K512

40

30

20

10

M
a

x/
A

v
e

ra
g

e
 W

o
rk

lo
a

d

1

50

k-d tree, 64MB

k-d tree, 16MB

k-d tree, 8MB

baseline, 64MB

baseline, 16MB

baseline, 8MB

optimal scaling

(c)

Total Time (GEOS-5)

#Processes

8K4K2K1K512

100

10

T
im

e
 (

se
co

n
d

s)

200

N
max

 = 60

N
max

 = 40

N
max

 = 20

N
max

 = 10

optimal scaling

(d)

K-D Tree Decomposition Time (GEOS-5)

#Processes

8K4K2K1K512

10

1

T
im

e
 (

se
co

n
d

s)

50

N
max

 = 60

N
max

 = 40

N
max

 = 20

N
max

 = 10

(e)

Load Balance (GEOS-5)

#Processes

8K4K2K1K512

9

8

7

6

5

4

3

2

1

M
a

x/
A

v
e

ra
g

e
 W

o
rk

lo
a

d

10

N
max

 = 60

N
max

 = 40

N
max

 = 20

N
max

 = 10

(f)

99.3

120.9

143.1

25.7
27.6

30.4

30.8

11.6

8.2
6.8

6.3

20.2

14.2

13.3

4.8

3.0

3.2

4.0

8.5

6.9

5.4

4.8

233.6
229.1

227.4

186.5

153.2

99.3

143.4
141.8

117.8

48.7

37.5

25.7

12.2

11.1

8.1

24.2

21.9

14.2

12.9

8.1

5.4

42.7

41.7

37.7

8.3
8.5

6.2

5.1
3.2

Fig. 9. Strong-scaling tests using GEOS-5 data with different number of processes. Panels (a), (b), and (c) show the tests with different memory
limits. The maximal number of tracing steps, Nmax, is set to 20 in panels (a), (b), and (c). Panels (d), (e), and (f) show the tests with different Nmax
under 64 MB memory limit.

Choice of 3D/4D trees We test whether 3D or 4D tree can achieve
better load balance with our method. The results are shown in the
second row of Figure 10. In general, we can see from Figure 10(e)
that the performance is better if we consider only the space dimensions
in this experiment. As shown in Figure 10(f), we conclude that the
workload of using 4D trees is less balanced than using 3D trees, because
the time of spatiotemporal particles always increases and leads to
imbalance in the time dimension.

7 DISCUSSION

In this section, we first discuss the advantages of our method compared
with other load-balancing methods. We then discuss the limitations of
our method.

7.1 Comparison with Other Methods

We compare our method with other load-balancing algorithms for par-
allel particle tracing in different aspects, which are detailed in Table 2
and below.

Data preprocessing Our method does not require any data pre-
processing. In previous studies, such as flow graph-based workload
estimation [26] and irregular data partitioning [7, 34], the whole input
dataset needed to be processed and analyzed in a pilot run before the ac-
tual particle tracing runs. As the data scale continues to grow in present
and future computing, however, it becomes prohibitive to perform the
preprocessing because of high I/O costs.

Feature analysis Our method does not rely on any flow feature
analysis. Flow partitioning [7] and clustering [34] can be expensive
and sensitive to parameter selection. It is still an open challenge to
well define features in fluid flows, especially time-varying datasets.
It is even harder to detect features in distributed environments with
scalability. In contrast, our constrained k-d tree method is light-weight
and scalable.

Seed distribution We make no assumptions about the initial parti-
cle distribution. Most load-balancing algorithms in data-parallel par-
ticle tracing [7, 26, 34] are designed for full-range analyses that trace
densely-seeded particles in the whole domain. Our method can handle
arbitrary distributed seeds for load-balanced particle tracing.

Data dimensionality Our method supports both static and time-
varying data in both 2D and 3D meshes, because k-d trees can decom-
pose spaces in arbitrary dimensions. To the best of our knowledge,
most load-balancing algorithms in data-parallel settings are designed
for static datasets. Task-parallel algorithms can support unsteady flows,
but they require out-of-core I/O scheduling for large-scale data.

Data movement The data movement of our method is minimal.
Unlike previous studies that move data blocks for dynamic load bal-
ancing [19, 28], we do not need to move flow data back and forth after
the initialization. Moving data blocks can be expensive, especially
for clusters that have lower network bandwidths. As demonstrated in
Peterka et al.’s study [28], the additional costs associated with data
repartitioning caused by data movement (including the exchange of
data blocks and particles) and updating of data structures may lower
the overall performance. The only data movement in our method is the
particle exchange, which is also necessary in all data-parallel particle
tracing algorithms.

Communication patterns The distributed k-d tree decomposition
is self-consistent and decentralized. In previous work-stealing [8] and
work-requesting [24] algorithms for task-parallel particle tracing, a
dedicated process is necessary in order to schedule the workloads in all
other processes. Frequently requesting tasks and sending information
for workload scheduling in work requesting [24] significantly increase
the communication overhead. The 1-to-n communication pattern makes
it difficult to scale in large systems. We instead do not need any master
processes to schedule tasks.

7.2 Limitations
Our method does not guarantee optimal and perfect load balancing.
First, we assume that an equal number of particles leads to the ideal
balance, but it is only an approximation. In the independent particle
tracing phase, some particles may stop earlier than others, because
they go out of the local bounds of the block or hit critical points. The
computation time may also vary because of data locality. As a result,
processes have different workloads even if they are assigned the same
number of particles. Second, the constrained k-d tree decomposition
does not guarantee an even distribution of particles. Because the split-
ting planes of k-d trees are limited to the overlapped regions of ghost

k-d tree, 384MB

k-d tree, 96MB

k-d tree, 48MB

baseline, 384MB

baseline, 96MB

baseline, 48MB

(c)

4D tree, 384MB

4D tree, 96MB

4D tree, 48MB

3D tree 384MB

3D tree, 96MB

3D tree, 48MB

(f)

Total Time (Isabel)

#Processes

8K4K2K1K512
10

T
im

e
 (

se
co

n
d

s)

100

1000

k-d tree, 384MB

k-d tree, 96MB

k-d tree, 48MB

baseline, 384MB

baseline, 96MB

baseline, 48MB

optimal scaling

(a)

Total Time (Isabel)

#Processes

8K4K2K1K512
10

T
im

e
 (

se
co

n
d

s)

100

1000

4D tree, 384MB

4D tree 96MB

4D tree, 48MB

optimal scaling

3D tree, 384MB

3D tree, 96MB

3D tree, 48MB

(d)

Computation Time (Isabel)

#Processes

8K4K2K1K512

100

10

T
im

e
 (

se
co

n
d

s)

1000

k-d tree, 384MB

k-d tree, 96MB

k-d tree, 48MB

baseline, 384MB

baseline, 96MB

baseline, 48MB

(b)

Computation Time (Isabel)

#Processes

8K4K2K1K512

100

10

T
im

e
 (

se
co

n
d

s)

1000

4D tree, 384MB

4D tree, 96MB

4D tree, 48MB

3D tree, 384MB

3D tree, 96MB

3D tree, 48MB

(e)

Load Balance (Isabel)

#Processes

8K4K2K1K512

30

20

10M
a

x/
A

v
e

ra
g

e
 W

o
rk

lo
a

d

40

1

Load Balance (Isabel)

#Processes

8K4K2K1K512

15

10

5M
a

x/
A

v
e

ra
g

e
 W

o
rk

lo
a

d

1

20

304.0

746.6

340.5

649.9

240.9

495.0

147.0

348.4

73.1
36.8

17.2
65.9

29.0

11.942.6

23.7
10.7

81.9
74.2

35.6

90.8
82.7

36.1

87.9

76.5

36.5

9.4
10.2

7.6

4.3

10.5

489.7

282.2

8.8

397.5

196.5

6.0

357.6

160.3

4.8
36.1

22.5

10.1

27.8

19.4

8.4
59.6

17.0

7.1

649.9

495.0

73.1
65.9

42.6

304.0

240.9

147.0 36.8

29.0

23.7

9.4

7.6

4.3

17.2

11.9

10.7

Fig. 10. Strong-scaling tests using Isabel data with different number of processes. Panels (a), (b), and (c) show the tests with different memory
limits that consider both space and time dimensions used for splitting (i.e., 4D trees), while panels (d), (e), and (f) show the comparison between
considering both space and time dimensions for splitting (i.e., 4D trees) and considering only space dimensions for splitting (i.e., 3D trees).

Table 2. Comparison with other load-balancing algorithms for parallel particle tracing. The plus (+) means that the method meets a certain kind of
category or requirement, while minus (-) means that it does not meet the corresponding kind of category or requirement.

Our Work

Nouanesengsy et al. [26]

Chen and Fujishiro [7]

Yu et al. [34]

Lu et al. [19]

Peterka et al. [28]

Dinan et al. [8]

Müller et al. [24]

Category Requirement

Parallel over

Data

Parallel over

Seeds

Static Load

Balancing

Dynamic Load

Balancing

Data

Preprocessing

Heuristics on

Flow Features

Assumptions

about Seed

Distribution

Flow Data

Movement

Scheduler

Process

＋ ＋ - ＋ - - - - -

＋ - ＋ - ＋ - ＋ - -

＋ - ＋ - ＋ ＋ ＋ - -

＋ - ＋ - ＋ ＋ ＋ - -

＋ - - ＋ - - - ＋ -

＋ - - ＋ - - - ＋ -

- ＋ - ＋ - - - - ＋

- ＋ - ＋ - - - - ＋

layers, the k-d tree could be imbalanced. If there are no constraints
on the decomposition, that is, the entire data can fit into memory, we
can have optimal distribution. But at worst, when the ghost layers just
overlap, our method degenerates to the baseline method because the
splitting planes will be in fixed positions.

Our method needs the parameter configuration of Nmax. As the
single important parameter, it determines how frequently the particles
are redistributed. If Nmax is too small, the k-d tree decomposition may
bring large overhead. If Nmax is too large, the workload will be uneven
because the redistribution is not performed frequently enough. We have
shown the optimal values in our experiments on Blue Gene/Q systems,
but the number may vary with different data and different architectures.

Our method is bulk-synchronous. The constrained k-d tree decom-
position is a collective operation that involves all processes in a syn-
chronous manner. However, the cost of synchronization grows as the
number of processes increases. We currently cannot overlap computa-
tion with communication.

8 CONCLUSIONS AND FUTURE WORK

In this work, we present a novel approach to balance workloads in
parallel particle tracing with constrained k-d trees. The static data

partitioning with partial data replication makes it possible to redistribute
the unfinished particles during particle tracing through the k-d tree
decomposition. A balanced workload is achieved dynamically with our
method, which improves the performance of parallel particle tracing.
We evaluate our method with different flow visualization and analysis
problems through a comprehensive performance analysis. Results show
that the proposed method improves both load balance and scalability in
particle tracing.

In the future, we will generalize our algorithm to handle unstructured
mesh data. Our method also has the potential to visualize and analyze
flows in situ. We would also like to combine our algorithm with
existing static load-balancing strategies. Furthermore, we plan to relax
the synchronizations in the parallel k-d tree decomposition.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. This work is
supported by NSFC No. 61672055 and the National Program on Key
Basic Research Project (973 Program) No. 2015CB352503. This work
is also supported by the U.S. Department of Energy, Office of Science,
under contract number DE-AC02-06CH11357.

REFERENCES

[1] M. Aly, M. Munich, and P. Perona. Distributed kd-trees for retrieval from
very large image collections. In Proceedings of the British Machine Vision
Conference (BMVC), pages 1–11, 2011.

[2] S. S. Barakat and X. Tricoche. Adaptive refinement of the flow map
using sparse samples. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2753–2762, 2013.

[3] J. E. Barnes and P. Hut. A hierarchical O(N log N) force calculation
algorithm. Nature, 324(6096):446–449, 1986.

[4] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[5] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of SIGGRAPH 1993, pages 263–270, 1993.

[6] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algo-
rithm for particle simulations. SIAM Journal on Scientific and Statistical
Computing, 9(4):669–686, 1988.

[7] L. Chen and I. Fujishiro. Optimizing parallel performance of streamline
visualization for large distributed flow datasets. In Proceedings of IEEE
Pacific Visualization Symposium 2008, pages 87–94, 2008.

[8] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha. Scalable work stealing. In SC’09: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 53:1–53:11, 2009.

[9] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and C. Ware.
Surface-based flow visualization. Computers & Graphics, 36(8):974–990,
2012.

[10] G. D. Fatta and D. Pettinger. Dynamic load balancing in parallel kd-tree
k-means. In Proceedings of the 10th IEEE International Conference on
Computer and Information Technology, pages 2478–2485, 2010.

[11] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient computation
and visualization of coherent structures in fluid flow applications. IEEE
Computer Graphics and Applications, 13(6):1464–1471, 2007.

[12] H. Guo, F. Hong, Q. Shu, J. Zhang, J. Huang, and X. Yuan. Scalable
Lagrangian-based attribute space projection for multivariate unsteady flow
data. In Proceedings of IEEE Pacific Visualization Symposium 2014, pages
33–40, 2014.

[13] H. Guo, X. Yuan, J. Huang, and X. Zhu. Coupled ensemble flow line
advection and analysis. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2733–2742, 2013.

[14] G. Haller. Distinguished material surfaces and coherent structures in three-
dimensional fluid flows. Physica D: Nonlinear Phenomena, 149(4):248–
277, 2001.

[15] M. Hlawatsch, F. Sadlo, and D. Weiskopf. Hierarchical line integration.
IEEE Transactions on Visualization and Computer Graphics, 17(8):1148–
1163, 2011.

[16] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross. Toward a
general I/O layer for parallel-visualization applications. IEEE Computer
Graphics and Applications, 31(6):6–10, 2011.

[17] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson.
Simplified parallel domain traversal. In SC’11: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, pages 10:1–10:11, 2011.

[18] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and D. Weiskopf.
The state of the art in flow visualization: Dense and texture-based tech-
niques. Computer Graphics Forum, 23(2):203–222, 2004.

[19] K. Lu, H.-W. Shen, and T. Peterka. Scalable computation of stream
surfaces on large scale vector fields. In SC’14: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1008–1019, 2014.

[20] T. McLoughlin, R. Laramee, R. Peikert, F. Post, and M. Chen. Over two
decades of integration-based, geometric flow visualization. Computer
Graphics Forum, 29(6):1807–1829, 2010.

[21] B. Moloney, D. Weiskopf, T. Möller, and M. Strengert. Scalable sort-
first parallel direct volume rendering with dynamic load balancing. In
EGPGV07: Proceedings of Eurographics Symposium on Parallel Graphics
and Visualization, pages 45–52, 2007.

[22] D. Morozov and T. Peterka. Block-parallel data analysis with DIY2. In
Proceedings IEEE Symposium on Large Data Analysis and Visualization
2016, pages 29–36, 2016.

[23] D. Morozov and T. Peterka. Efficient delaunay tessellation through K-D
tree decomposition. In SC’16: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,

pages 728–738, 2016.
[24] C. Müller, D. Camp, B. Hentschel, and C. Garth. Distributed parallel parti-

cle advection using work requesting. In Proceedings of IEEE Symposium
on Large Data Analysis and Visualization 2013, pages 1–6, 2013.

[25] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka. Parallel
particle advection and FTLE computation for time-varying flow fields. In
SC’12: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 61:1–61:11, 2012.

[26] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-balanced parallel
streamline generation on large scale vector fields. IEEE Transactions on
Visualization and Computer Graphics, 17(12):1785–1794, 2011.

[27] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukic, V. Royter-
shteyn, M. J. Anderson, Y. Yao, Prabhat, and P. Dubey. BD-CATS: big
data clustering at trillion particle scale. In SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 6:1–6:12, 2015.

[28] T. Peterka, R. B. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. A study of parallel particle tracing for steady-
state and time-varying flow fields. In IPDPS’11: Proceedings of IEEE
International Symposium on Parallel and Distributed Processing, pages
580–591, 2011.

[29] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch. The state of
the art in flow visualization: Feature extraction and tracking. Computer
Graphics Forum, 22(4):1–17, 2003.

[30] S. Rizzi, M. Hereld, J. A. Insley, M. E. Papka, T. D. Uram, and V. Vish-
wanath. Large-scale parallel visualization of particle-based simulations
using point sprites and level-of-detail. In Proceedings of Eurographics
Symposium on Parallel Graphics and Visualization 2015, pages 1–10,
2015.

[31] S. Seckler, N. Tchipev, H. Bungartz, and P. Neumann. Load balancing
for molecular dynamics simulations on heterogeneous architectures. In
SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 101–110, 2016.

[32] H.-W. Shen and D. L. Kao. UFLIC: A line integral convolution algorithm
for visualizing unsteady flows. In Proceedings of IEEE Visualization 1997,
pages 317–322, 1997.

[33] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using
dynamic bounding volume hierarchies. ACM Transactions on Graphics,
26(1):6, 2007.

[34] H. Yu, C. Wang, and K.-L. Ma. Parallel hierarchical visualization of large
time-varying 3D vector fields. In SC’07: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 24:1–24:12, 2007.

[35] C. Zhang, A. Krishnamurthy, and R. Y. Wang. Brushwood: Distributed
trees in peer-to-peer systems. In IPTPD’05: Proceedings of International
Workshop on Peer-to-Peer Systems, pages 47–57, 2005.

[36] J. Zhang, H. Guo, and X. Yuan. Efficient unsteady flow visualization
with high-order access dependencies. In Proceedings of IEEE Pacific
Visualization Symposium 2016, pages 80–87, 2016.

[37] J. Zhang, H. Guo, X. Yuan, and T. Peterka. Dynamic load balancing
based on constrained k-d tree decomposition for parallel particle tracing.
In Proceedings of IEEE Pacific Visualization Symposium 2017 (Posters),
pages 310–311, 2017.

	Introduction
	Related Work
	Load Balancing in Parallel Particle Tracing
	Load Balancing Based on K-D Trees
	Advection-Based Flow Visualization and Analysis

	Overview
	Algorithm Initialization
	Load-Balanced Parallel Particle Tracing
	Particle Redistribution Based on Constrained K-d Trees
	Particle Tracing within Processes

	Performance Analysis
	Thermal Hydraulics Data
	GEOS-5 Simulation Data
	Hurricane Isabel Data

	Discussion
	Comparison with Other Methods
	Limitations

	Conclusions and Future Work

