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Edge Bundling in Information Visualization

Hong Zhou�, Panpan Xu, Xiaoru Yuan�, and Huamin Qu

Abstract: The edge, which can encode relational data in graphs and multidimensional data in parallel coordinates

plots, is an important visual primitive for encoding data in information visualization research. However, when data

become very large, visualizations often suffer from visual clutter as thousands of edges can easily overwhelm

the display and obscure underlying patterns. Many edge-bundling techniques have been proposed to reduce visual

clutter in visualizations. In this survey, we briefly introduce the visual-clutter problem in visualizations. Thereafter, we

review the cost-based, geometry-based, and image-based edge-bundling methods for graphs, parallel coordinates,

and flow maps. We then describe the various visualization applications that use edge-bundling techniques and

discuss the evaluation studies concerning the effectiveness of edge-bundling methods. An edge-bundling taxonomy

is proposed at the end of this survey.
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1 Introduction

In many visualization techniques, the edge is an
important visual primitive for encoding data. For
example, edges can encode relational data in graphs
and multidimensional data in parallel coordinates
plots. However, visualizations often suffer from visual
clutter when the number of data items increases. The
visual clutter caused by millions of edges not only
affects the aesthetic quality of the representation, but
also makes it difficult to obtain information from the
visualization.

Many clutter reduction techniques, such as filtering,
sampling, and clustering, have been presented to
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uncover patterns and trends in data with large numbers
of items. An excellent survey on clutter reduction
techniques can be found in a paper introduced
by Ellis and Dix[1]. Recently, edge bundling has
become a common clutter reduction technique in
information visualization research. In edge bundling,
similar edges are deformed and grouped into bundles,
thus providing an abstract and uncluttered view
of the original edge-cluttered visualization. Edge-
bundling algorithms use geometric graphs, trees, or
parallel coordinates plots, where each node has a
predefined location, as inputs for generating the
curved representations of each edge. Edge-bundling
algorithms follow many different paradigms. Force-
directed edge-bundling algorithms[2, 3] and the visual
clustering method[4] use physical force simulation.
The geometry-based edge-bundling algorithm[5] and the
winding roads method[6] discretize the visualization
plane into grids and then search the plane for the
configuration of each edge. Image-based edge-bundling
algorithms[7, 8] use data-clustering methods to build
the edge hierarchy and then draw edge bundles as
separate shaded shapes. Although these edge-bundling
algorithms follow different paradigms and rely on
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different heuristics to compute curved edges, they
enable high-level edge patterns to be more evident, thus
reducing visual clutter.

Edge bundling is a promising approach for reducing
visual clutter in information visualization. Therefore,
this approach has recently been given increasing interest
not only for graph visualization but also for flow
map visualization, multidimensional visualization, and
other types of visualizations. Despite the popularity
of edge bundling, little effort has been devoted to
specifically surveying and studying this technique. To
our knowledge, this paper is the first attempt to gather,
review, and analyze the vast body of research involving
edge bundling.

In this survey, we briefly introduce the visual-clutter
problem, which can be addressed by edge-bundling
approaches. Then we review the cost-based, geometry-
based, and image-based edge-bundling methods. After
that, we describe the various visualization applications
that use edge-bundling techniques and discuss the
evaluation studies concerning the effectiveness of these
methods. We propose an edge bundling taxonomy at the
end of this survey.

2 Visual-Clutter Problem

Visual clutter occurs when excess items or their
representations lead to congestion in limited screen
areas. Edge-bundling approaches are introduced to
address the visual-clutter problem caused by dense
edges that overwhelm the display. In information
visualization, the effectiveness of graphs, parallel
coordinates, and flow maps is dramatically reduced
because of edge clutter; in this section, we describe the
visual-clutter problem in these three techniques.

Graphs have been widely used to visualize
complex relationships such as the trade relationships
among cities and the friend relationships in social
networks. A graph consists of nodes and edges where
the nodes represent entities and the edges represent
the relationships among the entities/nodes. For
example, graphs can show vivid trade routes by
representing cities as nodes and trade relationships
as edges. However, real datasets are usually very
large; thus, large data sizes often bring out the visual
clutter problem in graphs. Understanding information
in cluttered graphs where excessive edges obscure
the underlying patterns is difficult. For example,
Fig. 1a illustrates a real world graph that represents the

migration between states in the United States.
Parallel coordinates[9, 10] are one of the most popular

techniques for visualizing and analyzing multivariate
data. In a parallel coordinates plot, the attributes of
multivariate data are represented by parallel vertical
axes that are linearly scaled within their data range;
and each data item is represented by a polygonal
line that intersects each axis at its respective attribute
data value. Parallel coordinates are useful for the
study of correlations between attributes by spotting
the locations of intersection points. Parallel coordinates
are also effective for revealing data distributions and
functional dependencies. However, as the data size
grows, parallel coordinates also experience the visual-
clutter problem. Figure 1b shows a cluttered parallel
coordinates plot.

Flow maps[11] are special graphs that indicate the
movement of objects (e.g., people or goods) among the
locations in maps. Flow maps comprise source nodes
and target nodes. One or more (but not many) source
nodes are linked to many target nodes by edges. The
thickness of the edge represents the amount of flow
between the source node and the target node. Flow maps
also suffer from visual clutter caused by dense edges
because this technique uses edges in visualizing the
flow.

3 Edge-Bundling Techniques

Curved edges have been widely used to illustrate
aggregated relationships between nodes in hand-drawn
graphs. The automated approach, which uses attracted

(a)

(b)

Fig. 1 Visual-clutter examples: (a) a cluttered graph[5]; (b)
a cluttered parallel coordinates plot[4].
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control points in drawing curved edges, was first
proposed by Brandes and Wagner[12]. However, the
term edge bundling was formally introduced by
other people several years later. Confluent graph
drawing[13, 14] and flow map layouts[11] also bundle
edges together in smooth curves to reduce edge
crossings. To our knowledge, the term edge bundling
was first formally used in a paper introduced by
Holten[15]. In this paper[15], edge bundling is designed
for graphs containing both hierarchical structures
and adjacency relations. Nevertheless, the term edge
bundling and the idea of bundling similar edges
together to reduce visual clutter have recently gained
considerable research attention. A number of following
methods have been introduced for graphs[3, 5, 7] and
other techniques[4, 16, 17].

Edge bundling is a promising approach for reducing
visual clutter caused by dense edges in techniques
such as graphs, parallel coordinates, and flow maps. In
Section 2, we describe and explain the visual-clutter
problem in these visualizations. In this Section, we
classify edge-bundling algorithms into three categories
based on the underlying paradigms: cost-based
techniques, geometry-based techniques, and image-
based techniques. In the edge-bundling stage of the
aforementioned techniques, the shapes of the edges
are changed but not the positions of the nodes. The
positions of the nodes can have semantic meanings,
such as geographical locations; these positions can also
be computed by a layout method such as force-based
models[18].

3.1 Cost-based techniques

In cost-based edge-bundling approaches, the costs of
ink or energy are used to determine the shapes of curved
edges.

3.1.1 Ink minimization
The circular graph layout is a visualization paradigm
wherein all graph nodes are arranged in a circular
pattern. Gansner and Koren[19] proposed three
techniques for improving circular layout graphs. One
of these techniques is edge-bundling. This technique
deforms the edges that link the nodes placed on the
perimeter of a circle and computes the drawing of
curved edges by reducing the use of ink (i.e., total line
length). In this approach, each edge is assigned two
control points: the meeting point of the sources and the
meeting point of the targets. Therefore, the shape of
an edge is controlled by four points: the source node,

the meeting point of the sources, the meeting point of
the targets, and the target node. The positions of the
source node and the target node cannot be changed in
the bundling stage, whereas the two control points (i.e.,
the meeting point of the sources and the meeting point
of the targets) can be moved freely. The edge-bundling
algorithm bundles edges by placing the control points
of similar edges close together. The optimized positions
of the control points are computed by ink minimization,
which is solved by using a numerical method.

Influenced by the paper introduced by Gansner and
Koren[19], Pupyrev et al.[20] also built bundles by
minimizing the total ink used for layered graph layouts.
In Ref. [20], two or more control points are assigned
to each edge, and edges are bundled by grouping the
control points of similar edges. The positions of the
control points can be changed to obtain global ink
minimization results. Given that layered graph layouts
are different from circular graph layouts, the global
optimization procedure may be too time consuming. To
accelerate the global optimization procedure, the
method presents three lookup schemes to balance the
time complexity and bundling quality. Figure 2 shows a
bundled circular graph layout[19] and a bundled layered

(a) (b)

(c)

(d)

Fig. 2 Cost-based edge bundling with ink minimization: (a)
before and (b) after applied on a circular graph layout[19]; (c)
before and (d) after applied on a layered graph layout[20].
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graph layout[20].
Gansner et al.[21] recently proposed a multi-level

agglomerative edge-bundling method for general graph
layouts instead of certain kinds of graphs such as
circular graph layouts and layered graph layouts. Their
approach uses ink-saving as a guiding principle and link
curvature as an additional constraint. The algorithm in
this approach is faster than previous ink minimization
methods. An edge proximity graph is first constructed to
guide the bundling decisions. An edge is bundled with
its neighbors in the proximity graph only if the bundling
saves ink. When all possible bundling edge pairs are
identified and bundled, a newly bundled graph and
its corresponding edge proximity graph are built. The
edges in the newly bundled graph are grouped further
based on the new edge proximity graph. The bundling
process is repeated until all ink-saving opportunities
have been exhausted. Based on the idea of bundling
edges under ink minimization, the ordered-bundling
method[22] attempts to draw the edges of each bundle
as parallel as possible with a given gap.

3.1.2 Energy minimization
Instead of minimizing ink, many methods minimize
the energy of the spring models generated for drawing
systems.

Parallel coordinates. Zhou et al.[4] modeled the lines
in parallel coordinates plots as flexible springs and
applied attractive forces between lines. The attractive
force tends to cluster spatially close and visually
parallel lines together. Therefore, the attractive force
is computed based on the Euclidian distance and the
angular distance between nearby lines. The curvature
energy term prevents each line from being excessively
bent. An energy function was defined for this physical
system, and the shapes of the lines were computed to
minimize the energy function. The global optimization
result was searched by linear programming. The
bundled lines can be further enhanced by varying the

color and opacity according to the local line density of
the curves (see Fig. 3).

Graphs. The above-mentioned energy system, which
considers the locations and directions of edges during
the edge-bundling stage, is further extended for general
graphs[2]. In parallel coordinates, nodes linked by
lines are arranged on parallel axes. In general graphs,
nodes are usually not arranged in certain patterns.
Therefore, the sampling of edges and the movement
of control points in general graphs are more complex
compared with parallel coordinates. To address this
problem, Zhou et al.[2] sampled graph edges into
segments by using Delaunay triangulation to obtain the
control points. This non-uniform sampling maintains
the topology of the graph and allows the consideration
of the midpoints of each sampled segment as nodes
in a control map for bundling. The edges in the
control map are modeled as springs with energy that
attracts spatially close and visually parallel segments
together. When the nodes in the control map are
merged pair by pair, the edges in the original graph
are bundled accordingly. The control map updates after
each merging. The merging is repeated until all node
pairs that can reduce the energy of the system are
eliminated.

Holten and van Wijk[3] presented another force-
directed edge-bundling algorithm where edges are
modeled as flexible springs and electrostatic-attracting
forces exist between the pairs of edges (see Fig. 4). A
set of edge compatibility measures is used to prevent
excessive bundling. An iterative computation scheme is
applied to obtain the deformation of the edges. Finally,
a smoothing tool is used in all edges by convolving
the positions of the control points under a Gaussian
kernel. The bundling results can intuitively show visible
high-level patterns in graphs even though the algorithm
has high time complexity.

Divided edge bundling[23] was developed based

(a) (b) (c)

Fig. 3 Energy-based edge bundling in a parallel coordinates plot[4]: (a) original plot; (b) after edge bundling; (c) with color and
opacity enhancement.
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Fig. 4 The spring force Fs and the electrostatic force Fe

which are exerted on control point p2 by p1, p3, and q2 are
shown in Ref. [3].

on force-directed edge bundling[3] with a set of
extensions. To include the direction, weight, and
graph connectivity in the bundling, divided edge
bundling[23] incorporates directional lanes, connectivity
compatibility, and edge-weight terms in the force
model. The directional lanes and edge weights are
designed to help users spot asymmetries more easily,
whereas the connectivity compatibility is designed to
prevent spurious inferences. This approach can reveal
some patterns that are only discernable in a matrix
view. Figure 5 shows a force-directed edge-bundling
result[3] and its corresponding divided-edge-bundling
result[23].

The edge-bundling framework[24] introduced by
Nguyen et al. is based on the force-directed edge-
bundling method[3]. This approach[3] presents four
variations of the previous force-directed edge-bundling
technique and two new edge compatibility measures
based on network analysis and topology.

Flow maps. Verbeek et al.[17] presented an automated
technique to generate edge-bundled flow maps. This
method is based on spiral trees that are introduced in a
companion paper[25]. A spiral tree is an angle-restricted
Steiner tree, which is a cross-free tree with 120

degree angles at every internal control point. Computing
optimal spiral trees is NP-hard. To accelerate the
computation process and smooth the main branches in

(a) (b)

Fig. 5 Energy-based edge-bundling results for the same
data: (a) force-directed edge bundling[3]; (b) divided edge
bundling[23].

the spiral tree, Verbeek et al.[17] minimized a global
cost function that consists of five costs (i.e., obstacle
cost, smoothing cost, angle restriction cost, balancing
cost, and straightening cost). They minimized the global
cost function by moving control points and determining
every local minimum. Although this approach is unable
to search for the global optimal results, it can generate
many good flow maps (see Fig. 6c).

3.2 Geometry-based techniques

In geometry-based edge-bundling approaches, trees or
grids are used to determine the shapes of curved edges.

3.2.1 Tree-based edge bundling
Phan et al.[11] proposed an algorithm to bundle
edges in single-source flow maps based on the
primary hierarchical clustering of target nodes. Primary
hierarchical clustering yields a tree structure of the
input flow. Original straight edges are further curved
and routed around the bounding boxes within the
same hierarchical cluster. Good bundling results can
be drawn; however, this approach may not smooth all
curves when routing them around the bounding boxes

(a) (b) (c)

Fig. 6 Flow maps illustrating the same migration data: generated by (a) Tobler[26]; (b) Phan et al.[11]; (c) Verbeek et al.[17]
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(see Fig. 6b).
Holten[15] proposed the use of edge bundling to

visualize graphs with edges that represent adjacency
relations in hierarchical data. Each edge is curved
according to the hierarchical tree path that links the two
endpoints of the edge. Two edges will be bundled at
their common segments in their tree paths. This method
demonstrates the effectiveness of edge bundling in
clutter reduction (see Fig. 7). However, this technique is
designed for graphs with known hierarchical structures.

3.2.2 Grid-based edge bundling
Meaningful hierarchical trees may not exist or may
be difficult to compute for general graphs. Therefore,
different kinds of grids are proposed and used to guide
the edge-bundling process.

Triangle meshes. Qu et al.[27] introduced an
edge-bundling method that is based on the control
mesh generated by Delaunay triangulation. By
adjusting the control mesh, the bundling results can
be interactively controlled and the edges can be
progressively clustered. The vertices of the control
mesh are the nodes of the original graphs. The edges
of the control mesh are computed by using Delaunay
triangulation which takes the vertices as input. The
intersections of the Delaunay edges and graph edges
are set as the control points for the bundling. Thereafter,
the graph edges are converted into a series of paths

(a) (b)

Fig. 7 Hierarchical edge bundling[15] applied on: (a) a
balloon layout; (b) a radial layout.

that link these control points. Different levels of edge
bundling can be constructed by adjusting the merging
of these control points. The algorithm designed by
Zhou et al.[2] also adopts the Delaunay triangulation
to segment graph edges; however, this algorithm uses
the midpoints of each segments as control points and
builds an energy minimization system to find optimal
edge-bundling results.

The above-mentioned methods generate many zigzag
edges, which make the tracing of curves and
the discerning of end points difficult for large
graphs. Furthermore, Delaunay triangulation does not
work for many graphs. To address this problem, Cui et
al.[5] proposed another mesh generation method based
on the underlying geometry of the graph. Figure 8
illustrates the framework of this technique. The
information of the input graph is first sent to an analyzer
to detect the directions of the representative primary
edge in the graph. The mesh generator then generates
some mesh edges perpendicular to the directions of
the primary edge. The mesh generator then completes
the control mesh by triangulating the mesh edges and
some added nodes. Based on this control mesh, the
edges of the original graphs are bundled to cross
the control mesh edges in a cumulative manner, thus
allowing the grouping and abstraction of large amounts
of edges. Finally, an edge smoother reduces the number
of zigzags in curved edges, and a visualizer provides
advanced interaction techniques to explore the edge-
bundling results further.

Non-uniform grids. Lambert et al.[6] proposed a
method that uses a hybrid grid to guide the bundling
process. The hybrid grid is computed based on both
quadtrees and Voronoi diagrams. The size of quadtree
cells is selected to generate different levels of edge
bundling, and then Voronoi diagrams are used to
construct the final grid graph. Finally, the graph edges
are routed along the grid edges, and a self-organizing
scheme is proposed to route similar edges along similar

Fig. 8 The edge-bundling framework proposed by Cui et al.[5]
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mesh edges. The method is further extended for 3D
edge bundling by using a combination of octrees and 3D
Voronoi diagrams in the grid-computation stage[28]. The
computing power of GPUs is exploited to achieve
real-time exploration of edge-bundled graphs[29]. To
visualize yeast metabolic networks, Lambert et al.[30]

presented another extension that can avoid twisty
routes and respect certain edge-drawing constraints
by using only a quadtree in the grid generation
step. Figure 9 illustrates the same yeast metabolic
networks bundled by winding roads[6] and pathway
preserving representation[30].

Luo et al.[31] presented an ambiguity-free edge-
bundling framework based on the quadtree partition
(see Fig. 10). A quadtree is constructed according to
the locations of the graph nodes. The information of
each quadtree cell is occupied by which edge(s) and
node(s) is/are recorded. The edge-ambiguity problem
may occur when a certain edge passes near one or more
unrelated nodes. Therefore, quadtree cells that may
cause the edge-ambiguity problem are detected. The
control points for routing ambiguity edges away from
unrelated nodes are calculated based on the detected
quadtree cells. The method curves and bundles the
original straight edges to pass through these control

points. An interactive detail-on-demand tool is further
provided for the user exploration.

3.3 Image-based techniques

Image-based edge-bundling algorithms have been
proposed for parallel coordinates or graphs with
edge clusters computed by well-known data-clustering
methods. Many image-enhancement tools have also
been introduced to render the result of edge bundling.

Illustrative parallel coordinates[16] are a set of
rendering techniques that are used to reveal interesting
patterns in an artistic way. Edge clusters are detected
using k-means clustering and are rendered by using
splines or branches. A branch illustrates one edge
cluster as a pair of spline curves that binds a group of
quadrilaterals. Given that edge clusters usually overlap
each other, silhouettes, shadows, and halos effects are
further exploited to help users distinguish overlapping
branches. Other image-based rendering tools such as
faded histograms can be used to show the data density in
each branch and density plots can be used to provide a
high-level view of the data distribution. Figure 11 shows
several effects generated by the illustrative methods.

Telea and Ersoy[7] proposed an image-based edge-
bundling framework by combining distance-based

(a) (b)

Fig. 9 The same yeast metabolic networks bundled by: (a) winding roads[6]; (b) pathway preserving representation[30].

Fig. 10 The ambiguity-free edge-bundling framework[31].
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(a) (b) (c)

Fig. 11 Several effects generated by illustrative parallel coordinates[16]: (a) branched clusters; (b) faded histograms; (c) density
plots.

splatting and shape skeletonization. Given an edge-
bundling layout computed by other methods, they
constructed shaded shapes to visualize each edge
set. The skeleton of each shape is computed and
rendered in a convex style with dark and saturated
borders and bright and white middles. The rendering
order of all shaded shapes is determined by minimizing
the occlusion of the shape. Finally, several interaction
techniques such as brushing and digging lenses are
introduced to explore overlapping bundles.

Ersoy et al.[8] adopted the idea of computing the
skeletons of edge clusters[7]. They also extended the
idea of computing skeletons of edge clusters by
using a new skeleton-construction algorithm and a
simple rendering technique. Instead of using skeletons
only for shading, this method exploits skeletonization
together with edge clustering and distance fields to
construct bundled-edge layouts. Edges are iteratively
curved and attracted towards the skeleton of the edge
clusters; thus, individual edges are visible as alpha-
blended curves. Figure 12 shows the different rendering
results generated by the image-based edge-bundling
framework[7] and the skeleton-based edge-bundling
method[8].

Image-based edge-bundling techniques are rendered
based on the given edge clusters. Therefore, these

(a) (b)

Fig. 12 Rendering results generated by: (a) image-based
edge bundling[7]; (b) skeleton-based edge bundling[8].

methods can be used together with other edge-bundling
layout approaches. Many image-based rendering tools
exist for the enhancement of bundled layouts: color and
opacity enhancement based on the line density or edge
direction[5], RGB interpolated color gradient to indicate
the original edge directions[15], transparency or hue for
local edge density[6], and rendering styles of convex
shapes, density-luminance, density-saturation, bi-level,
and outlines[7].

4 Edge-Bundling Applications

Edge-bundling algorithms have been proposed for
many visualization techniques and applications. Edge-
bundling approaches designed for graphs, parallel
coordinates, and flow maps have been discussed in
Section 3. In the case study sections of previously
discussed edge-bundling works, many applications have
been introduced, such as US migration data[3, 5, 6, 8], US
airline graph[3, 5, 8], and car information dataset[4, 16]. The
US migration data has 1790 nodes and 9798
edges. Figure 13 shows the US migration graphs
generated by methods presented by Holten and van
Wijk[3], Cui et al.[5], Lambert et al.[6], and Ersoy et
al.[8] The US airline graph has 235 nodes and 2101
edges. The Car information dataset has 7 variables and
392 data items. In addition, edge-bundling methods
have been widely adopted by other techniques for
analyzing data, such as dynamic networks[32], one-to-
many matched graphs[33], classificatory distribution in
patent portfolios[34], and so on[35, 36].

5 Edge-Bundling Studies

Numerous user studies have been conducted on the
evaluation of graph visualization techniques[37]. In most
of these studies, different visualizations were generated
by different techniques for the same tasks. Users
were asked to conduct tasks while their completion
time and accuracy were recorded for comparison
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(a) (b)

(c) (d)

Fig. 13 US migration graphs generated by methods presented by: (a) Holten and van Wijk[3]; (b) Cui et al.[5]; (c) Lambert et
al.[6]; (d) Ersoy et al.[8]

and analysis. Many important results were obtained
from these studies and were further used to guide
visualization applications.

However, few works have systematically examined
edge-bundling techniques. Some related works only
include a small number of studies on visualizations with
curved edges.

Holten and van Wijk[38] tested six single-
cue directed-edge representations, including a
clockwise-curvature representation, and provided
recommendations for the representation of directed
edges in node-link diagrams. Holten and van Wijk[39]

performed another user study to evaluate the cluster
identification performance of nine parallel coordinates
techniques. These parallel coordinates techniques
differ in the usage of scatter plot embedding, the
enhancement of fuzzy clusters, animations, and curved
lines. Participants were asked to identify the number
of clusters in 144 trials, and the response time and
accuracy were recorded. Their results show that parallel
coordinates with curved lines do not result in significant
performance gains.

Telea et al.[40] compared hierarchical edge
bundling[15] against node-link diagrams with
software engineering related data. They found that
all participants strongly prefer hierarchical edge
bundling. However, whether this finding is also
applicable to other kinds of data is not clear.

Xu et al.[41] recently conducted two experiments to
study the effect of edge curvature on the readability

of general graphs. The first experiment compared
graphs with different edge-curvature levels (i.e., straight
edge, slightly curved edge, and heavily curved
edge). Their results show that high-curvature edges
are detrimental to performance. The second experiment
compared graphs with varying edge curvatures and
graph sizes. The results of this experiment state that
the straight edge is the most aesthetically pleasing and
effective edge type and that edges with varying low
curvatures are good alternatives to straight edges when
curved edges are preferred. These results are limited by
the experimental parameters and designed tasks. Some
of these conclusions may not be applicable for the
identification of clusters and overall comparison of
pattern-searching tasks. Edge-bundling methods may
have certain advantages when utilized with useful
interaction tools. Therefore, systematic studies need
to be conducted to assess the effectiveness of edge-
bundling approaches.

6 Conclusions

Edge bundling has emerged as a promising and
important technique for reducing visual clutter in
visualizations. In this survey, we examined recent
works regarding the edge-bundling technique. We
first studied the visual-clutter problem, which can be
addressed by edge bundling. Second, we classified
edge-bundling techniques into three categories: cost-
based techniques, geometry-based techniques, and
image-based techniques. Finally, we reviewed edge-
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bundling-related applications and user studies.
We built an edge-bundling taxonomy based on our

analysis (Table 1). In this table we take all the edge-
bundling papers mentioned in Sections 3 and 5, and
classified them in terms of the applied techniques
(i.e., graphs, parallel coordinates, and flow maps). The
sub-columns of the edge-bundling-techniques column
are determined based on the classification defined in
Section 3. Several cells are marked as “None”, because
no algorithm can be classified into this category. These
categories with “None” mark maybe the future research
directions for the development of edge bundling.

Despite gaining considerable research attention, edge
bundling still has many challenging problems that
need to be addressed. Some of these challenges
include readability, algorithm complexity, and intuitive
navigation issues. We hope that the analysis and
taxonomy introduced in this survey will motivate and
facilitate continued research in the development of
edge-bundling techniques.
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pp. 44-56.

[13] M. Dickerson, D. Eppstein, M. T. Goodrich, and
J. Y. Meng, Confluent drawings: Visualizing non-planar
diagrams in a planar way, Journal of Graph Algorithms and
Application, vol. 9, no. 1, pp. 31-52, 2005.

[14] D. Eppstein, M. Goodrich, and J. Meng, Confluent layered
drawings, in Proceedings of International Symposium on
Graph Drawing, New York, USA, 2004, pp. 184-194.

[15] D. Holten, Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data, IEEE Transactions
on Visualization and Computer Graphics, vol. 12, no. 5,
pp. 741-748, 2006.

[16] K. T. McDonnell and K. Mueller, Illustrative parallel
coordinates, Computer Graphics Forum, vol. 27, no. 3,
pp. 1031-1038, 2008.

[17] K. Verbeek, K. Buchin, and B. Speckmann, Flow map
layout via spiral trees, IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 12, pp. 2536-2544,
2011.

[18] A. Noack, An energy model for visual graph clustering,
in Proceedings of International Symposium on Graph
Drawing, Perugia, Italy, 2003, pp. 425-436.

Table 1 Edge bundling taxonomy.

Examples
Edge-bundling techniques

Edge-bundling
studies

Cost-based Geometry-based
Image-based

Ink minimization Energy minimization Tree-based Grid-based
Graphs [19-22] [2,3,23,24] [15] [2,5,6,27-31] [5-8,15] [38,40,41]

Parallel coordinates None [4] None None [16] [39]
Flow maps [17] [11] None None None None



Hong Zhou et al.: Edge Bundling in Information Visualization 155

[19] E. R. Gansner and Y. Koren, Improved circular layouts,
in Proceedings of International Symposium on Graph
Drawing, Karlsruhe, Germany, 2006, pp. 386-398.

[20] S. Pupyrev, L. Nachmanson, and M. Kaufmann, Improving
layered graph layouts with edge bundling, in Proceedings
of International Symposium on Graph Drawing, Konstanz,
Germany, 2010, pp. 329-340.

[21] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger,
Multilevel agglomerative edge bundling for visualizing
large graphs, in Proceedings of IEEE Pacific Visualization
Symposium, Hong Kong, China, 2011, pp. 187-194.

[22] S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd,
Edge routing with ordered bundles, in Proceedings of
International Symposium on Graph Drawing, Eindhoven,
The Netherlands, 2011, pp. 136-147.

[23] D. Selassie, B. Heller, and J. Heer, Divided edge
bundling for directional network data, IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12,
pp. 2354-2363, 2011.

[24] Q. Nguyen, S.-H. Hong, and P. Eades, Tgi-eb: A new
framework for edge bundling integrating topology,
geometry and importance, in Proceedings of International
Symposium on Graph Drawing, Eindhoven, The
Netherlands, 2011, pp. 123-135.

[25] K. Buchin, B. Speckmann, and K. Verbeek, Anglerestricted
steiner arborescences for flow map layout, in Proceedings
of the ISAAC, Yokohama, Japan, 2011, pp. 250-259.

[26] W. R. Tobler, Experiments in migration mapping by
computer, Cartography and Geographic Information
Science, vol. 14, no. 2, pp. 155-163, 1987.

[27] H. Qu, H. Zhou, and Y. Wu, Controllable and progressive
edge clustering for large networks, in Proceedings of
International Symposium on Graph Drawing, Karlsruhe,
Germany, 2006, pp. 399-404.

[28] A. Lambert, R. Bourqui, and D. Auber, 3D edge bundling
for geographical data visualization, in Proceedings of
International Conference on Information Visualization,
London, UK, 2010, pp. 329-335.

[29] A. Lambert, D. Auber, and G. Melancon, Living
flows: Enhanced exploration of edge-bundled graphs
based on gpu-intensive edge rendering, in Proceedings
of International Conference on Information Visualization,
London, UK, 2010, pp. 523-530.

[30] A. Lambert, J. Dubois, and R. Bourqui, Pathway
preserving representation of metabolic networks,
Computer Graphics Forum, vol. 30, no. 3, pp. 1021-1030,
2011.

[31] S.-J. Luo, C.-L. Liu, B.-Y. Chen, and K.-L. Ma,
Ambiguity-free edge-bundling for interactive graph
visualization, IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 5, pp. 810-821, 2012.

[32] L. Shi, C. Wang, and Z. Wen, Dynamic network
visualization in 1.5D, in Proceedings of IEEE Pacific
Visualization Symposium, Hong Kong, China, 2011, pp.
179-186.

[33] E. D. Giacomo, W. Didimo, G. Liotta, and P. Palladino,
Visual analysis of one-to-many matched graphs, Journal of
Graph Algorithms and Applications, vol. 14, no. 1, pp. 97-
119, 2010.

[34] M. Giereth, H. Bosch, and T. Ertl, A 3D treemap
approach for analyzing the classificatory distribution in
patent portfolios, in Proceedings of IEEE Symposium on
Visual Analytics Science and Technology, Columbus, USA,
pp. 189-190, 2008.

[35] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen,
A. van Deursen, and J. J. van Wijk, Execution trace
analysis through massive sequence and circular bundle
views, Journal of Systems and Software, vol. 81, no. 12,
pp. 2252-2268, 2008.

[36] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-
D. Fekete, Topology-aware navigation in large networks, in
Proceedings of the SIGCHI, Boston, USA, 2009, pp. 2319-
2328.

[37] D. Holten, P. Isenberg, J. J. van Wijk, and J.-D. Fekete, An
extended evaluation of the readability of tapered, animated,
and textured directededge representations in node-link
graphs, in Proceedings of IEEE Pacific Visualization
Symposium, Hong Kong, China, 2011, pp. 195-202.

[38] D. Holten and J. J. van Wijk, A user study on visualizing
directed edges in graphs, in Proceedings of the SIGCHI,
Boston, USA, 2009, pp. 2299-2308.

[39] D. Holten and J. J. van Wijk, Evaluation of cluster
identification performance for different pcp variants,
Computer Graphics Forum, vol. 29, no. 3, pp. 793-802,
2009.

[40] A. Telea, O. Ersoy, H. Hoogendorp, and D. Reniers,
Comparison of node-link and hierarchical edge bundling
layouts: A user study, presented at Visualization and
Monitoring of Network Traffic, 2009.

[41] K. Xu, C. Rooney, P. Passmore, D.-H. Ham, and
P. H. Nguyen, A user study on curved edges in graph
visualization, IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2449-2456, 2012.

Hong Zhou obtained a BEng degree in
computer science and technology from
Zhejiang University, China, in 2004
and a PhD degree in computer science
and engineering from the Hong Kong
University of Science and Technology
in 2009. She is a lecturer in the College
of Computer Science and Software

Engineering at Shenzhen University. Her main research interests
are in visualization and computer graphics.



156 Tsinghua Science and Technology, April 2013, 18(2): 145-156

Panpan Xu received a BEng degree in
computer science and technology from
Zhejiang University, China, in 2009. She
is a PhD candidate in the Department
of Computer Science and Engineering at
the Hong Kong University of Science
and Technology. Her research interests
are in information visualization and visual

analytics.

Xiaoru Yuan received his BS degree in
chemistry and BA degree in law from
Peking University in 1997 and 1998
respectively. In 2005 and 2006, he received
his MS degree in computer engineering
and PhD degree in computer science at
University of Minnesota at Twin Cities. He
is now a faculty member at Peking

University, in the Laboratory of Machine Perception (MOE). His
primary research interests lie in the field of visualization and

visual analytics with emphasis on large data visualization, high
dimensional data and graph visualization, and novel visualization
user interface.

Huamin Qu obtained a BS in mathematics
from Xi’an Jiaotong University, China, an
MS degree and a PhD degree (2004) in
computer science from the Stony Brook
University. He is an associate professor in
the Department of Computer Science and
Engineering at the Hong Kong University
of Science and Technology. He is in

the steering committee of the IEEE Pacific Visualization
Conferences, and served as the program co-chair for IEEE
PacificVis 2011 and 2012 and the conference co-chair for VINCI
2011 and VINCI 2012. He receives Honorable Mention for Best
Paper Award at IEEE Visualization 2009 and is a winner of
2009 IBM Faculty Award. His main research interests are in
visualization and computer graphics.


