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Uncertainty-Oriented Ensemble Data Visualization and Exploration
using Variable Spatial Spreading
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Fig. 1: Uncertainty-oriented ensemble data visualization framework interface: (A) The parameter setting panel provides control of
the visualization parameters. (B) The region stability heat map view shows the stability of the selected region and provides region
adjustment through direct clicking. (C) The 2D map view shows the features of the selected isovalues and integrates up-to-date
visualization methods. (D) The temporal analysis view shows the temporal relationships of the features and supports temporal
selection. (E) The spatial spreading curve view shows the spatial spreading of the variable bins globally (top) and locally (bottom).
(F) The display control toolbar enables switching between different visualization methods.

Abstract�As an important method of handling potential uncertainties in numerical simulations, ensemble simulation has been widely
applied in many disciplines. Visualization is a promising and powerful ensemble simulation analysis method. However, conventional
visualization methods mainly aim at data simpli�cation and highlighting important information based on domain expertise instead
of providing a �exible data exploration and intervention mechanism. Trial-and-error procedures have to be repeatedly conducted
by such approaches. To resolve this issue, we propose a new perspective of ensemble data analysis using the attribute variable
dimension as the primary analysis dimension. Particularly, we propose a variable uncertainty calculation method based on variable
spatial spreading. Based on this method, we design an interactive ensemble analysis framework that provides a �exible interactive
exploration of the ensemble data. Particularly, the proposed spreading curve view, the region stability heat map view, and the temporal
analysis view, together with the commonly used 2D map view, jointly support uncertainty distribution perception, region selection, and
temporal analysis, as well as other analysis requirements. We verify our approach by analyzing a real-world ensemble simulation
dataset. Feedback collected from domain experts con�rms the ef�cacy of our framework.

Index Terms�Uncertainty visualization, ensemble visualization, spatial spreading, temporal analysis.
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As an important method of handling potential uncertainties in modern
simulations, ensemble simulation [3, 21] has been widely applied in
many disciplines, particularly with the dramatic improvement of mod-
ern computing power. Ensemble simulations are conducted multiple
times using different models, initial values, and parameters that cover
as many distribution spaces as possible; in this manner, incomplete in-
formation and insuf�cient computational accuracy are avoided. How-
ever, one resultant issue is that the large-scale ensemble simulation
data frequently obscure people’s analysis and understanding. There-
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fore, identifying an appropriate ensemble simulation representation is
necessary before conducting further ensemble data analysis.

Visualization is a promising and powerful way of representing and
analyzing ensemble simulation data [48]. Although conventional vi-
sualization methods demonstrate promising performance in real-world
ensemble data analysis [32, 48], several challenges still exist.C.1
Lack of balance between location-based and feature-based anal-
yses.Obermaier and Joy [32] classi�ed existing work into two cate-
gories, namely, location-based and feature-based methods. Although
the existing analyses support selection and exploration on the loca-
tion and feature dimensions, they are often conducted separately [32].
However, the two dimensions do not exist independently, i.e., features
are distributed in locations, and different locations exhibit differences
in features. As indicated by Dasgupta et al. [37], domain experts usu-
ally emphasize a certain dimension for spatiotemporal and multimodal
simulation result analysis; by contrast, we frequently need to represent
both dimensions for improved analysis. In other words, the individ-
ual selection and separate analysis of any one of the two dimensions
would fail to capture critical elements in the ensemble data and in-
evitably cause a considerable loss of information.C.2 Insuf�cient
analysis on the temporal dimension.Previous work either focused
on the analysis at one single time step and ignored time-dependent in-
formation [50]; or oversimpli�ed the details at each time step to cover
the analysis at multiple time steps [11]. Some work simply combined
the results of several time steps together without simplifying which
would inevitably introduce visual clutter [10]. How to represent time-
varying ensemble simulation data effectively and suf�ciently and un-
cover underlying patterns and most dominating events [22] remains a
great concern for ensemble simulation data analysis.C.3 Repeated
trial-and-error process. Existing research provides users with gen-
eral summaries and representations for subregions [19] and isovalue
selections ; moreover, it displays the details [28] regarding the spatial
and variable dimensions [40, 45], respectively. Thus, a repeated and
inef�cient trial-and-error process is required and may easily lead to
a signi�cant loss of information.C.4 Inef�cient intervention. With
the high complexity and multivariance of ensemble data, most exist-
ing visualization methods focus on simplifying data to reveal the main
structures, e.g., leveraging data depths or probabilistic models to con-
vert contours or curves into con�dence bands that can represent un-
certainties [8, 9, 10, 31, 50] or adding glyphs to represent uncertain-
ties [45]. However, different sampling or simpli�cation approaches
tend to emphasize certain parts of information while ignoring others.
In addition, they output a deterministic result, which may lead to cog-
nitive bias without a �exible interaction and intervention mechanism
in real-world scenarios.

(a) Location oriented (b) Variable oriented

Fig. 2: Analysis using (a) location as the primary dimension versus (b)
using variable as the primary dimension.

To resolve these issues and in consideration of the in�uence of spa-
tial location, we propose a novel feature-based ensemble data analy-
sis method to achieve a balance between location- and feature-based
analyses (C.1). In contrast to previous studies that leverage spatial lo-
cations as the primary analysis dimension and perform a global anal-
ysis based on the local analysis of each grid point, our approach con-
siders the attribute variables as the primary analysis dimension. We
use a simple example for demonstration (Fig. 2). The data are a
two-dimensional scalar �eld of a single variable, and the data space
consists of two dimensions, i.e., location and variable (location is

also two-dimensional). Conventionally, the uncertainty is calculated
at each grid point according to the ensemble members and then ana-
lyzed and visualized separately [4, 13]. In our work, we �rst divide the
variable space and then describe its spatial distribution in each corre-
sponding interval to characterize the corresponding uncertainty. This
process helps construct an overview of the global uncertainty distribu-
tion and assists in the subsequent interactive exploration in the feature
space. The comparative procedures that use location and variable as
the primary dimension are demonstrated in Figs. 2a and 2b, respec-
tively. Speci�cally, the range of the variable is �rst segmented into
bins, and then the spatial distribution of each bin is calculated to gen-
erate a variable spreading curve. The spreading curve supports not
only the comparison on global and local levels but also the ensemble
�eld and ensemble average �eld to describe the uncertainty distribu-
tion and support abundant interactions for user intervention (C.4). On
the basis of this calculation method, we further design and develop a
visual analysis framework to help users analyze the ensemble simula-
tion data. Particularly, we propose (1) a spatial distribution curve to
facilitate an intuitive understanding of the variable distributions, (2) a
stability heat map to understand the uncertainty distribution of the se-
lected region and further guide the modi�cation for an ef�cient analy-
sis (C.3), and (3) a new temporal view design to help users understand
the temporal distribution of features (C.2). The primary contributions
of our work are summarized as follows:

� We propose a novel feature representation approach through cal-
culating the spatial spreading of variables to measure uncertainty
distributions, thus balancing analysis on the spatial location and
feature dimensions and offering a new perspective for analysis.

� We propose an ef�cient simpli�cation method that represents
time-varying ensemble data and conveys underlying patterns.

� We design a visual analysis framework to help make choices be-
tween spatial and feature dimensions and reduce cognitive biases
that may result from separate analysis on a single dimension.

2 RELATED WORK

Literature that overlaps with this work can be classi�ed into three cat-
egories: ensemble visualization, subspace selection in ensemble visu-
alization, and uncertainty measurement and visualization.

2.1 Ensemble Visualization

Ensemble visualization has been intensively studied in recent years; it
has been applied to various domains, such as meteorology [44] and
ocean-atmosphere research [1], and various analysis tasks, such as
uncertainty [9, 50] and parameter analyses [16, 49]. In contrast to
multivariate and spatiotemporal data, ensemble data introduce a new
dimension, i.e., multivalue [27], which makes analysis more dif�cult.
Obermaier and Joy [32] divided ensemble visualizations into feature-
[9, 36, 50] and location-based [4, 13, 30, 46] categories. However,
real-world analysis tasks often require a combination of the advan-
tages of the two categories. Wang et al. [48] surveyed the recent
progress on ensemble data visualization and visual analysis; and pro-
posed the challenges of further exploration in variable and ensemble
dimensions. Quinan et al. [43] maintained that the visual inconsis-
tency of different ensemble visualizations makes it dif�cult for users
to establish a mental map. Therefore, they presented several compre-
hensive improvements. However, the studies above mainly focused on
visual designs. Moreover, each method has an interactive mode that
is designed for a speci�c problem; this feature is often inconsistent
with other methods, thus causing inconvenience to users. In this study,
we provide a new perspective of analysis and particularly focus on the
analysis of dimensions of variables, locations, and ensembles. Our
proposed framework integrates well-established visualization meth-
ods [9, 33, 34, 35, 39, 41, 42, 50], thus enabling users to adopt any
one of them for comparative analysis. We also provide �exible inter-
actions to help users achieve their analysis goals while maintaining the
mental map.
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(a) Contours of ensemble mean (b) Spaghetti plots (c) Spaghetti plots

Fig. 3: Contours of ensemble mean and (b, c) spaghetti plots are drawn for the ensemble forecast data of geopotential height. In (a), the variance
of the ensemble is mapped to the background color. The isovalues of (a) and (b) are 5200;5260; :::;5800 (kpm), and 5230;5290; :::;5830 (kpm)
of (c), respectively. Three regions with high uncertainty are selected. The reasons for this selection are analyzed in Section 3.

2.2 Subspace Selection in Ensemble Visualization
Effective data selection is the basis of further analysis and calcula-
tion [23]. Recently, researchers have developed various interactive
mechanisms to support region [12] and isovalue [15] selection in en-
semble data visualization. For the subregion selection problem, most
existing studies provide a rectangular subregion interaction for reanal-
ysis [40, 45], whereas Holt et al. [17, 18] provided an irregular re-
gion selection. However, when users conduct exploratory visualiza-
tion with unclear analysis objectives, irregular region selection could
increase interaction complexity. Therefore, in our work, we choose the
commonly-used rectangular selection. To the best of our knowledge,
only a few studies focused on the selection of the attribute variable
dimension. Ma and Entezari [28] proposed a framework to explore
ensemble data through interactions. In this framework, users can se-
lect and analyze interesting isovalues by displaying the summary con-
tours generated by each isovalue. However, it is still based on some
prede�ned isovalues that largely depend on users’ domain knowledge.
For the direct selection of isovalues in the variable dimension, meth-
ods based on topological characteristics for non-ensemble data have
been proposed [2]; however, only a few studies focused on ensemble
data. In contrast to that of previous research, the method proposed in
the present study assists users in selecting isovalues on the basis of the
calculated variable spreading curve.

To �nd a proper isovalue for contour analysis, Hazarika et al. [15]
calculated two speci�c information, i.e., surprise and predictability,
to assist users in choosing the optimal isovalues. They �rst assumed
the mean �eld as the ground truth; then, they calculated surprise and
predictability between each member and the mean as the description
of the ensemble data. Similarly, we calculate value distribution but
instead of using speci�c information for measurement, we �nd the
extreme points of spatial distribution, which do not assume the mean
as ground truth making the method more universal.

2.3 Uncertainty Measurement and Visualization
Uncertainty has been intensively studied in recent years [26, 51, 24].
For example, Noodle [45] leverages basic statistics at each grid point
as uncertainty metrics. Uncertainties do not always follow the normal
distribution; thus, bootstrapping [6] is introduced for normalization;
furthermore, the Kullback-Leibler divergence [5] is introduced to cal-
culate the distance as a supplement to Euler distance because ensemble
members may introduce a probabilistic distribution of the data. In our
work, we focus on the uncertainty in ensemble data. Therefore, we
adopt the idea of sampling and introduce a feature uncertainty mea-
surement method. The calculated similarity is conventionally visual-
ized by line charts to show the trends. For example, Fang et al. [7]
proposed a time�activity curve to show the variance of each voxel and
their similarities. Wang et al. [47] divided data into blocks and calcu-
lated the importance of each block by using conditional entropy, thus
showing the importance over time. These works all leveraged time as
the x-axis of the line charts. In our work, we use a line chart to show
the calculated feature distribution curve and take the variable as the
x-axis to focus on the variance of the features.

3 REQUIREMENT ANALYSIS

To understand how ensemble data are analyzed in practice, we worked
with two senior experts (E.1 and E.2), who have maintained a long-

term cooperative relationship with us. We obtained their permission
and authorization and conducted a �eld study to observe their daily
practice in meteorological weather forecasting and climate research.
A considerable part of their work involves analyzing ensemble data
and developing insights accordingly. One major factor that affects the
analysis of ensemble simulation results is uncertainty. We interviewed
the experts in two separate sessions to identify their primary concerns
about ensemble data analysis and potential obstacles to ef�ciency. The
major requirements are summarized as follows:

R.1 Understand uncertainty distribution from a global perspec-
tive. Conventional visualization methods often leverage color map-
ping or isocontours to study the uncertainty distribution in an entire
scalar �eld, which frequently introduces misunderstanding. For exam-
ple, E.1 stated that the effect of uncertainty and the changing gradi-
ent of the numerical values are usually intertwined. For example, in
Fig. 3a, the grayscale part of the background is encoded by the en-
semble variance, and the contours of the ensemble mean and spaghetti
plots are shown in Figs. 3a and 3b, respectively. In the mid-latitude
regions, the variance on the east side is considerably higher than that
on the west side. However, the expert observed that the isolines in
region C are denser than those in the areas with the same latitude in
Figs. 3a and 3b. Thus, he concluded that the high variance in region C
is caused by the high gradient rather than the uncertainty. In region A,
the spaghetti plots show that the contours of different isovalues pass
through this region, indicating that the high variance is caused by un-
certainty. However, upon further investigation, the expert found that
the most crossed point does not coincide with the highest variance,
whereas the latter is coincident with the compact contours, indicating
that the high variance in region A is caused by uncertainty and high
gradient. In region B, the high variance �ts perfectly with the uncer-
tainty shown by the spaghetti plots. This observation indicates that the
variance could be caused by different factors. Therefore, E.1 required
to show the distribution of the ensemble data and the uncertainty si-
multaneously so that they would not interfere with each other.

R.2 Discover key points in variable space.The use of isocontours
to visualize the scalar �eld requires appropriate isovalues to be prede-
termined; this requirement is dif�cult to satisfy. As shown in Fig. 3b,
visualizing 11 isovalues by using a spaghetti plot causes visual clut-
ter and misses important features. However, if the preset isovalues
increase with 30 (kpm), then an interesting structure of the pink iso-
lines appears (Fig. 3c). However, this operation largely depends on
domain expertise. Thus, the experts required having a mechanism that
can automatically discover and recommend interesting structures.

R.3 Identify region locations and ranges with uncertainty. For
a detailed analysis, the experts �rst locate the areas with large uncer-
tainty and then determine the corresponding ranges. However, identi-
fying the regions is relatively easy, and determining the corresponding
ranges dif�cult due to the complexity of ensemble simulation. The
experts must select different regions manually and repeatedly; in this
manner, the analysis target is identi�ed albeit time-consuming.

R.4 Support temporal analysis of the ensemble data.In some
scenarios, such as weather forecasting, temporal analysis can uncover
the underlying patterns and interesting regions on the temporal di-
mension. However, without an ef�cient simpli�cation of handling the
time-varying ensemble simulation data, conducting temporal analysis
thoroughly would not be feasible. Data analysis with one single time
step can be complicated enough, let alone multiple time steps. There-
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