**Graph Visualization:** 

2016 北大可视化暑期学校 Topology-Shape-Metrics

# Topology-Shape-Metrics

- 1. Background
  - **Graphs and Graph Drawings**
  - **Planarity**
  - **Topology**
- 2016 北大町 视化暑期学校 The topology-shape-metrics approach
  - 1. Topology
  - 2. Shape
  - 3. Metrics

3. Remarks

Background: Graphs and Graph Drawings

# A **graph** as an adjacency matrix

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 1 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | 1 | 0 | 1 | 0 | 1 | 0 |

# The same graph as an adjacency list

| vertex | Adjacent vertices |
|--------|-------------------|
| 0      | 1, 3, 5           |
| 1      | 0, 2, 4           |
| 2      | 1, 3, 5           |
| 3      | 0, 2, 4           |
| 4      | 1, 3, 5           |
| 5      | 0, 2, 4           |

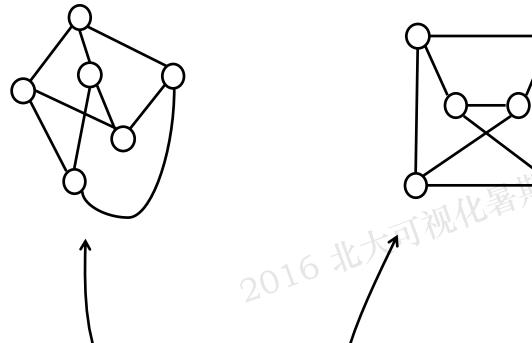
A *graph* has

- no geometry
- no graphics

It is *purely combinatorial* information.

# A graph drawing

Another drawing of the same graph



A graph drawing has *layout* 

- A position for each vertex
- A route for each edge
   It is combinatorial <u>plus geometric</u> information.

Background: Planarity

2016 北大可视化暑期学校

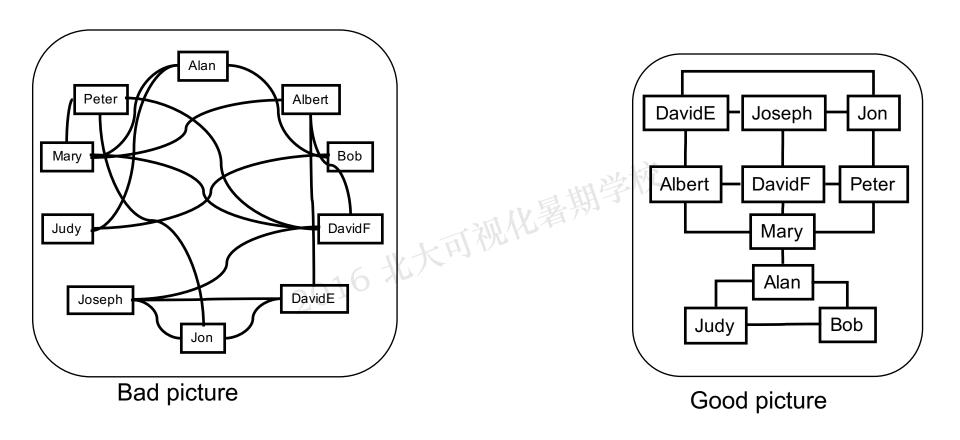
A graph <u>drawing</u> is <u>planar</u> if it has <u>no edge crossings</u>.

A planar graph drawing 6

A non-planar graph drawing

6
8
7
3
Edge crossing

# Note: Planar drawings make beautiful pictures



A graph

is *planar* 

if it *can be* drawn without edge crossings.

A planar graph  $G_1$ 

|   | 0 | 1 | 2 | 3 | 4 | 5       | 6  | 7 | 8  | 9 |         |
|---|---|---|---|---|---|---------|----|---|----|---|---------|
| 0 |   |   |   |   | 1 |         |    |   |    | 1 |         |
| 1 |   |   | 1 |   |   |         | 1  | 1 |    |   | 可视化暑期学科 |
| 2 |   | 1 |   | 1 |   |         |    |   | 1  | K | 可视化学    |
| 3 |   |   | 1 |   | 1 | $\circ$ | )1 | 6 | 70 |   | _       |
| 4 | 1 |   |   | 1 |   | 1       |    |   | 1  |   | _       |
| 5 |   |   |   |   | 1 |         | 1  | 1 |    | 1 | _       |
| 6 |   | 1 |   |   |   | 1       |    |   |    |   | _       |
| 7 |   | 1 |   |   |   | 1       |    |   | 1  |   |         |
| 8 |   |   | 1 |   | 1 |         |    | 1 |    |   |         |
| 9 | 1 |   |   |   |   | 1       |    |   |    |   |         |

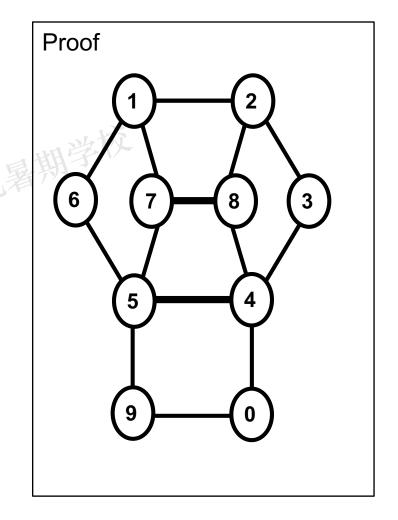
# A non-planar graph $G_2$

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 |   | 1 |   | 1 |   | 1 |
| 1 | 1 |   | 1 |   | 1 |   |
| 2 |   | 1 |   | 1 |   | 1 |
| 3 | 1 |   | 1 |   | 1 |   |
| 4 |   | 1 |   | 1 |   | 1 |
| 5 | 1 |   | 1 |   | 1 |   |

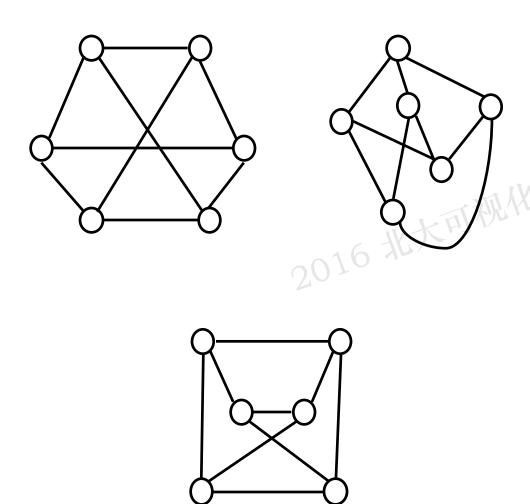
Lemma:

 $\boldsymbol{G_1}$  is planar.

|   | 0 | 1 | 2 | 3  | 4 | 5               | 6  | 7 | 8 | 9   |
|---|---|---|---|----|---|-----------------|----|---|---|-----|
| 0 |   |   |   |    | 1 |                 |    |   |   | 1   |
| 1 |   |   | 1 |    |   |                 | 1  | 1 |   |     |
| 2 |   | 1 |   | 1  |   |                 |    |   | 1 | 7.7 |
| 3 |   |   | 1 |    | 1 |                 | \\ | 7 | T | 74  |
| 4 | 1 |   |   | 10 | O | 71 <sub>C</sub> |    |   | 1 |     |
| 5 |   |   |   |    | 1 |                 | 1  | 1 |   | 1   |
| 6 |   | 1 |   |    |   | 1               |    |   |   |     |
| 7 |   | 1 |   |    |   | 1               |    |   | 1 |     |
| 8 |   |   | 1 |    | 1 |                 |    | 1 |   |     |
| 9 | 1 |   |   |    |   | 1               |    |   |   |     |



A graph *G* is *non-planar* if *every* drawing of *G* has edge crossings.



 A non-planar graph G2

 0
 1
 2
 3
 4
 5

 0
 1
 1
 1
 1

 1
 1
 1
 1
 1

 2
 1
 1
 1
 1

 3
 1
 1
 1
 1

 4
 1
 1
 1
 1

 5
 1
 1
 1
 1

Note: There are many beautiful theorems about planar graphs

<u>Theorem</u>: (from Euler, 1700s) For a planar graph G = (V, E),  $|E| \le 3|V| - 6$ . If |E| = 3|V| - 6, then G is triconnected and each face of the embedding of G has 3 edges.

Theorem (Kuratowski,1930) A graph is planar if and only if it does not contain a subgraph that is a subdivision of  $K_5$  or  $K_{3,3}$ .

<u>Theorem</u>: (Steinitz, 1930s) For every triconnected planar graph *G*, there is a convex polyhedron *P* in 3D such that the vertex-edge graph of *P* is isomorphic to *G*.

Theorem: (Appel-Haken, 1970s) A planar graph can be colored in 4 colors.

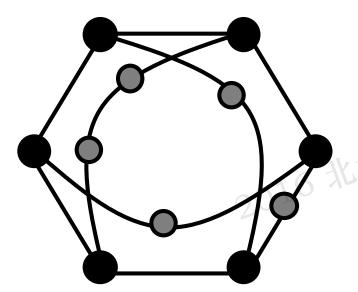
<u>Theorem</u>: (Lipton-Tarjan, 1980s) For every planar graph G with n vertices, there is set of  $O(\sqrt{n})$  vertices whose removal divides the graph into components of size at most  $\frac{2n}{3}$ .

<u>Theorem</u>: (Trivial) A graph is planar if and only if each of its triconnected components is planar.

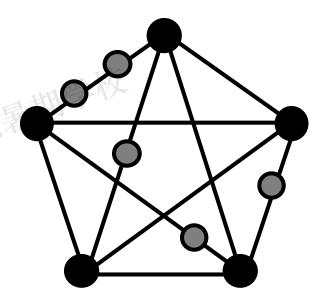
Note: There are many beautiful theorems about planar graphs

# Theorem (Kuratowski, 1930)

A graph is planar if and only if it does not contain a subgraph that is a subdivision of  $K_5$  or  $K_{3,3}$ .



 $K_{3,3}$  (complete bipartite graph on 6 vertices) subdivision



K<sub>5</sub> (the complete graph on 5 vertices) subdivision

# Theorem (Kuratowski, 1930)

A graph is planar if and only if it does not contain a subgraph that is a subdivision of  $K_5$  or  $K_{3,3}$ .

Corollary  $\overline{G_2}$  is non-planar

**Proof:** 

 $G_2$  is  $K_{3,3}$ .

|   | $\mathbf{u}_2$ |   |   |   |   |   |  |
|---|----------------|---|---|---|---|---|--|
|   | 0              | 1 | 2 | 3 | 4 | 5 |  |
| 0 |                | 1 |   | 1 |   | 1 |  |
| 1 | 1              |   | 1 |   | 1 |   |  |
| 2 |                | 1 |   | 1 |   | 1 |  |
| 3 | 1              |   | 1 |   | 1 |   |  |
| 4 |                | 1 |   | 1 |   | 1 |  |
| 5 | 1              |   | 1 |   | 1 |   |  |

Remarks: *Planar* graphs and *real-world* graphs

- Most real-world graphs are not planar
- But most are "nearly" planar in some sense:
  - deletion of o(n) edges gives a planar graph
  - scale-free networks are locally dense and globally sparse

## Planarity testing algorithms

### Hopcroft-Tarjan planarity testing algorithm (1974)

- Tests whether a graph is planar or not, in linear time
- Very complicated algorithm; implementation difficult
  - First published version incorrect; corrected by Deo (1976)
  - Most implementations incorrect
  - First correct implementation (I believe) 1994. 化暑期学

# Many subsequent planarity testing algorithms

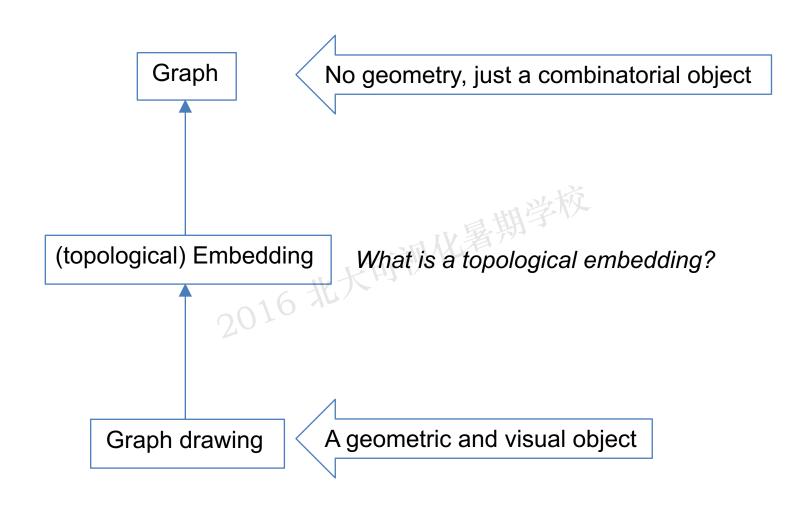
- ➤ Lempel-Even-Cederbaum 1966
- ➤ Booth-Lueker 1976
- Rosensthiel-de Frayssieux 1990
- Hsu/Boyer-Myvold 2000

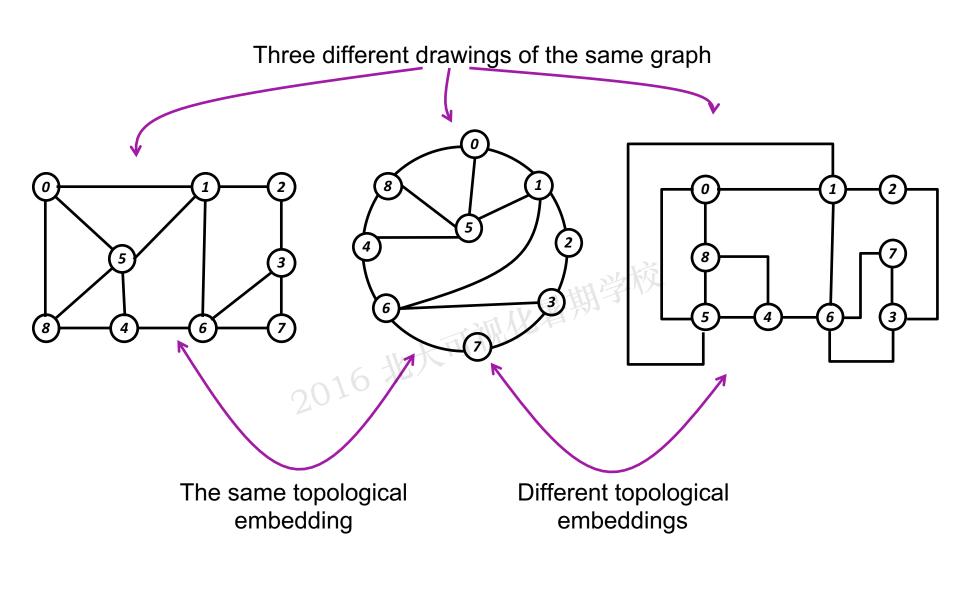
#### Note:

- All these planarity testing algorithms are efficient and <u>effective</u>, but none is <u>elegant</u>.
- Finding an <u>elegant</u> linear time planarity testing algorithm is still an unsolved problem.

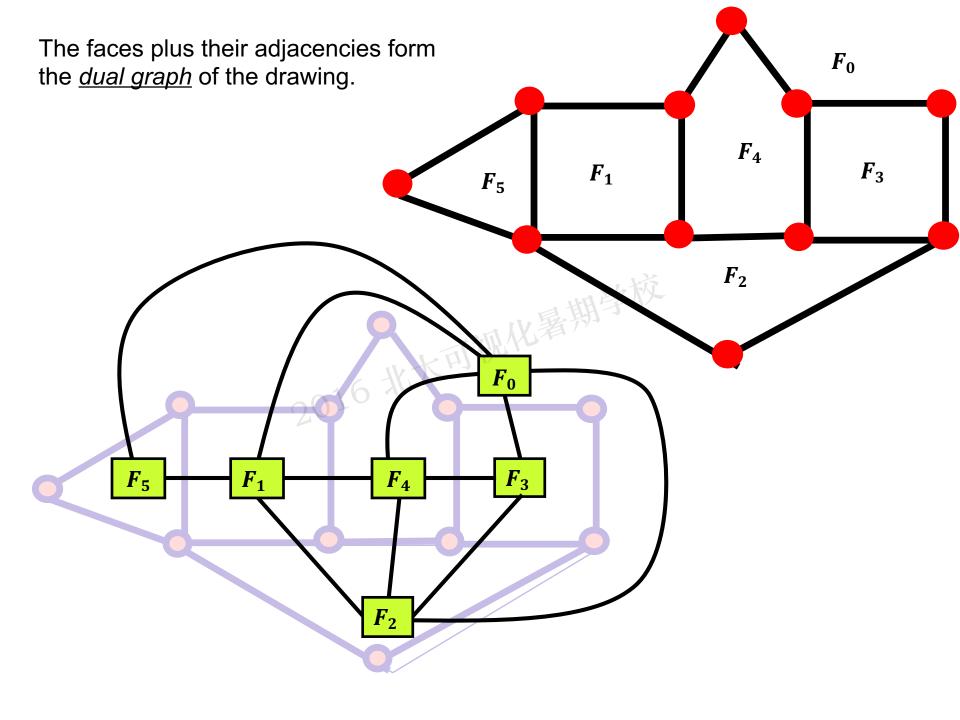
Background: **Topology** 

2016 北大可视化暑期学校



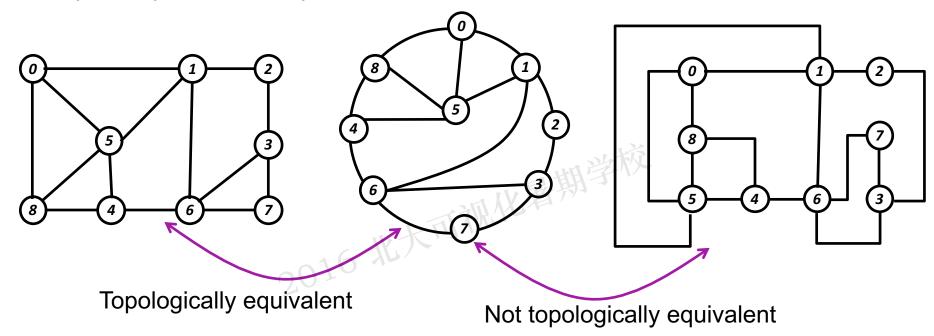


A graph drawing divides the plane into regions  $\boldsymbol{F_0}$ called *faces*.  $F_4$  $\boldsymbol{F_3}$  $\boldsymbol{F_1}$  $\boldsymbol{F_5}$  $F_2$ 2016 北大  $\boldsymbol{F_0}$  $F_2$  $F_3$  $\boldsymbol{F_1}$  $F_4$ 



#### Definition:

Two drawings of a graph are <u>topologically equivalent</u> if there is a homeomorphism of the plane/sphere that maps one to the other.



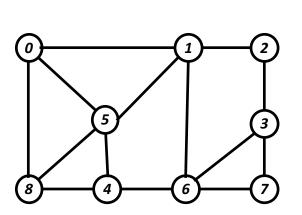
#### Alternative definitions:

Two drawings of a graph are topologically equivalent if

- 1. they have the "same" dual graph, or alternatively
- 2. they have the same clockwise circular ordering of edges around each vertex.

#### Definition:

Two drawings of a graph are <u>topologically equivalent</u> if there is a homeomorphism of the plane/sphere that maps one to the other.



| 0 | 8,1,5   |
|---|---------|
| 1 | 5,0,2,6 |
| 2 | 1,3     |
| 3 | 6,2,7   |
| 4 | 8,5,6   |
| 5 | 8,0,1,4 |
| 6 | 4,1,3,7 |
| 7 | 6,3     |
| 8 | 0,5,4   |

Same clockwise circular orderings of edges around each vertex

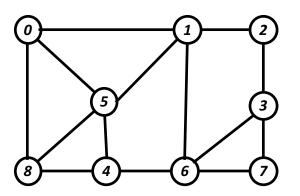
Same topological embedding

| 4      |   | 5) 2    | 2 |
|--------|---|---------|---|
| , / 🔻  | 0 | 5,8,1   |   |
|        | 1 | 6,5,0,2 |   |
| f      | 2 | 3,1     |   |
| d<br>, | 3 | 7,6,2   |   |
|        | _ | 0.5.0   | Ī |

| 0 | 5,8,1   |
|---|---------|
| 1 | 6,5,0,2 |
| 2 | 3,1     |
| 3 | 7,6,2   |
| 4 | 8,5,6   |
| 5 | 4,8,0,1 |
| 6 | 4,1,3,7 |
| 7 | 6,3     |
| 8 | 4,0,5   |
|   |         |

#### Definition:

A <u>(topological) embedding</u> of a graph **G** is an equivalence class of drawings of **G** under topological equivalence.



| 0 | 8,1,5   |
|---|---------|
| 1 | 5,0,2,6 |
| 2 | 1,3     |
| 3 | 6,2,7   |
| 4 | 8,5,6   |
| 5 | 8,0,1,4 |
| 6 | 4,1,3,7 |
| 7 | 6,3     |
| 8 | 0,5,4   |

#### Alternative definitions:

- 1. An embedding consists of a graph, plus the dual graph.
- 2. An embedding consists of a graph, plus a clockwise circular ordering of edges around each vertex.

A data structure for planar embeddings:

- a) List of vertices.
- b) For each vertex u, a circular list of vertices v adjacent to u.

# Planar embedding algorithms

- Most planarity testing algorithms "can be adjusted" to output a planar embedding of a planar graph in linear time.
- > All these algorithms are efficient and effective; none is elegant.

2016 北大可视化暑期学校

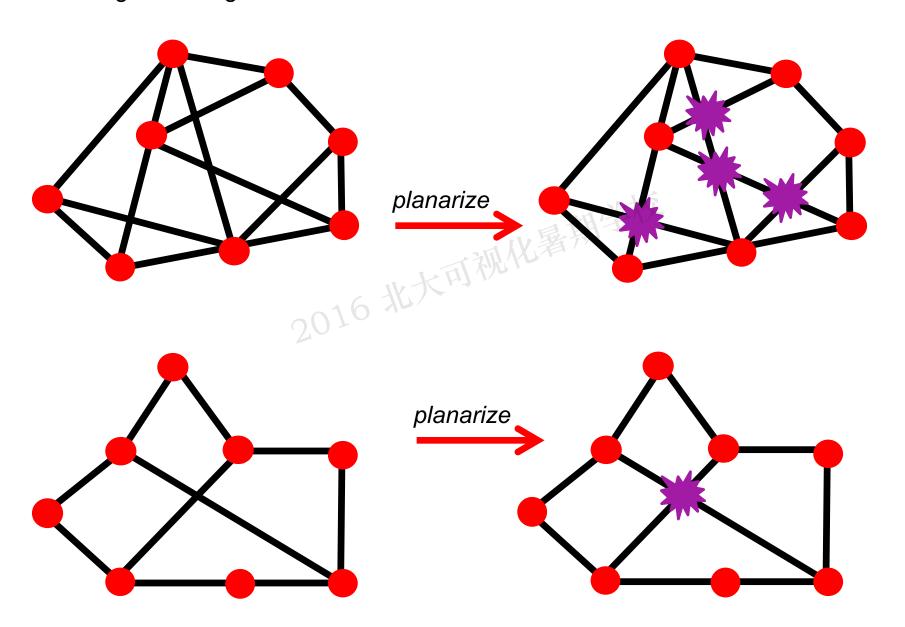
# Background: Planarization

a) Planarize a topological embedding

b) Planarize a graph

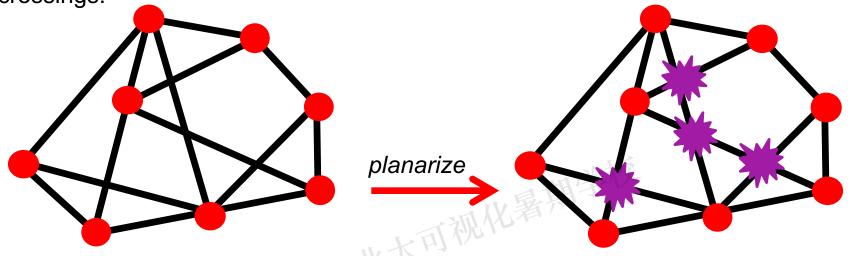
2016 北大可视化暑期学校

A <u>non-planar topological embedding</u> can be <u>planarized</u> by placing <u>dummy vertices</u> at the edge crossings.



A <u>non-planar embedding</u> can be <u>planarized</u> by placing <u>dummy vertices</u> at the edge

crossings.



#### Note:

- Planarization of a topological embedding can be done in linear time.
- The concept of planarization allows us to apply terminology, definitions, and data structures about planar embeddings to non-planar embeddings.
- If the number of crossing points is small, then planarization might not increase asymptotic time complexity of algorithms.
- Normally, we use planarization to give a data structure for a non-planar embedding.

A <u>non-planar graph</u> can be <u>planarized</u> by placing <u>gluing</u> independent edges together.

 Vertex
 Adjacent vertices

 0
 1, 3, 5

 1
 0, 2, 4

 2
 1, 3, 5

 3
 0, 2, 4

 4
 1, 3, 5

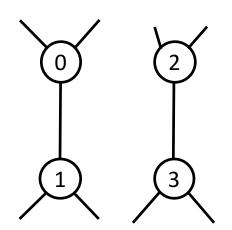
 5
 0, 2, 4

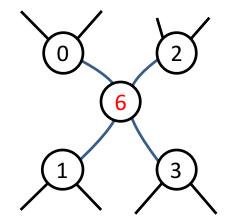
Glue edges (0,1) and (2,3)

1016 北大河

| vertex | Adjacent vertices     |
|--------|-----------------------|
| 0      | <b>6</b> , 3, 5       |
| 1      | 6, 2, 4               |
| 2      | 1, <mark>6</mark> , 5 |
| 3      | 0, 6, 4               |
| 4      | 1, 3, 5               |
| 5      | 0, 2, 4               |
| 6      | 0,1,2,3               |

A planar graph

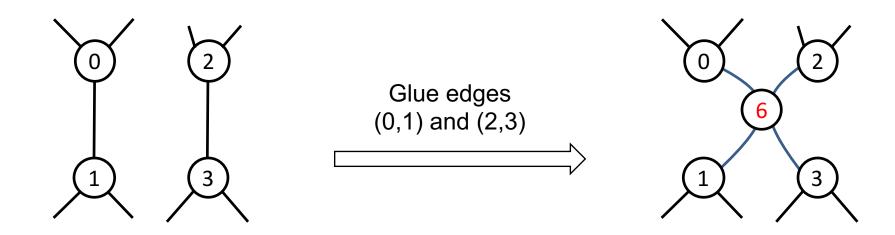




A <u>non-planar graph</u> can be <u>planarized</u> by placing <u>gluing</u> independent edges together.

Theorem: For every graph G, there is a sequence of edge-gluings that makes G planar.

Theorem: Finding a minimum sequence of edge-gluings that makes a graph planar is an NP-complete problem.



# 3. Graph drawings

2016 北大可视化暑期学校

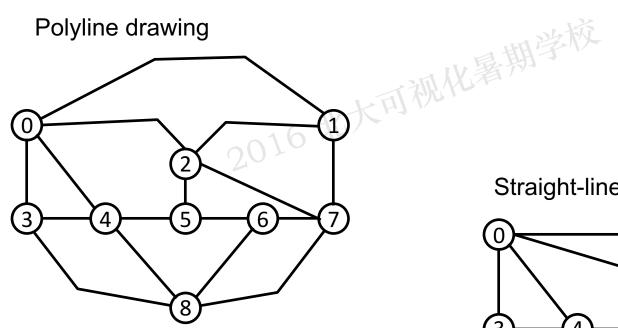
A <u>drawing</u> of a graph G = (V, E) consists of

- a location p(u) for each vertex u, and
- a Jordan arc c(u, v) for each edge (u, v) such that the endpoints of c(u, v) are p(u) and p(v).
- (plus a lot of non-degeneracy conditions)

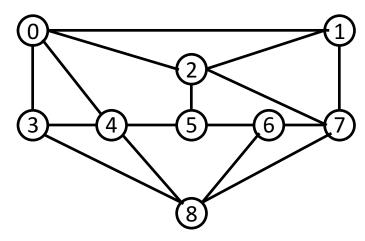
#### There are many kinds of graph drawings

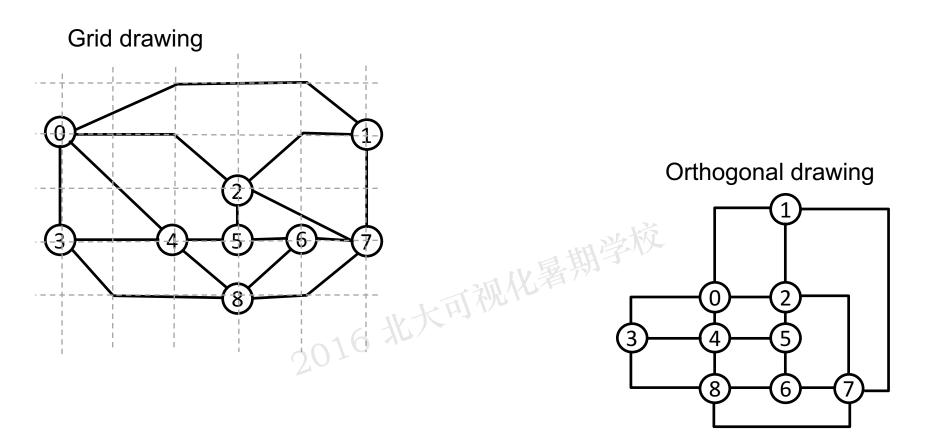
- > Grid drawing: vertices (and edge bends?) are located at integer grid points
- Polyline drawing: edges are polylines
- > Straight-line drawing: edges are straight line segments
- Orthogonal drawing: edges are polylines made up of vertical and horizontal line segments
- **>** ....
- **>** .....

# Polyline drawing

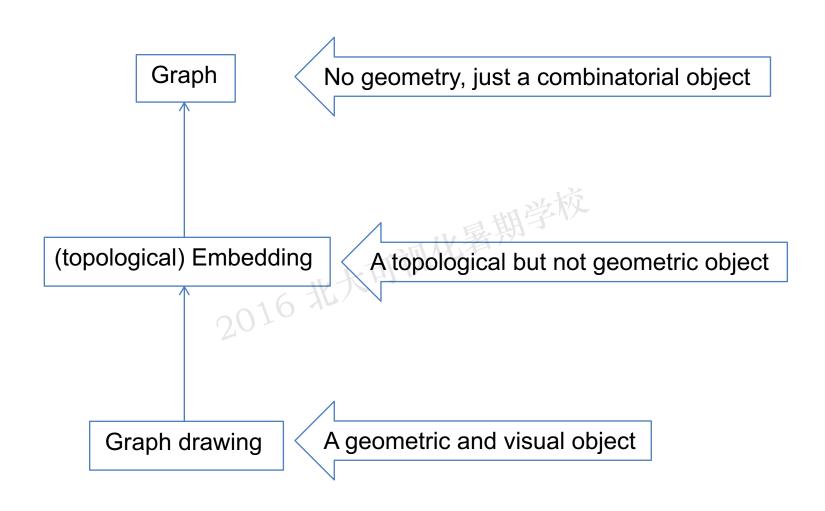


# Straight-line drawing





# Orthogonal grid drawing 0 2 3 4 5 8 6 7



# **Topology-shape-metrics approach**

2016 北大可视化暑期学校

# **Topology-shape-metrics method:**

**Input**: a graph **G** 

# **Algorithm:**

- Topology: Compute a good topological embedding of G
- Shape: Compute a good orthogonal shape for this topological embedding
- 3. <u>Metrics</u>: Compute a good orthogonal grid drawing of *G*

Output: an orthogonal grid drawing of G

<u>Aim</u>: produce a topological embedding with few edge crossings

# 1. Compute a good topological embedding of G

**Input**: a graph G = (V, E)

- a) Compute a planar subgraph G' = (V, E'), where E' is a subset of E, such that |E'| is as large as possible.
- b) Compute a planar embedding G'' of G'.
- c) Insert the edges of E E' into G'', creating as few crossings as possible, to create an embedding G''' of G.

Output: an embedding of G with few crossings

Use a maximum-planar-subgraph method

# We need solutions for a difficult problem:

Maximum Planar Subgraph (MPS)

Input: a graph G

Output: a planar subgraph of G with a maximum number of edges.

#### Note

- The Maximum Planar Subgraph problem is NP-complete
- Many heuristic approaches have been investigated, implemented, and tested over at least the last 30 years

One successful approach to MPS so far is integer linear programming

# Integer Linear Program for the Maximum Planar Subgraph problem

Given a graph G = (V, E):

#### Variables

 $x_e$  for each edge  $e \in E$ 

# Objective

Maximize  $\sum_{e \in E} x_e$ 

### Constraints

- a)  $x_{\rho} \in \{0,1\}$
- b) For each Kuratowski subgraph  $K = (V_K, E_K)$  of G:

$$\sum_{e \in E_K} x_e < |E_K|$$

# Interpetation:

$$x_e = \begin{cases} \mathbf{1} & \text{if } e \in E' \\ \mathbf{0} & \text{otherwise} \end{cases}$$

# Algorithm:

Use a traditional "branch&cut" approach, with cutting planes from the many theorems on planar graphs.

# 1. Compute a good topological embedding of G

**Input**: a graph G = (V, E)

- a) Compute a planar subgraph G' = (V, E'), where E' is a subset of E, such that |E'| is as large as possible.
- b) Compute a planar embedding G'' of G'.
- c) Insert the edges of E E' into G'', creating as few crossings as possible, to create an embedding G''' of G.

Output: an embedding of G with few crossings

Use planar embedding algorithms

- For example, a variation on the Hopcroft-Tarjan planarity algorithm

# 1. Compute a good topological embedding of G

**Input**: a graph G = (V, E)

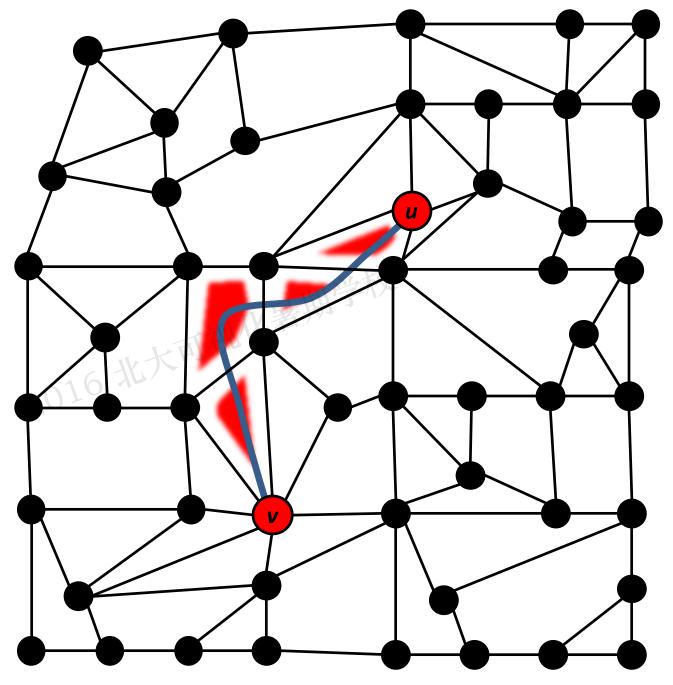
- a) Compute a planar subgraph G' = (V, E'), where E' is a subset of E, such that |E'| is as large as possible.
- b) Compute a planar embedding G'' of G'.
- c) Insert the edges of E E' into G'', creating as few crossings as possible, to create an embedding G''' of G.

Output: an embedding of G with few crossings

Use planar shortest path in the dual

To insert an edge  $(u,v) \in E - E'$  into G'':

- Construct the dual graph of G''
- $\succ$  Let  $f_u$  be the set of faces containing u
- Let f<sub>v</sub> be the set of faces containing v
- Route (u, v) via a shortest path from  $f_u$  to  $f_v$ .



# **Topology-shape-metrics approach:**

**Input**: a graph **G** 

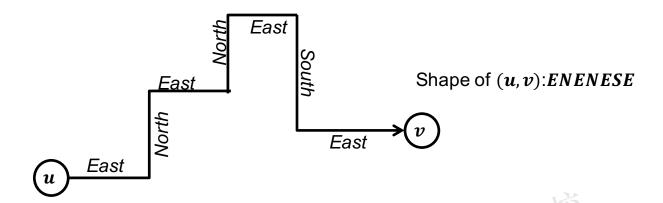
# **Algorithm:**

- <u>Topology</u>: Compute a good topological embedding of G
- 2. <u>Shape</u>: Compute a good orthogonal <u>shape</u> for this topological embedding
- Metrics: Compute a good orthogonal grid drawing of G

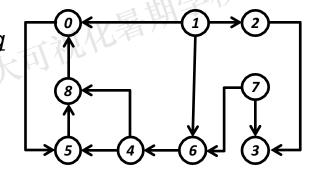
Output: an orthogonal grid drawing of G

Aim: give shape with a small number of edge bends.

The <u>shape of a directed orthogonal edge</u> is the sequence of North/South/East/West turns.



The <u>shape of an orthogonal drawing</u> consists of the shape of each edge (after directing edges arbitrarily)



| 0→5 | WSE |
|-----|-----|
| 1→0 | W   |
| 1→2 | E   |
| 1→6 | S   |
| 2→3 | ESW |
| 4→5 | W   |
| 4→8 | NW  |
| 5→8 | N   |
| 6→4 | W   |
| 7→3 | S   |
| 7→6 | WSW |
| 8→0 | N   |

# 2. <u>Shape</u>:

- Compute a good orthogonal shape for the topological embedding output from the topology step.
- We want a small number of bends

### Minimum Bends Problem

Input: An embedding G

Output: A shape for G with a minimum number of bends.

# Surprising result

Theorem (Tamassia, ~1987)

2016 批大

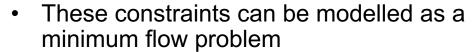
The Minimum Bends Problem can be solved in polynomial time.

$$O(n^{1.75} \log n)$$

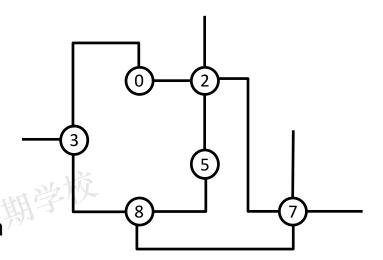
# Tamassia's algorithm to give a shape with a minimum total number of bends

- Note that  $\frac{\pi}{2}$  angles in a drawing satisfy some linear constraints
  - The sum of angles around a face is  $2(a+b-4)\frac{\pi}{2}$ , where a is the number of vertices and  $\bar{b}$  is the number of bends in the face.
  - The sum of angles around a vertex is  $4\frac{\pi}{2}$ .
  - ... plus other constraints from theorems on 2016 北大年 planar graphs





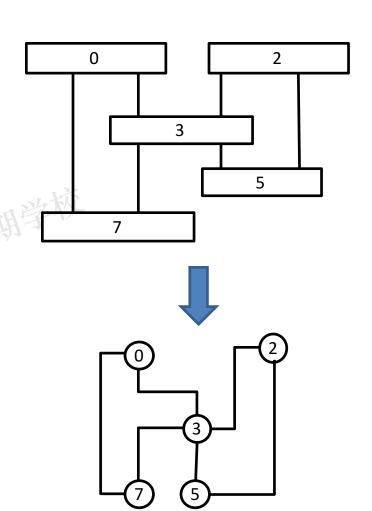
We can solve the minimum flow problem in polynomial time.



# **Visibility Algorithm**

Alternative method to give a shape with a small number of bends

- 1. Create a <u>visibility representation</u> of the input embedding
- 2. Adjust the visibility representation to give an orthogonal shape
  - > Runs in linear time
  - > Relatively elegant
  - Does <u>not</u> give a minimum total number of bends
  - ➤ But guarantees that the number of bends on an edge is at most 4.



# Visibility algorithm

*Input*: 2-connected topological embedding G = (V, E)

Output: Visibility drawing of G

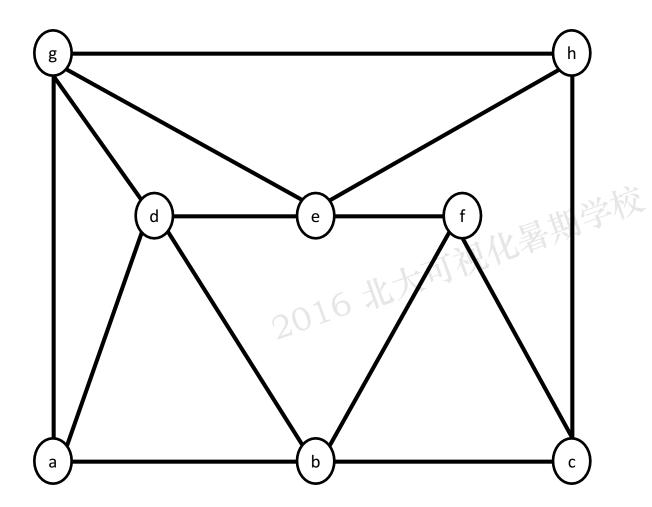
- 1. Construct an st-numbering y of G, and direct G according to y.
- 2. Construct the directed dual D, and topologically sort the nodes of D, to give an x coordinate x(f) for each face f of G.
- 3. For each edge  $e = (u, v) \in E$ : Let  $f_e$  be the face to the left of eDraw e as a vertical line segment from  $(x(f_e), y(u))$  to  $(x(f_e), y(v))$ .
- 4. For each vertex u in V:

Let  $x_{min}(u) = \min_{e}(x(f_e))$  over all edges e incident to u

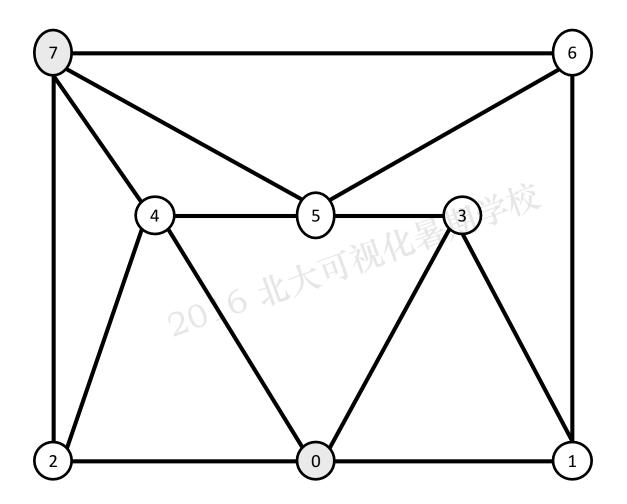
Let  $x_{max}(u) = \max_{e}(x(f_e))$  over all edges e incident to u

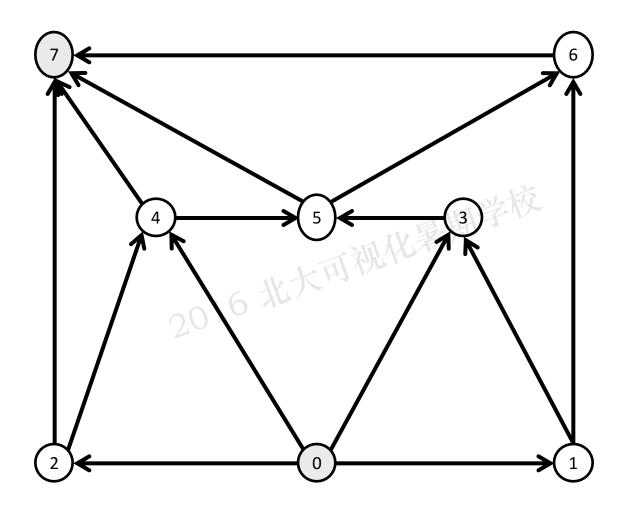
Draw u as a horizontal line segment from  $(x_{min}(u), y(u))$  to  $(x_{max}(u), y(u))$ .

5. Convert the visibility drawing to an orthogonal drawing.

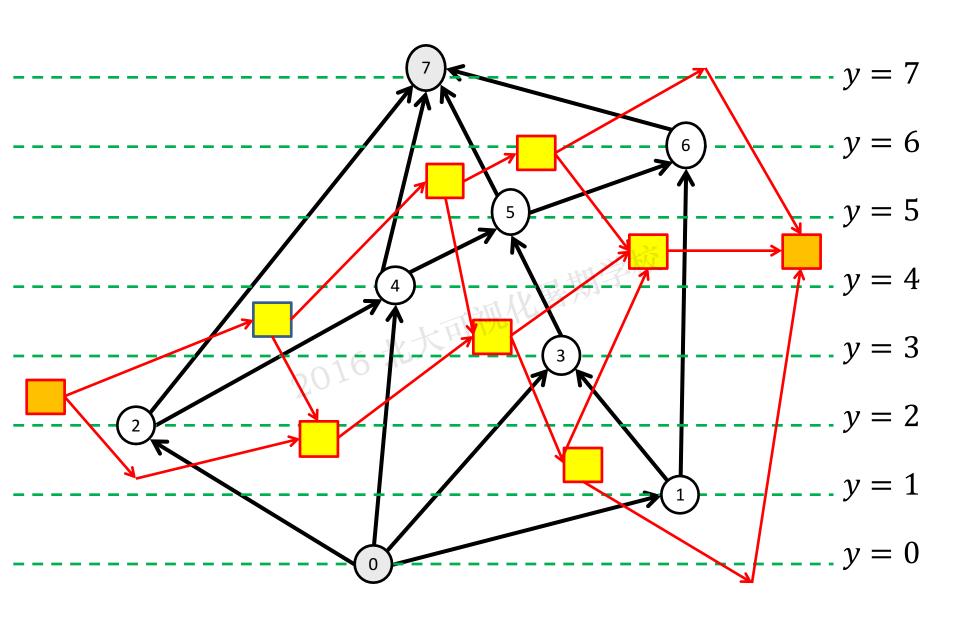


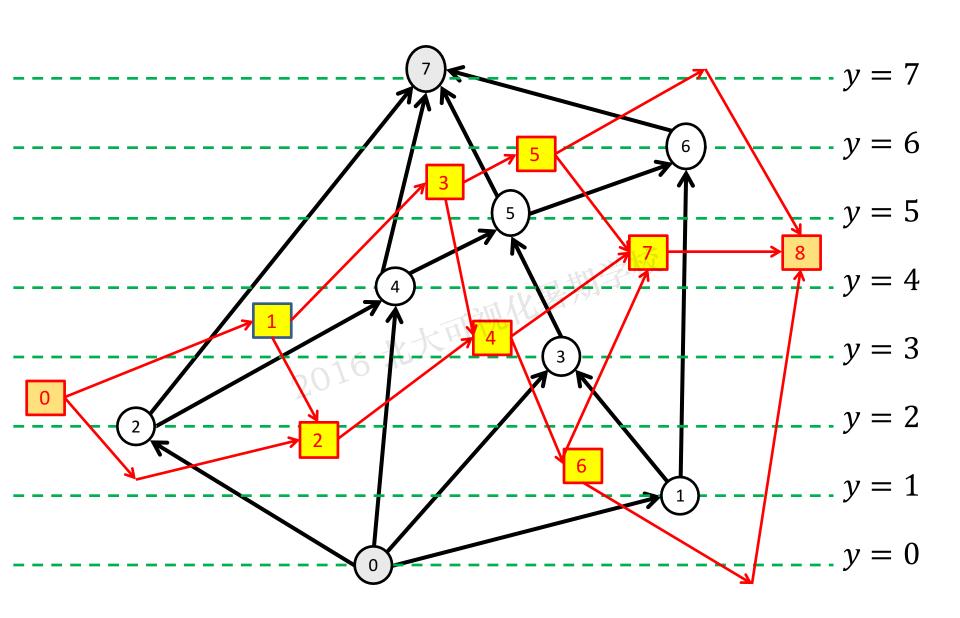
| а | b,g,d   |
|---|---------|
| b | a,d,f,c |
| С | b,f,h   |
| d | a,g,e,b |
| е | d,g,h,f |
| f | c,b,e   |
| g | a,h,e,d |
| h | c,e,g   |

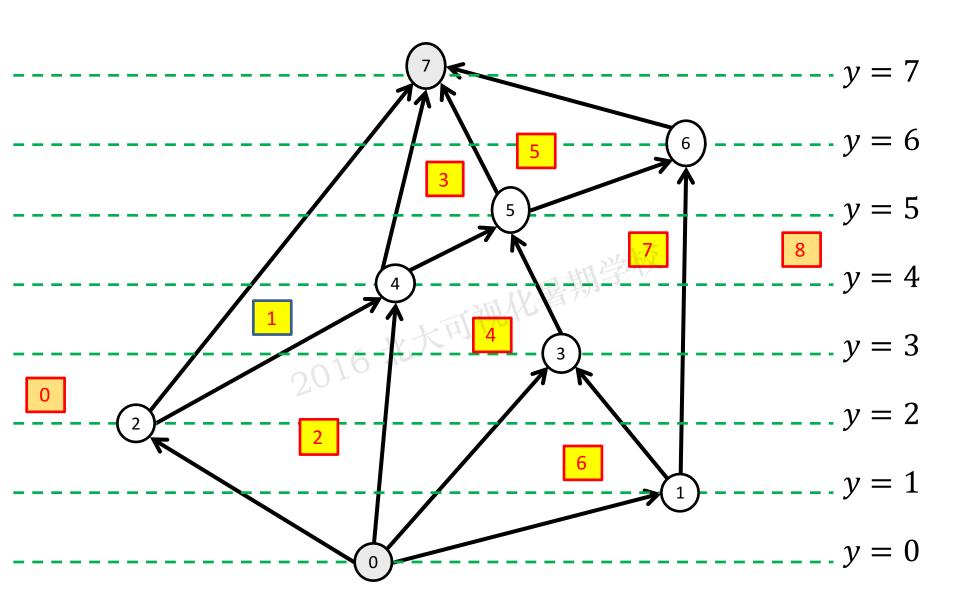


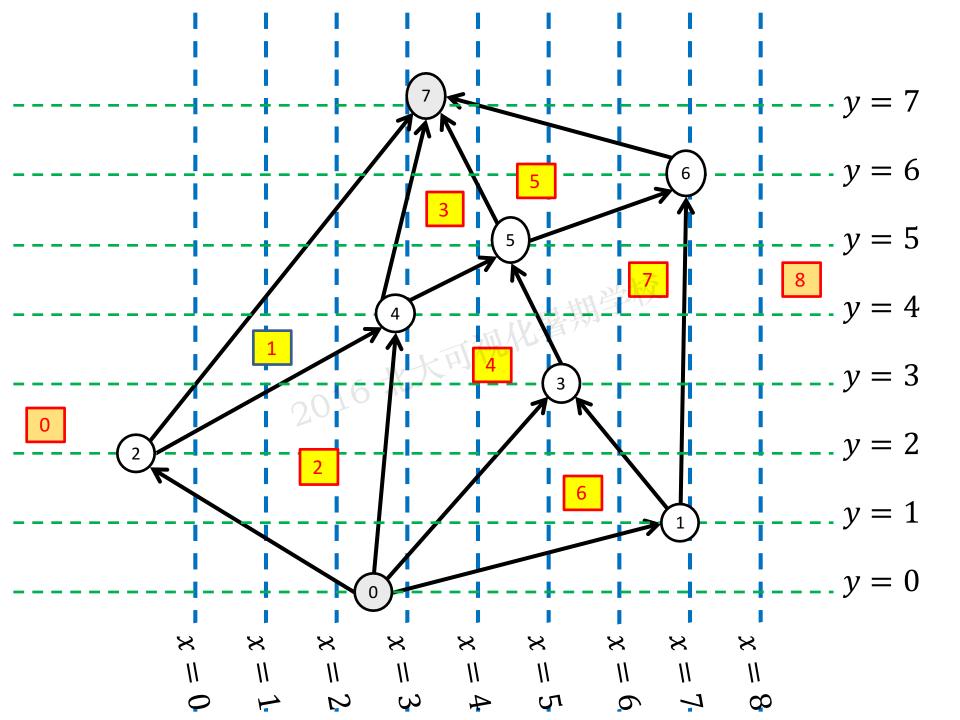


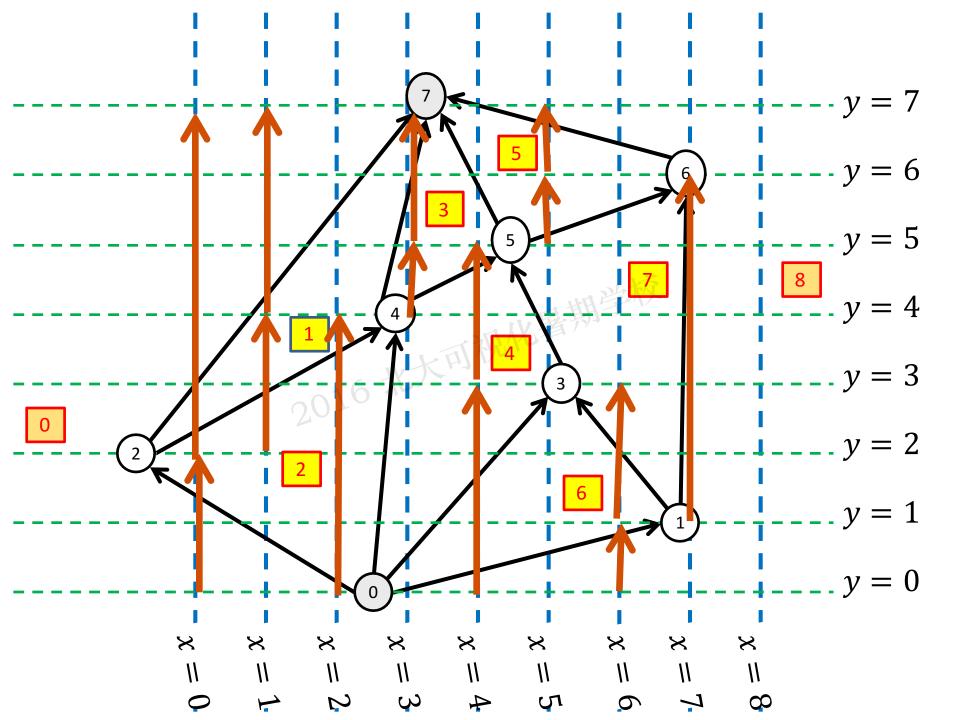


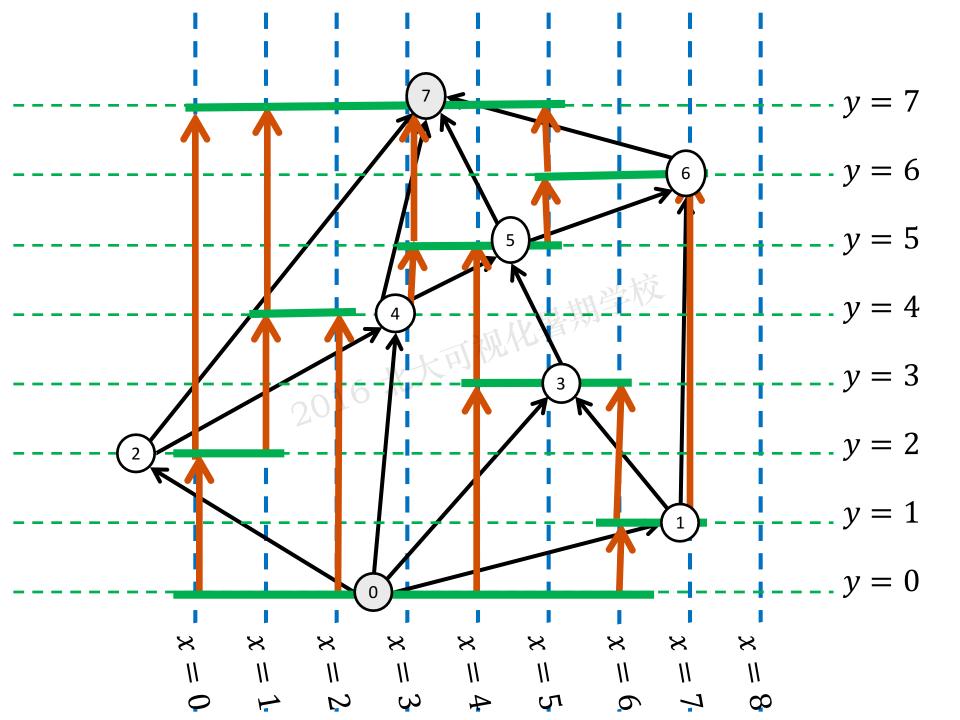


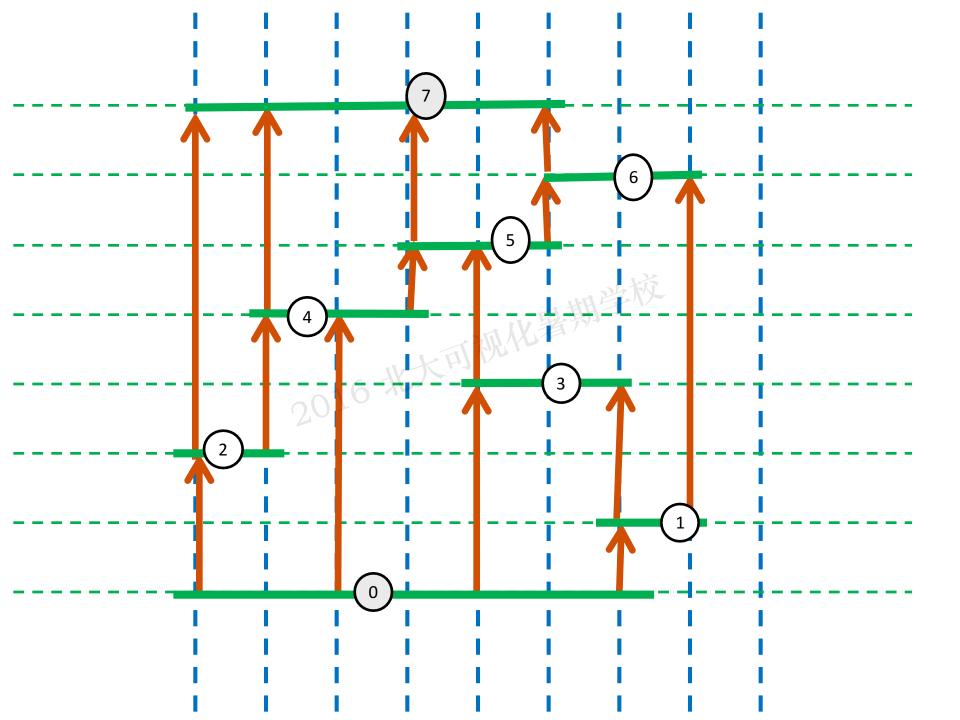


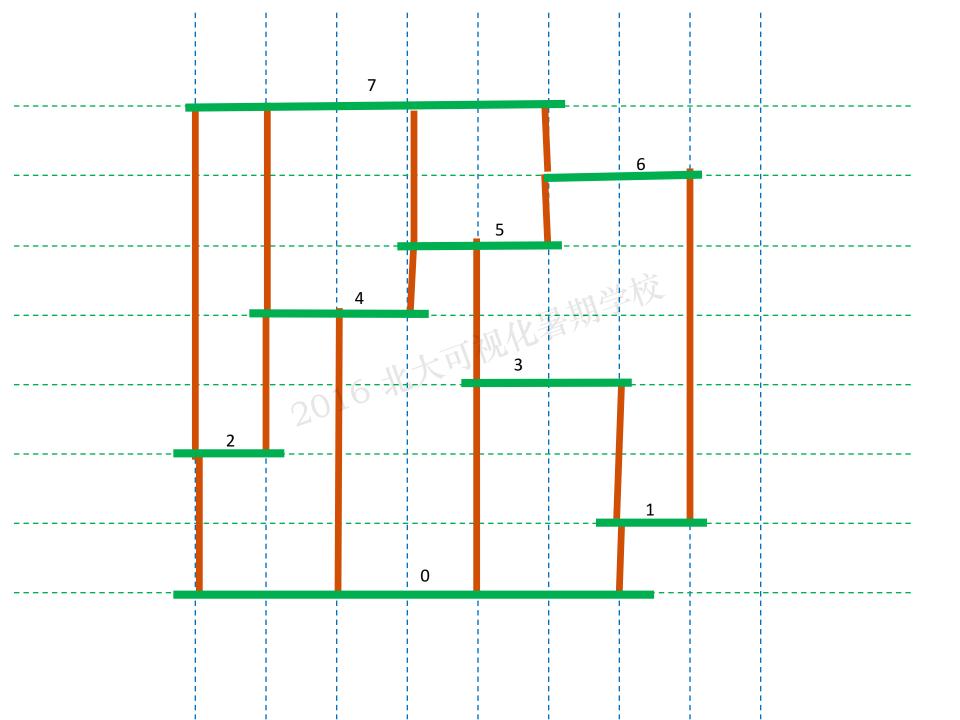


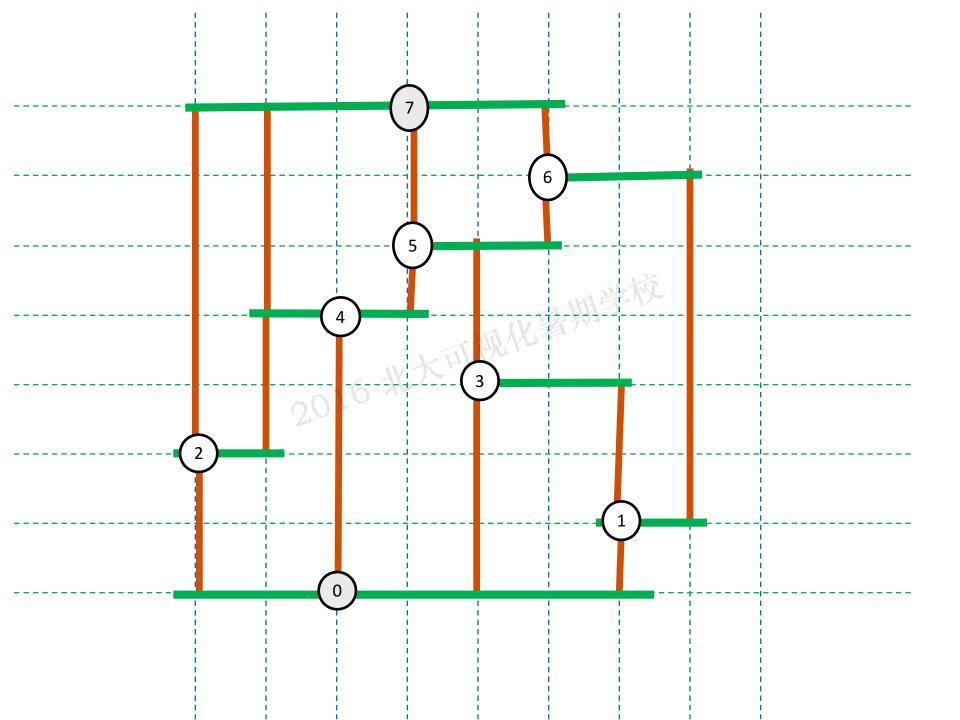


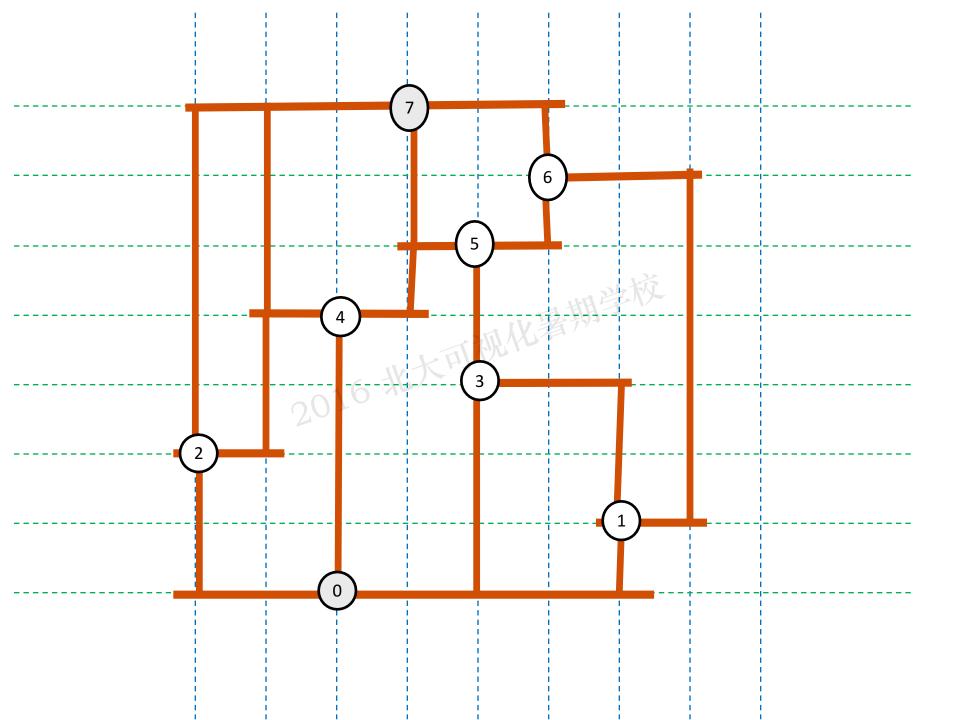


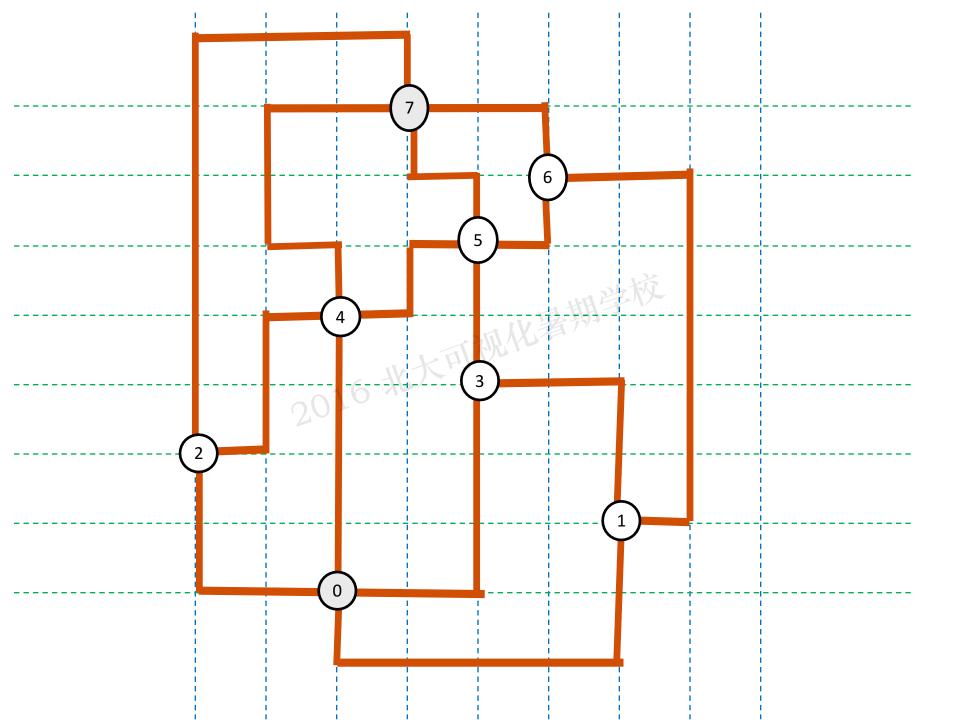


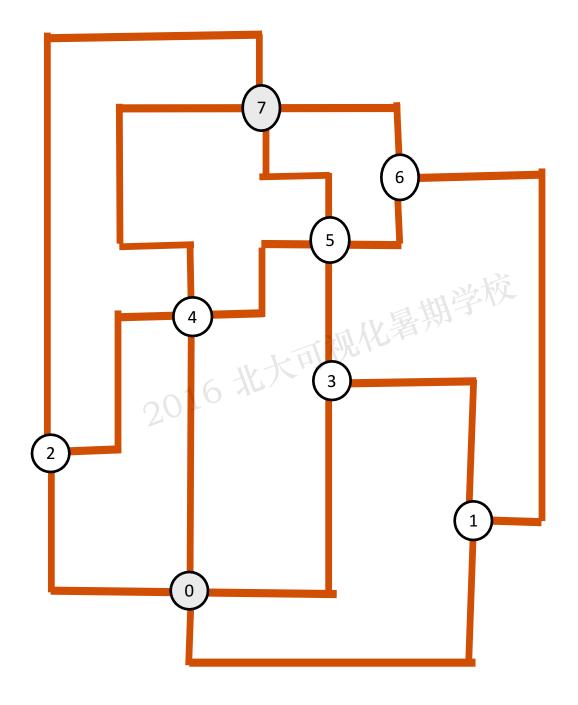












# **Topology-shape-metrics approach:**

Input: a graph G

# **Algorithm:**

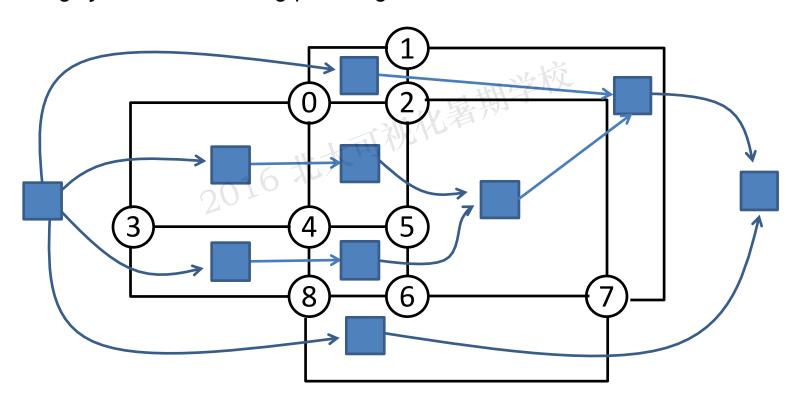
- Topology: Compute a good topological embedding of G
- Shape: Compute a good orthogonal shape for this topological embedding
- 3. <u>Metrics</u>: Compute a good orthogonal grid drawing of *G*

Output: an orthogonal grid drawing of G

Aim: give a drawing with good vertex resolution

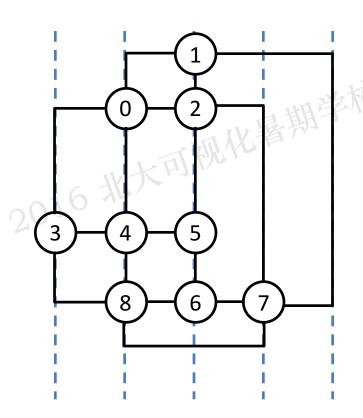
Metrics step: Use VLSI-inspired compaction methods to get a drawing on a small grid Compaction in the x direction

- 1. Construct a directed visibility graph *H* on the dual with source at the left and sink at the right.
- 2. For each vertex u in H, find a longest path in H from the source to u.
- 3. Assign *y*-coordinates using path-length from the source.



### Compaction in the *x* direction

- 1. Construct a directed visibility graph *H* on the dual with source at the left and sink at the right.
- 2. For each vertex u in H, find a longest path in H from the source to u.
- 3. Assign y-coordinates using path-length from the source.



Similarly compact in the y-direction.

2016 北大可视化暑期学校

# **Topology-shape-metrics method:**

**Input**: a graph **G** 

# **Algorithm:**

- 1. <u>Topology</u>: Compute a good topological <u>embedding</u> of **G**
- Shape: Compute a good orthogonal shape for this topological embedding
- 3. Metrics: Compute a good orthogonal grid drawing of G

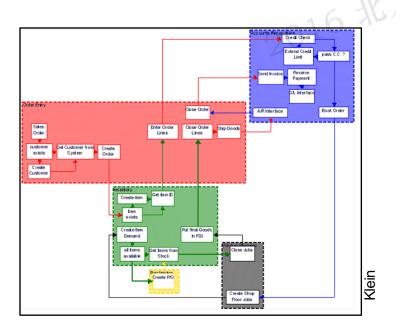
Output: an orthogonal grid drawing of G

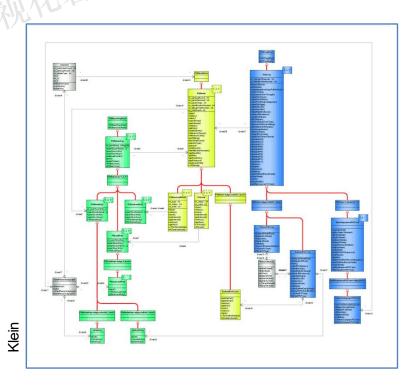
Is this method any good?

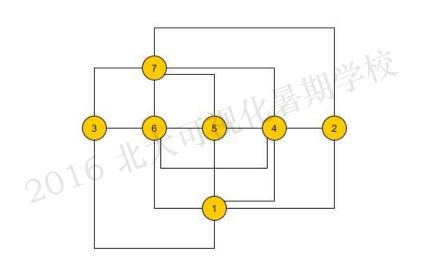
# Topology-shape-metrics approach

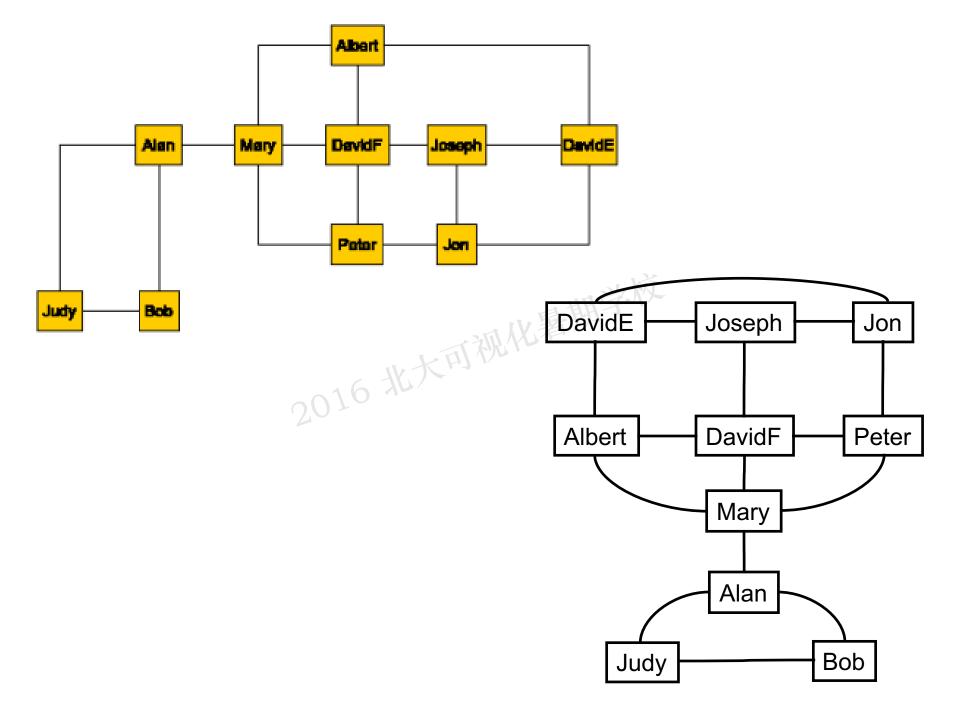
# Good things

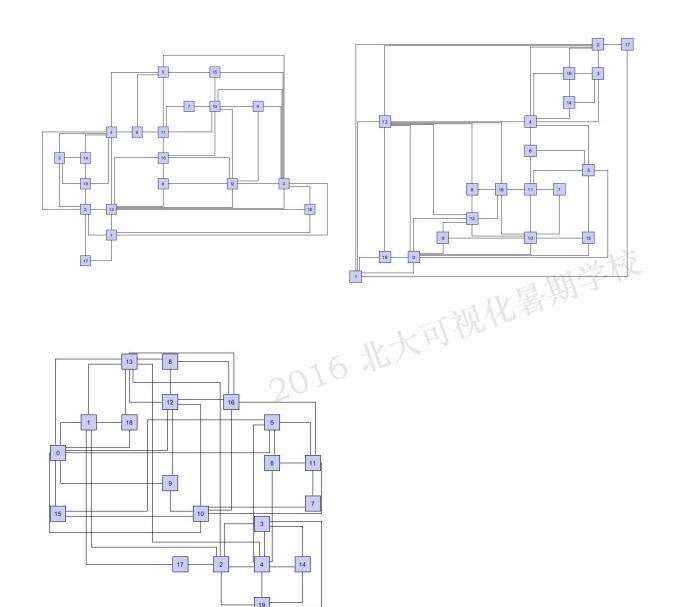
- Works well on small graphs
- Relatively fast (varies from O(n) to  $O(n^2 \log n)$ )
- Validated readability
- Can be adjusted to handle vertices of large degree and large size
- Can be adjusted for some constraints



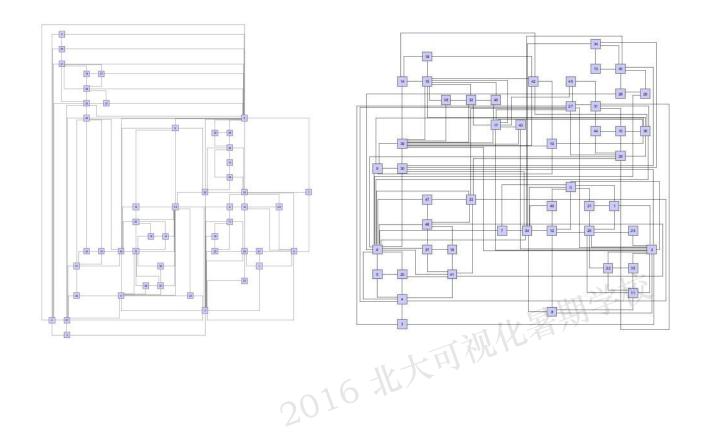




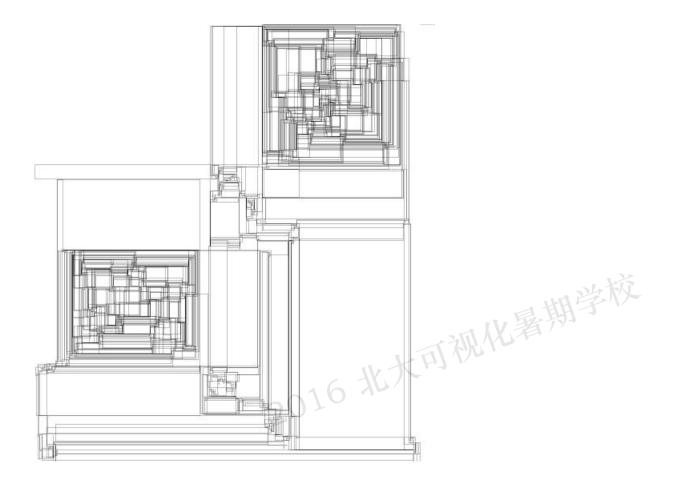




n = 20

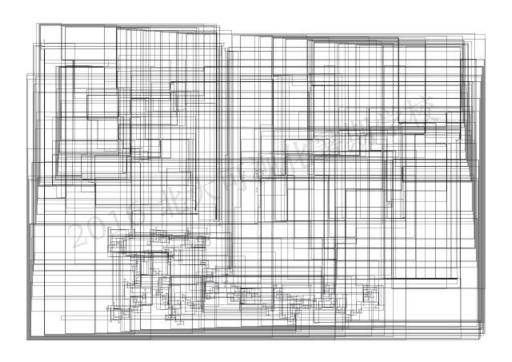


n = 50



n = 500

$$n = 500$$



Topology-shape-metrics approach

# Bad things

 Large drawings often look bad (poor faithfulness?)

Very difficult to code

