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Topology-Shape-Metrics

1. Background
• Graphs and Graph Drawings
• Planarity
• Topology

2. The topology-shape-metrics approach
1. Topology
2. Shape
3. Metrics

3. Remarks
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Background: Graphs and Graph Drawings
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A graph as an 
adjacency matrix

0 1 2 3 4 5

0 0 1 0 1 0 1

1 1 0 1 0 1 0

2 0 1 0 1 0 1

3 1 0 1 0 1 0

4 0 1 0 1 0 1

5 1 0 1 0 1 0

The same graph as 
an adjacency list

vertex Adjacent 
vertices

0 1, 3, 5
1 0, 2, 4
2 1, 3, 5
3 0, 2, 4
4 1, 3, 5
5 0, 2, 4

A graph has
• no geometry
• no graphics
It is purely combinatorial information.
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A graph drawing Another drawing of 
the same graph

A graph drawing has layout
• A position for each vertex
• A route for each edge
It is combinatorial plus geometric
information.
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Background: Planarity
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A graph drawing
is planar if it has no edge crossings.
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A planar graph drawing A non-planar graph drawing

Edge crossing
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Note: Planar drawings make beautiful pictures
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A graph
is planar
if it can be drawn without edge crossings.

0 1 2 3 4 5 6 7 8 9
0 1 1
1 1 1 1
2 1 1 1
3 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1
7 1 1 1
8 1 1 1
9 1 1

A planar graph 𝑮𝟏

0 1 2 3 4 5

0 1 1 1

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

A non-planar graph 𝑮𝟐
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Lemma:
𝑮𝟏	is planar.

0 1 2 3 4 5 6 7 8 9
0 1 1
1 1 1 1
2 1 1 1
3 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1
7 1 1 1
8 1 1 1
9 1 1

Proof
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A graph 𝑮 is non-planar
if every drawing of 𝑮 has edge crossings.

0 1 2 3 4 5

0 1 1 1

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

A non-planar graph 𝑮𝟐
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Theorem: (Trivial) A graph is planar if and only if each of its triconnected
components is planar.

Note: There are many beautiful theorems about planar graphs

Theorem: (Appel-Haken, 1970s) A planar graph can be colored in 4 colors.

Theorem: (from Euler, 1700s) For a planar graph 𝑮 = (𝑽, 𝑬), 𝑬 ≤ 𝟑 𝑽 − 𝟔. If 
𝑬 = 𝟑 𝑽 − 𝟔, then 𝑮 is triconnected and  each face of the 

embedding of 𝑮 has 3 edges. 

Theorem: (Steinitz, 1930s) For every triconnected planar graph 𝑮, there is a 
convex polyhedron 𝑷 in 3D such that the vertex-edge graph of 𝑷 is 
isomorphic to 𝑮.

Theorem: (Lipton-Tarjan, 1980s) For every planar graph 𝑮 with 𝒏 vertices, there 
is set of 𝑶 𝒏 vertices whose removal divides the graph into 
components of size at most 𝟐𝒏

𝟑
.

Theorem (Kuratowski,1930)  A graph is planar if and only if it does not contain a 
subgraph that is a subdivision of 𝑲𝟓 or 𝑲𝟑,𝟑.

Graph theorists love planar graphs
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Theorem (Kuratowski,1930)
A graph is planar if and only if it does not contain a subgraph that 
is a subdivision of 𝑲𝟓 or 𝑲𝟑,𝟑.

𝑲𝟓	(the complete graph on 5 
vertices) subdivision

𝑲𝟑,𝟑	(complete bipartite graph on 6 
vertices) subdivision

Note: There are many beautiful theorems about planar graphs
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Corollary
𝑮𝟐 is non-planar

0 1 2 3 4 5

0 1 1 1

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

𝑮𝟐

Proof:
𝑮𝟐 is 𝑲𝟑,𝟑. 

Theorem (Kuratowski,1930)
A graph is planar if and only if it does not contain a subgraph that 
is a subdivision of 𝑲𝟓 or 𝑲𝟑,𝟑.
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Remarks: Planar graphs and real-world graphs
Ø Most real-world graphs are not planar
Ø But most are “nearly” planar in some sense:

• deletion of 𝒐(𝒏) edges gives a planar graph
• scale-free networks are locally dense and 

globally sparse
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Planarity testing algorithms

Hopcroft-Tarjan planarity testing algorithm (1974)
Ø Tests whether a graph is planar or not, in linear time
Ø Very complicated algorithm; implementation difficult

• First published version incorrect; corrected by Deo (1976)
• Most implementations incorrect
• First correct implementation (I believe) 1994.

Many subsequent planarity testing algorithms
Ø Lempel-Even-Cederbaum 1966
Ø Booth-Lueker 1976
Ø Rosensthiel-de Frayssieux 1990
Ø Hsu/Boyer-Myvold 2000

Note:
Ø All these planarity testing 

algorithms are efficient and 
effective, but none is elegant.

Ø Finding an elegant linear time 
planarity testing algorithm is still 
an unsolved problem.
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Background: Topology
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Graph

(topological) Embedding

Graph drawing

No geometry, just a combinatorial object

A geometric and visual object

What is a topological embedding?
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Three different drawings of the same graph
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The same topological 
embedding

Different topological 
embeddings
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A graph drawing divides 
the plane into regions 
called faces.

𝑭𝟏

𝑭𝟎 𝑭𝟐

𝑭𝟒

𝑭𝟑

𝑭𝟏

𝑭𝟎

𝑭𝟐

𝑭𝟑
𝑭𝟒

𝑭𝟓
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The faces plus their adjacencies form 
the dual graph of the drawing.

𝑭𝟏

𝑭𝟎

𝑭𝟐

𝑭𝟑
𝑭𝟒

𝑭𝟓

𝑭𝟑𝑭𝟏

𝑭𝟎

𝑭𝟒𝑭𝟓

𝑭𝟐
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Definition:
Two drawings of a graph are topologically equivalent if there is a homeomorphism 
of the plane/sphere that maps one to the other.
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Alternative definitions:
Two drawings of a graph are topologically equivalent if
1. they have the “same” dual graph, or alternatively
2. they have the same clockwise circular ordering of edges around each vertex.

Topologically equivalent Not topologically equivalent 
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0 8,1,5
1 5,0,2,6
2 1,3
3 6,2,7
4 8,5,6
5 8,0,1,4
6 4,1,3,7
7 6,3
8 0,5,4

0 5,8,1
1 6,5,0,2
2 3,1
3 7,6,2
4 8,5,6
5 4,8,0,1
6 4,1,3,7
7 6,3
8 4,0,5

Same 
topological 
embedding

Same 
clockwise 
circular 

orderings of 
edges around 
each vertex

Definition:
Two drawings of a graph are topologically equivalent if there is a homeomorphism 
of the plane/sphere that maps one to the other.
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Definition:
A (topological) embedding of a graph 𝑮 is an equivalence 
class of drawings of 𝑮 under topological equivalence.

A data structure for planar embeddings:
a) List of vertices.
b) For each vertex 𝒖, a circular list of vertices 𝒗

adjacent to 𝒖.

1
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0 8,1,5
1 5,0,2,6
2 1,3
3 6,2,7
4 8,5,6
5 8,0,1,4
6 4,1,3,7
7 6,3
8 0,5,4

Alternative definitions:
1. An embedding consists of a graph, plus the 

dual graph.
2. An embedding consists of a graph, plus a 

clockwise circular ordering of edges around 
each vertex.
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Planar embedding algorithms

Ø Most planarity testing algorithms “can be adjusted” to output a planar 
embedding of a planar graph in linear time.

Ø All these algorithms are efficient and effective; none is elegant.
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Background: Planarization

a) Planarize a topological embedding
b) Planarize a graph
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A non-planar topological embedding can be planarized by placing dummy vertices
at the edge crossings.

planarize

planarize
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A non-planar embedding can be planarized by placing dummy vertices at the edge 
crossings.

planarize

Note:
• Planarization of a topological embedding can be done in linear time.
• The concept of planarization allows us to apply terminology, definitions, and 

data structures about planar embeddings to non-planar embeddings.
• If the number of crossing points is small, then planarization might not increase 

asymptotic time complexity of algorithms.
• Normally, we use planarization to give a data structure for a non-planar 

embedding.
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A non-planar graph can be planarized by placing gluing independent edges 
together.

vertex Adjacent 
vertices

0 1, 3, 5
1 0, 2, 4
2 1, 3, 5
3 0, 2, 4
4 1, 3, 5
5 0, 2, 4

vertex Adjacent 
vertices

0 6, 3, 5
1 6, 2, 4
2 1, 6, 5
3 0, 6, 4
4 1, 3, 5
5 0, 2, 4
6 0,1,2,3
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A non-planar graph can be planarized by placing gluing independent edges 
together.

0

1

2

3

0

1

2

3

6
Glue edges 

(0,1) and (2,3)

Theorem: For every graph G, there is a sequence of edge-gluings that 
makes G planar.

Theorem: Finding a minimum sequence of edge-gluings that makes a 
graph planar is an NP-complete problem.
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3. Graph drawings
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A drawing of a graph 𝑮 = (𝑽, 𝑬) consists of
• a location 𝒑(𝒖) for each vertex 𝒖, and
• a Jordan arc 𝒄(𝒖, 𝒗) for each edge (𝒖, 𝒗)	such that the endpoints 

of 𝒄(𝒖, 𝒗) are 𝒑(𝒖) and 𝒑(𝒗).
• (plus a lot of non-degeneracy conditions)

There are many kinds of graph drawings
Ø Grid drawing: vertices (and edge bends?) are located at integer grid points
Ø Polyline drawing: edges are polylines
Ø Straight-line drawing: edges are straight line segments
Ø Orthogonal drawing: edges are polylines made up of vertical and horizontal 

line segments
Ø ….
Ø …..
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Graph

(topological) Embedding

Graph drawing

No geometry, just a combinatorial object

A geometric and visual object

A topological but not geometric object
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Topology-shape-metrics approach
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Topology-shape-metrics method:

Input: a graph 𝑮

Algorithm:
1. Topology: Compute a good topological 

embedding of 𝑮
2. Shape: Compute a good orthogonal 

shape for this topological embedding
3. Metrics: Compute a good orthogonal grid 

drawing of 𝑮

Output: an orthogonal grid drawing of 𝑮

Aim: produce a topological embedding with few edge crossings
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1. Compute a good topological embedding of 𝑮

Input: a graph 𝑮 = (𝑽, 𝑬)

a) Compute a planar subgraph 𝑮< = 𝑽, 𝑬< , where 𝑬′ is a subset of 𝑬, 
such that 𝑬′ is as large as possible.

b) Compute a planar embedding 𝑮′′ of 𝑮<.
c) Insert the edges of 𝑬 −𝑬′ into 𝑮′′, creating as few crossings as 

possible, to create an embedding 𝑮′′′ of 𝑮.

Output: an embedding of 𝑮 with few crossings

Use a maximum-planar-subgraph method
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We need solutions for a difficult problem:

One successful approach to MPS so far is integer linear programming

Note
w The Maximum Planar Subgraph problem is NP-complete
w Many heuristic approaches have been investigated, implemented, 

and tested over at least the last 30 years

Maximum Planar Subgraph (MPS)
Input: a graph 𝑮
Output:  a planar subgraph of 𝑮 with a maximum number of edges.
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Integer Linear Program for the Maximum Planar Subgraph problem

Given a graph 𝑮 = (𝑽, 𝑬):
Variables

𝒙𝒆 for each edge 𝒆 ∈ 𝑬
Objective

Maximize ∑ 𝒙𝒆𝒆∈𝑬
Constraints

a) 𝒙𝒆 ∈ 𝟎,𝟏
b) For each Kuratowski subgraph 𝑲 = 𝑽𝑲,𝑬𝑲 of 𝑮:

D 𝒙𝒆
𝒆∈𝑬𝑲

< 𝑬𝑲

Interpetation:

𝒙𝒆 = F𝟏				if	𝒆 ∈ 𝑬′
𝟎	otherwise

Algorithm:
Ø Use a traditional “branch&cut” approach, with cutting planes from the many 

theorems on planar graphs.
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1. Compute a good topological embedding of 𝑮

Input: a graph 𝑮 = (𝑽, 𝑬)

a) Compute a planar subgraph 𝑮< = 𝑽, 𝑬< , where 𝑬′ is a subset of 𝑬, 
such that 𝑬′ is as large as possible.

b) Compute a planar embedding 𝑮′′ of 𝑮<.
c) Insert the edges of 𝑬 −𝑬′ into 𝑮′′, creating as few crossings as 

possible, to create an embedding 𝑮′′′ of 𝑮.

Output: an embedding of 𝑮 with few crossings

Use planar embedding algorithms
- For example, a  variation on the Hopcroft-Tarjan planarity algorithm
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1. Compute a good topological embedding of 𝑮

Input: a graph 𝑮 = (𝑽, 𝑬)

a) Compute a planar subgraph 𝑮< = 𝑽, 𝑬< , where 𝑬′ is a subset of 𝑬, 
such that 𝑬′ is as large as possible.

b) Compute a planar embedding 𝑮′′ of 𝑮<.
c) Insert the edges of 𝑬 −𝑬′ into 𝑮′′, creating as few crossings as 

possible, to create an embedding 𝑮′′′ of 𝑮.

Output: an embedding of 𝑮 with few crossings

Use planar shortest path in the dual
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To insert an edge 
(𝒖,𝒗) ∈ 	𝑬 − 𝑬′ into 𝑮′′:
Ø Construct the dual 

graph of 𝑮′′
Ø Let 𝒇𝒖 be the set of 

faces containing 𝒖
Ø Let 𝒇𝒗 be the set of 

faces containing 𝒗
Ø Route (𝒖,𝒗)	via a 

shortest path from 
𝒇𝒖 to 𝒇𝒗.
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Topology-shape-metrics approach:

Input: a graph 𝑮

Algorithm:
1. Topology: Compute a good topological 

embedding of 𝑮
2. Shape: Compute a good orthogonal 

shape for this topological embedding
3. Metrics: Compute a good orthogonal grid 

drawing of 𝑮

Output: an orthogonal grid drawing of 𝑮

Aim: give shape with a small number of edge bends.
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The shape of a directed orthogonal edge is the 
sequence of North/South/East/West turns.

𝒖

𝒗

Shape of (𝒖, 𝒗):𝑬𝑵𝑬𝑵𝑬𝑺𝑬

East

East

East

EastN
or

th

N
or

th

South

The shape of an orthogonal drawing
consists of the shape of each edge 
(after directing edges arbitrarily)
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1à2 E

1à6 S

2à3 ESW

4à5 W

4à8 NW

5à8 N

6à4 W

7à3 S

7à6 WSW

8à0 N
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2. Shape:
Ø Compute a good orthogonal shape for the topological embedding output 

from the topology step.
Ø We want a small number of bends

Minimum Bends Problem
Input: An embedding 𝑮
Output: A shape for 𝑮 with a minimum number of bends.

Surprising result

Theorem (Tamassia, ~1987)
The Minimum Bends Problem can be solved in polynomial time.

𝑶 𝒏𝟏.𝟕𝟓 𝒍𝒐𝒈𝒏
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Tamassia’s algorithm to give a shape with a minimum total number of bends
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• Note that N
O
	angles in a drawing satisfy some 

linear constraints
- The sum of angles around a face is 
𝟐 𝒂 + 𝒃	– 	𝟒 𝝅

𝟐
		, where 𝒂 is the number of 

vertices and 𝒃 is the number of bends in 
the face.

- The sum of angles around a vertex is 𝟒𝝅
𝟐
.

- … plus other constraints from theorems on 
planar graphs

- …
- …

• These constraints can be modelled as a 
minimum flow problem

• We can solve the minimum flow problem in 
polynomial time.
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Visibility Algorithm
Alternative method to give a shape with a small 
number of bends
1. Create a visibility representation of the input 

embedding
2. Adjust the visibility representation to give an 

orthogonal shape

Ø Runs in linear time
Ø Relatively elegant
Ø Does not give a minimum total number 

of bends
Ø But guarantees that the number of 

bends on an edge is at most 4.
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Visibility algorithm
Input: 2-connected topological embedding 𝐺 = (𝑉, 𝐸)
Output: Visibility drawing of 𝐺
1. Construct an st-numbering 𝑦	of 𝐺, and direct 𝐺 according to 𝑦.
2. Construct the directed dual 𝐷, and topologically sort the nodes of 𝐷, to give an 

𝑥 coordinate 𝑥(𝑓) for each face 𝑓	of 𝐺.
3. For each edge 𝑒 = (𝑢, 𝑣) 	 ∈ 	𝐸:

Let 𝑓_ be the face to the left of 𝑒
Draw 𝑒 as a vertical line segment from	(𝑥(𝑓_),𝑦(𝑢))	to (𝑥(𝑓_), 𝑦(𝑣)).

4. For each vertex u in V:
Let 𝑥`ab 𝑢 = min

_
𝑥 𝑓_ 	 over all edges	𝑒	incident to 𝑢

Let 𝑥`fg 𝑢 = max
_

𝑥 𝑓_ 	 over all edges	𝑒	incident to 𝑢

Draw 𝑢 as a horizontal line segment from (𝑥`ab 𝑢 , 𝑦(𝑢)) to (𝑥`fg 𝑢 , 𝑦(𝑢)).
5. Convert the visibility drawing to an orthogonal drawing.

2016 北大可视化暑期学校



g

e

a b

f

h

c

d

a b,g,d

b a,d,f,c

c b,f,h

d a,g,e,b

e d,g,h,f

f c,b,e

g a,h,e,d

h c,e,g

2016 北大可视化暑期学校



7

5

2 0

3

6

1

4

2016 北大可视化暑期学校



7

5

2 0

3

6

1

4

2016 北大可视化暑期学校



𝑦 = 0

𝑦 = 1

𝑦 = 2
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𝑦 = 0
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𝑦 = 0
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𝑦 = 0
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Topology-shape-metrics approach:

Input: a graph 𝑮

Algorithm:
1. Topology: Compute a good topological 

embedding of 𝑮
2. Shape: Compute a good orthogonal 

shape for this topological embedding
3. Metrics: Compute a good orthogonal grid 

drawing of 𝑮

Output: an orthogonal grid drawing of 𝑮

Aim: give a drawing with good vertex resolution
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Metrics step: Use VLSI-inspired compaction methods to get a drawing on a small grid
Compaction in the 𝒙 direction
1. Construct a directed visibility graph 𝑯 on the dual with source at the left and 

sink at the right.
2. For each vertex 𝒖 in 𝑯, find a longest path in 𝑯 from the source to 𝒖.
3. Assign 𝒚-coordinates using path-length from the source.
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Compaction in the 𝒙 direction
1. Construct a directed visibility graph 𝑯 on the dual with source at the left and 

sink at the right.
2. For each vertex 𝒖 in 𝑯, find a longest path in 𝑯 from the source to 𝒖.
3. Assign 𝒚-coordinates using path-length from the source.

Similarly compact in the 𝒚-direction.
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Remarks
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Topology-shape-metrics method:

Input: a graph 𝑮

Algorithm:
1. Topology: Compute a good topological embedding of 𝑮
2. Shape: Compute a good orthogonal shape for this 

topological embedding
3. Metrics: Compute a good orthogonal grid drawing of 𝑮

Output: an orthogonal grid drawing of 𝑮

Is this method any good?
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Topology-shape-metrics approach

Good things
• Works well on small graphs
• Relatively fast (varies from 𝑶(𝒏) to 𝑶 𝒏𝟐𝒍𝒐𝒈	𝒏 )
• Validated readability
• Can be adjusted to handle vertices of large degree and large size
• Can be adjusted for some constraints
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𝑛 = 20
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𝑛 = 50

2016 北大可视化暑期学校



𝑛 = 500
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Topology-shape-metrics approach

Bad things
• Large drawings often look bad 

(poor faithfulness?)
• Very difficult to code
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