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Abstract

Traditionally, node link diagrams are the prime choice when it
comes to visualizing software architectures. However, node link
diagrams often fall short when used to visualize large graph struc-
tures. In this paper we investigate the use of call matrices as visual
aids in the management of large software projects. We argue that
call matrices have a number of advantages over traditional node link
diagrams when the main object of interest is the link instead of the
node. Matrix visualizations can provide stable and crisp layouts of
large graphs and are inherently well suited for large multilevel visu-
alizations because of their recursive structure. We discuss a number
of visualization issues, using a very large software project currently
under development at Philips Medical Systems as a running exam-
ple.

CR Categories: H.5.2 [Information Systems and Presentation]:
User Interfaces—Graphical User Interfaces (GUI) D.2.4 [Software
Engineering]: Software/Program Verification—Validation;

Keywords: software visualization, multilevel visualization, call
matrix

1 Introduction

Visualization can play an important role during the complete life-
cycle of software systems, from the global design of a new system
to the reverse engineering of legacy systems. Diagrams are a stan-
dard aid during the design of a system. In the maintenance of large
legacy systems, for which no queryable design information exists
or for which the design information is outdated, visualization can
provide more insight into the structure of the system by aiding in
the detection of patterns or features.
We focus on the use of visualization for the stage in between,

where a high-level architectural design is transformed into an im-
plementation. In large systems, the high-level architecture of a
system is designed by a small team of system architects, and im-
plemented by a substantially larger team of programmers. A first
problem is that it is impossible and often not even desired for the
architects to manage, or even specify, every little implementation
detail, due to the size of the system. This might lead to subsystems
being implemented with an interface that is too wide, subsystems

growing too big or calls being made between subsystems that are
not supposed to communicate, for example. Determining these po-
tential problems as early in the development process as possible can
save much time later on.
A second problem when dealing with very large software sys-

tems is that even the top architects have difficulties to maintain a
birds eye view of the entire architecture. Although they often have
general knowledge of most subsystems, knowing exactly how all
pieces fit together can be a daunting task. In this case software visu-
alization can also help, serving as a useful memory externalization
and communication tool.
We use a very large software development project currently in

progress at Philips Medical Systems as a running example. The
project deals with the redesign of a medical imaging platform. To
indicate the scale of the project: It is one of the largest software
engineering efforts ever undertaken by Philips, consisting of well
over 25,000 classes (including instantiated template classes), imple-
mented in over 3 million lines of code, with a comparable amount
of testing code. Approximately 300 programmers and 12 architects
have been working on the project since 1997. Architects working
on the system were interested in the following aspects:

• To what degree does the current implementation conform to
the architecture specification? Are there any calls made that
are not allowed?

• Which subsystems are affected if a subsystem is changed? Or,
in other words, which subsystems call or are called by the
changed subsystem?

• What are the changes in the system over time?

The next sections describe a visualization tool that is able to deal
with the scale of the project and can provide answers to the ques-
tions stated above. Section 2 describes the problem and the ap-
proach we took, section 3 covers related work and section 4 deals
with some visualization issues. We discuss practical results in sec-
tion 5 and conclude in section 6.

2 Approach

The system we are considering is hierarchically decomposed into
different components. Every component x has an integer abstrac-
tion level A(x). Given a total of N levels, 0 is the highest possible
level of abstraction and N−1 the lowest. The system under consid-
eration has five different abstraction levels named System, Layer,
Unit, Module and Class. Every component x is contained in exactly
one other component P(x), unless A(x) = 0. Components also call
each other: predicate C(x,y) is true if a call exists from component
x to component y and false otherwise. Note that calls are directed
soC(x,y) �=C(y,x).
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Figure 1: When displaying all calls
made between nodes A and B, we
have to zoom both A and B

Figure 2: Recursive matrix subdivision according to relative component size (a),
Matrix subdivision according to number of subcomponents at a specific abstrac-
tion level (b)

The software architecture under consideration here has the follow-
ing properties:

• Strictly hierarchical. Components form a tree structure in
which A(P(x)) = A(x)−1 for every component x with A(x) >
0.

• Layered calls. Calls can only be made between two com-
ponents at the same level in the hierarchy. Or equivalently:
C(x,y) ⇒ A(x) = A(y)

• Call aggregation. Calls are aggregated upward through the
hierarchy. For every call between two components, there ex-
ists a call between their respective parent components. That
is: C(x,y) ⇒C(P(x),P(y)).

The actual call data and composition hierarchy are extracted from
the C++ code by a system developed at Philips Research Labora-
tories [Postma 2003]. It consists of a number of PERL scripts and
takes about 7 hours to extract data. Calls that are not interesting
from a software engineering perspective, such as callback inter-
faces, Microsoft Foundation Classes calls or standard C++ calls,
are filtered from the data. Data extraction was performed at set in-
tervals (usually monthly) leading to a series of datasets.
Providing a meaningful, multi-level, stable and interactive lay-

out is by no means an easy task. Traditionally, system architects are
quite fond of node-oriented visualizations, such as the node-link di-
agram. In these visualizations, the node (or component in this case)
and its characteristics are the prime objects of interest. Unfortu-
nately, node-link diagrams usually cannot provide meaningful and
readable layouts for more than a hundred nodes at a time.
Node-link diagrams also have a problem with multilevel view-

ing. This is inherent to their visual language. Consider a hierar-
chical call graph, such as the one defined above. Components are
displayed as nodes, calls between components as edges between
nodes. If we want to view all calls that are made within component
A, we can suffice with displaying only A at a lower level of abstrac-
tion. If however, we want to view all calls that are made between
two different components A and B, we have to show both A and B
at a lower abstraction level (See figure 1).
Finally, node link diagrams are not always as stable as we would

like. Addition or removal of a single node can lead to a radically
different layout. Although methods to alleviate this problem exist,
a stable layout cannot be guaranteed. Because of these issues, node
link diagrams are not very suitable for the purpose discussed here.

3 Related work

In this paper we opt for a link-oriented visualization and the use
of call matrices. Call and, more general, adjacency matrices have
been used before in graph visualization as an alternative to the tra-
ditional node link diagrams in [Abello and Krishnan 1999; Abello
and Korn 2002; Becker et al. 1995; Stolte et al. 2002; Ziegler et al.
2002] amongst others. More specifically, inter-class call matrices
have been proposed [de Pauw et al. 1998] to visualize calls be-
tween different classes of a relatively small object oriented system.
Colors represented the frequency of calls between different classes.
The user could also bring up a detailed view in a separate display,
showing calls between different methods in a class. We expanded
on this idea by using multiple levels in the hierarchy, allowing us to
apply it to much larger samples. The different views have also been
integrated by providing a smooth zoom transition between them,
similar to the SHriMP [Storey et al. 2001] interface. This gives the
impression of a single coherent information space.

4 Visualization

A call matrix is an M×N matrix in which each row and column
represents a subcomponent. A cell [i, j] in the matrix represents
a call from component i to component j. If such a call exists a
cell is filled, else it is empty. From a visualization viewpoint, a
hierarchical call matrix has the following desirable properties:

• Uniform visual representation: The only visual element
used in the visualization is a matrix-cell. This allows us
to avoid the previously mentioned zooming inconsistency.
Zooming into a node A corresponds to zooming in on the cell
[A,A], zooming into edges from node A to node B corresponds
to zooming in on cell [A,B].

• Recursive structure: The visual representation of callC(i, j)
is by definition contained in the visual representation of call
C(P(i),P( j)). This makes it very easy to construct multiscale
visualizations.

• Stability and predictability: Contrary to other popular graph
visualization methods (such as force directed methods), ad-
dition of a call is guaranteed to never radically change the
layout, since every call has its own prereserved section of vi-
sualization space.
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Figure 4: Series of frames showing the transition from the cell in figure 2b to the cell in figure 3

The construction of a matrix visualization is not difficult as such,
but a careful design is required for an optimal result. In this section
we will elaborate on some of the subtleties in the construction of a
hierarchical call matrix.

4.1 Matrix subdivision

Each cell M[i, j] in the matrix represents the calls between compo-
nents i and j. Since it would be very practical if the dimensions of
M[i, j] depend on the sizes of components i and j, it makes sense to
first define the size of a component. The most obvious choice here
is to recursively define a components size by summing the sizes of
its subcomponents. For components at the lowest level of abstrac-
tion, which don’t have any subcomponents, one can take a suitable
size statistic such as the number of source lines or number of class
methods. We could then try to visualize all abstraction levels in a
single display, leading to a treemap-like [Johnson and Shneiderman
1991] recursive subdivision. Unfortunately, this means we have
to represent almost 25,000 items at the lowest level, which is well
above the limit of modern day raster displays. We therefore limit
the number of abstraction levels displayed simultaneously. In prac-
tice displaying two abstraction levels at once is a nice compromise
between showing detail and maintaining overview. This leads to a
visualization as displayed in figure 2a. Large subcomponents take
up an area of visualization space that is the square of their size
suppressing small but possibly important components. The wide
variety in row and column sizes (ranging from a few pixels to al-
most half of the visualization space) also makes the resulting matrix
messy and hard to ’read’.
Since we are displaying only a limited number of abstraction lev-

els at a time, a much better option is to use the number of currently
visible subcomponents as a size measure instead. Figure 2b shows a
visualization using this size measure, resulting in a much more reg-
ular, grid-like subdivision of the visualization space. One of the dis-
advantages of using this measure is that zooming into a matrix cell
distorts the sizes of its subcells, since the number of visible subcom-
ponents increases non uniformly. This has as a consequence that
matrix cells may look different depending on the abstraction level
they are viewed on (Figure 3). A second disadvantage is that the

Figure 3: Identical matrix cells at different levels of visual abstrac-
tion

displayed size of a component is no longer proportional to the size
of that component relative to the system. This can clearly be seen
in Figure 2, where component E (note that actual, more descriptive
component names have been removed for security reasons) takes
up well over half of the system in figure 2a, and roughly one third
of the system in figure 2b. Both these problems can be solved by
applying appropriate visualization techniques, as we shall see in the
following sections.

4.2 Multilevel zooming

A common problem in multilevel visualizations is that users are
provided with different levels of visual abstraction, without imme-
diately comprehending how these different levels interrelate. This
problem is aggravated by the fact that the visual representation of
a single matrix cell depends on the current level of data abstrac-
tion. To illustrate this, figure 3 shows a cell from figure 2b dis-
played at different levels of visual abstraction. If nothing were done
to remedy this, users would quickly lose context when navigating
the structure. This leads to information fragmentation instead of a
consistent mental map. The use of a smooth, continuous semantic
zoom from one abstraction level to another can be of great help in
this case [Stolte et al. 2002; Stasko 1998].
The best results were obtained with a combination of linear in-

terpolation and crossfade. Interpolation can be done in a straight-
forward fashion by animating every gridline in the high level repre-
sentation to their position in a lower level representation. Figure 3
shows the positions of a single gridline (red) at two different levels
of abstraction. The final effect is that grid cells expand or contract,
depending on the number of subcomponents they contain. At the
same time we perform a crossfade (that is, the transparency of one
representation is increased, while the other representations trans-
parency is decreased) to avoid visual elements suddenly appearing
out of nowhere. Figure 4 shows a series of frames from a zoom
operation, a full animation can be viewed at [van Ham 2003]. We
can use the same procedure for panning operations. Additionally,
independent zooms into one axis of the matrix are supported in a
similar manner. Users can indicate they want to zoom in on only
one dimension, for example by clicking a column header, and the
system expands that particular column.
Zoom/pan trajectories are computed using a novel method [van

Wijk and Nuij 2003]. A smooth and efficient path of the virtual
camera is derived analytically, such that the perceived velocity of
the moving image is constant. Apart from semantic zooming, the
visualization system also supports traditional geometric zooming
into sections of a matrix cell, which comes in handy since many
parts of the matrix are very sparsely populated. Since it is possible
that somematrix cells occupy less than a pixel on screen (depending
on the geometric zoom of the user), any cell containing a call is at
least rendered at a preset minimum size. This avoids user having to
hunt for cells containing calls.
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Figure 5: Displaying additional data: call permissions (a), call neighborhood (red calls are closer to call under pointer) and call density (c)

4.3 Multidimensional Information

Besides their suitability for multilevel visualizations, another ad-
vantage of matrix-type visualizations is that they offer sufficient
space to display additional information. In a standard node-link
view, edges are usually displayed as thin lines of varying length
and orientation. This makes picking, coloring and labelling more
difficult. A matrix visualization has the advantage of a uniform
edge representation and four matrix edges on which we can display
node attributes. In general, two of the four edges are used to display
node names, and the two edges remaining can be used to visualize
attributes such as subsystem size, number of changes or a number
of system metrics such as (inverse) coupling, complexity etc. Fig-
ure 5a shows an example in which we used hierarchical histograms
on the right and bottom matrix edges to visualize the size distribu-
tion within the largest layer of our system. One unit takes up over
95% of this subsystem (see also Fig 2a) with the major bulk of this
unit being formed by only two modules.
Edge attributes can be visualized by means of color or trans-

parency, other cues such as shading or texture could also be consid-
ered. We visualized a number of attributes in figure 5. Figure 5a
uses color to indicate whether a call was allowed according to the
architects specifications. This information is of prime interest to the
architect. Figure 5b uses a color scale to indicate the local neigh-
borhood of a call. Calls that have a shorter path-distance to the call
under consideration are indicated in red. Finally, in figure 5c trans-
parency is used to indicate the call density of a matrix cell. The call
density of a cell is higher when a larger percentage of the subcells
in that cell contain calls. Other attributes that are more interesting
from a software engineering perspective, such as the creation time
of a call in the development process or the person responsible for
that specific call, could also be shown, but unfortunately these were
unavailable in the system under consideration.

5 Results

Although the use of a matrix representation for the display of graphs
might seem awkward at first, one can easily identify general system
characteristics with some experience. For example, library-type
high level components that receive a lot of incoming calls, but only
make a few outgoing calls themselves can be identified by scanning
for vertical columns of calls. The same goes for controller com-
ponents, which make a lot of outgoing calls but receive fairly little

incoming calls. This type of behavior can be identified at different
levels of abstraction: Layer E (rightmost major column in figure
5b) is a typical library layer, and within this layer there are two
units acting as an interface (large orange vertical columns in figure
5b). If we zoom in on calls to this specific layer we can identify
a number of unit subcomponents acting as interfaces within these
units. Figure 5c shows such a zoomed section.
One of the first practical results of the system was the obser-

vation that the (list oriented) information the architects previously
used as a system summary was incomplete. A large number of low-
level inter-class calls were not reflected in calls at higher abstraction
levels due to errors in the data extraction process. Since in this visu-
alization every call has its own place, which means that the lack of a
call somewhere can also be spotted, a number of very sparsely pop-
ulated submatrices immediately drew the attention. With respect to
the questions the architects wanted to be answered, the following
observations were made:

Spotting unwanted calls When using the system, architects
performed a quick scan of the system at the top abstraction level,
and zoomed in on calls that they could not immediately understand
(generally lone calls in an otherwise empty submatrix, such as the
ones in the bottom left corner of figure 5b) or calls that were marked
as ’not allowed’. After one or two semantic zooms they could iden-
tify the function of a call by the component naming conventions
they used and decided whether a call was wanted or unwanted.
Calls that are initially considered as ’not allowed’ by the system,
can interactively be set to ’allowed’. This leads to a steady reduc-
tion in the amount of unwanted connections between subsystems,
as these are either removed from the code (in case of an implemen-
tation fault) or removed from the set of unwanted connections (in
case the architects did not foresee this call).

Determining component dependencies Spotting component
interdependencies is easy if we take only direct dependencies into
account. Architects can simply check a single row or column in the
matrix to find all components calling or called by the current com-
ponent. These components deserve special attention when changes
are made to the component under consideration. Detecting indi-
rect dependencies in a matrix visualization is much harder however,
since there is no preservation of the closeness criterium: calls that
are structurally close, such as callsC(a,b) andC(b,c) for example,
can visually be located far apart. This can be partially countered
by indicating the neighborhood of a call upon selection or by dis-
playing the n-step closure of relation C(a,b). Both are not very
satisfying solutions however. In fact, invalidation of the ’semantic

Proceedings of the IEEE Symposium on Information Visualization 2003 (INFOVIS’03) 
0-7695-2055-3/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: Peking University. Downloaded on November 05,2022 at 12:51:44 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

Figure 6: Matrix representation versus node-link diagrams: callmatrix of entire system (a), force directed layout of entire system (b) and
layered layout of subsystem in figure 3 (c)

closeness equals visual closeness’ principle is probably the main
argument against matrix type representations. However, also tradi-
tional graph layout methods do not always succeed in maintaining
this principle, given the large number of long edges often present in
layouts of complex graphs.

Stability Matrix representations present a stable, regular and
clean layout of complex interrelations. The addition of a small
number of new calls or new components does not significantly
change the resulting visualization. Architects can make snapshots
of the system at regular intervals and easily track the evolution of
their system. Stability also aids in the planning of a project: depen-
dencies that are to be implemented in the future could be indicated
in a different color. The same goes for sections of the system that
have already been tested. The main advantage of a stable layout
however, is the fact that architects are presented with a consistent
visual image of their design. Mentally fragmented information is
aggregated in a single image, aiding in the creation of a mental map
of the software system as a whole.
Finally, we compare a matrix representation with traditional

node link diagrams generated with GraphViz [Gansner and North
1999] in figure 6. Figure 6b shows a force directed layout of the
subcomponents of the five top level layers. The layout was slightly
modified to reflect the cluster structure. The large number of long
edges between subsystems obscure a lot of interesting information
that can be extracted using the matrix type visualization in figure
6a. For example the fact that layer E is called much more than it
calls other layers is completely obscured in figure 6b. The same
goes for the fact that D mainly calls E while calls to other layers
are very rare. The large number of long edges also make it hard
to determine where an edge starts or ends. Although visualization
techniques can be applied to partially solve these problems, one
might also wonder to what extent node-link diagrams are part of
the problem instead of the solution to visualizing large graphs. Ex-
tracting local structure from a matrix visualization requires much
more effort however. Figure 6c shows a node link representation of
the subsystem shown in figure 3. In general, for small graphs (say
less than 100 nodes), we think node link diagrams are superior to
matrix representations.

6 Conclusions

Since displaying large graphs as visual networks often brings more
problems than it solves, we have advocated the use of matrix ori-
ented graph representations. Call matrices have been used to dis-

play dynamic properties of object oriented programs on a smaller
scale[de Pauw et al. 1998], we found that they exhibit a number of
properties that makes them attractive to use as management tools
in large scale software projects as well. The fact that call matri-
ces use a uniform representation for calls between two clusters of
nodes and calls within a single node cluster avoids problems with
multiscale viewing. Their recursive structure makes it simple to
employ smooth multiscale zooming. Finally, their visual stability
provides a consistent birds-eye view of the entire software system.
This is especially useful in large projects in which already a great
deal about the (static) call structure of a system is implicitly known,
in which case the matrix representation can also serve as a useful
externalization of possibly fragmented knowledge of the architects.
We improved on existing methods by providing a smooth semantic
zoom between abstraction levels, which makes it easier for users to
maintain context.
In principle, the method outlined here can also be used in other

application areas, such as gene microarrays, network or phone call
data, as long as the input dataset conforms to the requirements men-
tioned in section 2. These require both an hierarchical decomposi-
tion of the dataset(which is not always available especially when
not much is known about the underlying structure) and a layering
of calls. Further work should focus on relieving these rather strin-
gent requirements. Especially the requirement that calls can only
be made between two components in the same layer rules out ap-
plication of this method to a large number of reverse engineered
software datasets, which are often less structured. On the visual-
ization side one can think of interactively expanding or contracting
hierarchies, visualizing multiple attributes and making a visual dis-
tinction into explicitly defined relations between components and
inherited relations. Recent work by [Ziegler et al. 2002] also offers
some good ideas on interactivity.
An important topic we have not touched on is the ordening of

rows and column within a matrix cell. Ideally, one would like to
see the pattern of relations between subcomponents reflected in the
row and column ordening. As an example, given subcomponents
x,y and z with C(x,y) and C(y,z), the row column ordering (x,y,z)
is clearly preferable over (z,x,y). Since finding a such ’good’ row
and column ordering for an arbitrary subgraph is a special case of
finding a good clustering [Batagelj and Ferligoj 2000] it is beyond
the scope of this paper. We managed to avoid the problem here by
manually imposing a suitable ordening where needed. In general,
we feel that the potential of using call matrix visualizations as men-
tal aids in large software engineering projects has been overlooked
so far and we hope that this paper inspires more people to look be-
yond node link diagrams for the visualization of very large graphs.
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