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Fig. 1: Knowledge generation model for visual analytics including uncertainty propagation and human trust building. Uncertainty
originates at the data source and propagates through the system components which introduce additional uncertainties. Uncertainty
awareness influences human trust building on different knowledge generation levels.

Abstract— Visual analytics supports humans in generating knowledge from large and often complex datasets. Evidence is collected,
collated and cross-linked with our existing knowledge. In the process, a myriad of analytical and visualisation techniques are employed
to generate a visual representation of the data. These often introduce their own uncertainties, in addition to the ones inherent in the
data, and these propagated and compounded uncertainties can result in impaired decision making. The user’s confidence or trust in the
results depends on the extent of user’'s awareness of the underlying uncertainties generated on the system side. This paper unpacks
the uncertainties that propagate through visual analytics systems, illustrates how human’s perceptual and cognitive biases influence
the user’s awareness of such uncertainties, and how this affects the user’s trust building. The knowledge generation model for visual
analytics is used to provide a terminology and framework to discuss the consequences of these aspects in knowledge construction and
though examples, machine uncertainty is compared to human trust measures with provenance. Furthermore, guidelines for the design

of uncertainty-aware systems are presented that can aid the user in better decision making.

Index Terms—Visual Analytics, Knowledge Generation, Uncertainty Measures and Propagation, Trust Building, Human Factors

1 INTRODUCTION

In the visual analytics process, users arrive at new knowledge after per-
forming numerous sensemaking activities. The goal of visual analytics
is to foster effective collaboration between human and machine that
improves the knowledge generation process. To succeed in this process,
end users need to be able to trust their knowledge generated by means
of visual analytics. Analysts can often be unaware of uncertainties in
their data sources, pre-processing, analysis processes or visualisations
that are hidden by a ‘black box’ approach of visual analytics systems.

In criminal investigation analysis, where analysts use a visual an-
alytics application to analyse a collection of reports and to identify
crime suspects, the system may hint at otherwise hidden connections
between pieces of evidence using a trained machine learning algorithm.
To progress, the analyst needs to trust this outcome. However, if the
analyst is not aware of the inherent uncertainties, they may waste their
time following wrong leads and may, in the worst case, incriminate
innocent people. Likewise, overestimating uncertainties can have a
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negative impact upon decision making. It is therefore crucial for users
to be provided with an accurate estimation of uncertainties from visual
analytics systems so that they can trust acquired knowledge.

The literature describes some parts of uncertainty propagation and
trust building in visual analytics processes, however, the interplay
of trust and knowledge within the knowledge generation process in
visual analytics has not yet been established. Prior studies have inves-
tigated sources of uncertainties in subsets of the visualisation process
(e.g., [17]). Other studies have looked at human analysts behaviours
while building trust in the knowledge generation process, with respect
to perception [79], cognitive biases [31], and analytic roadblocks [48].
What is missing is a unified framework that bridges the concepts of
uncertainties on the machine side and the trust building process on the
human side. Recently, the IEEE VIS2014 Workshop on Provenance for
Sensemaking called for research in defining uncertainty, trust, and data
quality. MacEachren also highlighted human’s decision making and
reasoning processes under uncertainty as future research direction [52].
Building such a framework can provide a common language of the
concepts that are largely uncharted in the visualisation domain.

Our goal is to investigate uncertainty propagation, trust building,
and the interplay between uncertainty and trust during the knowledge
generation process within visual analytics. Building on the related
work in Uncertainty Propagation and Human Trust Building under
Uncertainty, the paper describes a novel model of uncertainty and trust
using the knowledge generation model [64] as a framework and brings
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in human cognition and perception issues through the concept of Aware-
ness. We choose the most recent and complete knowledge generation
model for visual analytics because it “integrates human thinking whilst
describing visual analytics components” [64]. Furthermore, this model
was the foundation for our initial investigations and discussions about
defining and relating its concepts to uncertainty and trust. To extend
the usefulness of the model, we provide guidelines on how to improve
decision making, avoiding misperceptions and pitfalls generated in the
visual analytic processes. Finally, we explore future directions and
opportunities for handling uncertainties and trust.

2 RELATED WORK

We group related work into Uncertainty Propagation and Human Trust
Building under Uncertainty. The former covers works on capturing and
deriving uncertainty measures within visual analytics pipelines. The
latter covers the knowledge generation and the trust building processes
in visual analytics.

2.1 Uncertainty Propagation

In this section we give a brief overview on Types of Uncertainty, Un-
certainty Propagation, and Data Provenance theories.

Types of Uncertainty: Many works have individually tackled un-
certainties that arise through the various components of a system.

Source: Data source uncertainty is inherent in the data. Lush et
al. [50] introduced the GEOLabel!, by which users can rapidly as-
certain the source uncertainty of particularly geospatial datasets in
terms of metadata (e.g., dataset producer information, compliance to
international standards, ratings) through specially designed icons.

Models: Model uncertainty corresponds to the structure of the model
and the parameterisation of the model. Chatfield [14] describes how
uncertainty is fundamentally propagated in data models that represent
real-world phenomena. He also describes the main sources of uncer-
tainty in models, which we discuss in Section 3.1. Cullen and Frey [18]
comprehensively address the methods for variability and uncertainty
in models, while Lee and Chen [49] comparatively analyse the various
uncertainty propagation methods in terms of their performance.

Uncertainty Propagation: Uncertainty is created and passed on
from the source to the model and subsequently to the visualisation.
Haber and McNabb [33] introduced uncertainty propagation to their
visualisation reference model, where the visualisation of uncertainty
focuses on the uncertainties that are in the measurement and simula-
tion data (referred to as data source uncertainty, henceforth). They
discuss how uncertainty propagates from the filtering stage, mapping
stage, to the rendering stage of a traditional pipeline model. They call
this uncertainty of visualisation. Uncertainty propagation within the
context of visual analytics is the process of quantifying the underlying
uncertainties generated throughout their components. In introducing
a framework for uncertainty-aware visual analytics, Correa et al. [17]
suggest propagating and communicating the uncertainties that arise
inherently in the data and its transformations in the information visu-
alisation pipeline. Furthermore, Zuk and Carpendale [83] extend the
data uncertainty visualisation pipeline of Pang et al. [61] to include
these propagated uncertainties. These workflows facilitate the analyst
in identifying the inherent and propagated uncertainties in their data.

Visualisation of Uncertainty: A large body of work has contributed
towards visualising the propagated uncertainties (e.g., [35, 55, 72]).
Based on their extensive research, MacEachren [51], and Howard and
MacEachren [37] introduced several dichotomous categories for un-
certainty visualisation, based on the principle that, the way in which
data and uncertainties are linked, should be meaningful. These act as
guidelines in designing the visualisations appropriately for the data and
task at hand. Several researchers have evaluated uncertainty visualisa-
tion techniques in various data/task settings (e.g., [68]). However, very
little effort has been put into evaluating the effects of visualisations
(e.g., visual clutter) that have major effects (e.g., cognitive load) in user
perception and problem solving ability.

ttp://www.geolabel.info/
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Data Provenance: Data provenance can be described as a way to
record all data derivations from its origin until the final data product.
Consistent representations of data provenance information derived from
workflows and databases can be leveraged within the analysis process.
Simmban et al. [70] survey data provenance techniques and present
a taxonomy that covers Usage, Subject, Representation, Storage and
Dissemination of provenance.

2.2 Human Trust Building under Uncertainty

We distinguish the relevant human focused theories in Knowledge
Generation, Trust Building and Analytic Provenance.

Knowledge Generation: Tory and Mdller [76] give an introduction
to human factors and highlight that visualisations serve as cognitive
support and address human computer cooperation. They suggest that
analysts perceive visualisations and match them to their mental model
of the problem. Other human factors include a users’ knowledge, ex-
pertise and tasks but also factors on perception and cognition. Zuk and
Carpendale [83] extend the typology on uncertainties by Thomson et
al. [75] for reasoning. Both of the typologies include a category about
Subjectivity that represents the “amount of interpretation or judgment
that is included” [75] or the “amount of private knowledge or heuristics
utilised” [83]. Green et al. [31] propose the Human Cognition Model
that covers various human aspects of knowledge creation with visual
analytics. They point out that hypothesis generation is very much influ-
enced by the human tendency to accept confirmatory evidence more
than disconfirmatory and that the computer can help to mitigate this
cognitive bias. Winters et al. [80] show in their study that humans can
have different roles, expertise and knowledge that can be applied during
the analysis process. This influences how individuals approach visuali-
sations and also how they reason about their problems. Gahegan [28]
summarises different kinds of reasoning and relates them to human
activities, visualisation tools or computational tools. MacEachren et
al. [54] mention that analysts and decision makers behave differently
with and without the usage of uncertainty visualisations, whether they
are aware of the uncertainties or not. They differentiate between infor-
mation uncertainty and an “analysts’ or decision makers’ uncertainty”
and also suggest that to capture, represent and understand these uncer-
tainties are future research challenges.

Trust Building: Muir [58] discusses trust relations between hu-
mans and machines and builds on Barber’s trust dimensions, which are
Persistence, Technical Competence, and Fiduciary Responsibility [3].
Furthermore, Muir gives the following recommendations for improving
trust calibration: “(1) improving the user’s ability to perceive a decision
aid’s trustworthiness, (2) modifying the user’s criterion for trustworthi-
ness, (3) enhancing the user’s ability to allocate functions in the system,
(4) identifying and selectively recalibrating the user on the dimension(s)
of trust which is (are) poorly calibrated” [58]. Dzindolet et al. [21]
investigate how trust develops during the usage of a system. Initially,
all participants considered the decision aid as trustworthy and reliable.
Observing errors caused the participants to distrust the systems unless
an explanation was provided. Understanding the errors helped the
users to increase their trust in the decision aid, even under uncertainty.
Castelfranchi [11] relates trust to the process of knowledge manage-
ment and sharing and provides a theory that considers the process to be
a decisional act of passing and accepting knowledge. Trust is related to
these activities as a mental attitude, but also a decision (e.g., intention
to delegate trust) and a behaviour (e.g., relation between trustor and
trustee). Uggirala et al. [77] studied humans using systems that include
uncertainties by having the users rate their trust at each level through
questionnaires. Their study showed that trust relates to competence and
an inverse relation to uncertainty, meaning that an increase in uncer-
tainty decreases trust in the systems. Visser et al. [19] provide a design
taxonomy for trust cue calibration that includes all kinds of information
that may influence human judgement. Figure 2 (left) illustrates trust
calibration and the included problems. A miscalibration between the
humans’ trust and the systems’ trustworthiness leads to over- or distrust
that are directly connected to disuse and misuse of automation. Skeels
et al. [71] deliver a comprehensive perspective on uncertainties for
information visualisation and also briefly discuss the role of awareness
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Fig. 2: Left: Trust calibration adapted from [19], Right: Awareness
classification adapted from [71].

(see Figure 2 right). They identity Unidentified Unknowns as the worst
kind of missing information because in that case humans are building
more trust than they should do.

Analytic Provenance: Recent research focuses on tracking interac-
tion in order to investigate human analytic processes. Dou et al. [20]
present an approach to capture human reasoning processes that distin-
guishes between internal (interactions within the system) and external
capturing (outside the system). Ragan and Goodall [63] go on to
mention that provenance tools support the human in memorising and
communicating analytic processes. Nguyen et al. [59] survey analytic
provenance and show that typical provenance consists of three stages:
Capturing, Visualising and Utilising with capturing on different levels
(events, low-level actions, high-level sub-tasks, top-level tasks). They
also describe the benefits of analytic provenance that go beyond re-
calling the analysis process to support “evidence in constructing the
reasoning process, and facilitating collaboration [...]”[59]. Examples
for leveraging analytic provenance will be given in the guidelines for
handling uncertainties in Section 4.

In summary, our review discovers two distinctive groups of literature.
One group deals with uncertainty propagation and visualisation on ma-
chine aspects; the other investigates human-machine trust relations. We
observe important gaps in research within visual analytics frameworks.
These are uncertainties in the visualisation itself, uncertainties in the
coupling between model and visualisation, and uncertainties in the
model building. Only few studies relate uncertainties to these human
trust building processes. Furthermore, there is no clear terminology that
differentiates between uncertainties from machine and human. In the
following, we address these issues and provide a model that integrates
uncertainty propagation and human trust building.

3 UNCERTAINTY PROPAGATION AND TRUST BUILDING WITHIN
THE KNOWLEDGE GENERATION PROCESS

Within the knowledge generation model for visual analytics, uncertain-
ties are propagated in the different components, causing various issues
of trust on the human side. In the following, we give an expos€ on how
uncertainty is propagated on the machine side and trust is callibrated
on the human side. Finally, we discuss the concept of awareness that
glues uncertainty and trust together.

3.1 Uncertainty Propagation on the Machine Side

We extend the framework of Correa et al. [17], to include uncertainties
in the model building, visualisation, and uncertainties in the coupling
between the model and visualisation. A brief description of the role of
uncertainty in each of these components in a system, follows.
Uncertainty, generally known as the state of not knowing, is at-
tributed to the discrepancy between a data measurement and its repre-
sentation. According to Griethe and Schumann [32], concepts regarded
as uncertainty are errors, imprecision, accuracy, lineage, subjectiv-
ity, non-specificity, noise (the authors provide a full description of
these terms in [32]). Uncertainties also vary depending on the applica-
tion domain, for example, topological consistency in geospatial data.
Throughout this paper we will refer to any one of these concepts as
uncertainty. These uncertainties in data can be classified mainly into
two categories: 1) source uncertainty, and 2) propagated uncertainty.
Accounting for such uncertainties in data is important for thorough data
analysis, information derivation and informed decision making.

3.1.1

The source uncertainty (Fig. 3-s2) is inherent in data, and largely de-
pends on the way in which this data is collected (authoritative vs.
non-authoritative data). In most cases, non-authoritative data such as
social media data contains high uncertainties due to the lack of profes-
sional gatekeepers and quality control standards among other reasons
[27]. Uncertainties in authoritative data are mainly due to reasons
such as erroneous measurements, data entry errors, low resolution, and
incomplete data. One way of representing source uncertainties is in
terms of qualitative measures such as purpose, usage, and lineage (also
known as data provenance in most disciplines) [5].

Source Uncertainty

3.1.2 Propagated Uncertainty

Uncertainty in data is propagated during the data modeling (where data
undergo transformations such as interpolation, sampling, quantisation
etc., [32, 60]) and visualisation stages, where these propagated
uncertainties keep aggregating as data travels through these stages
in the system side of the knowledge generation model (Figures 1 and 3).

Data Processing (Fig. 3-s3): Processing techniques transform data
for preparation purposes (e.g., data cleansing). They can be broadly
grouped into normalisation, sub-sampling (reducing the amount of data)
or interpolation (increasing the amount of data). Uncertainty measures
related to these processing types can be calculated with statistics [36].

Model Building (Fig. 3-s5): During the model building phase, if
users have previous knowledge of the model, they achieve a best ap-
proximation by typically fitting a parameterised form of the model
to the data. Issues of uncertainty arise due to the complexity of the
parameterisation (e.g., how many parameters are suitable?) or the
appropriateness of the parameters (are the parameters perfect/ good/
bad?), or even the random variation of the model variables. At this
stage model calibration introduces a lot of uncertainties by the pro-
cess of estimating values of unknown parameters in the model. Other
uncertainties arise if the distance functions (e.g., euclidean distance
or weightings within the similarity function) do not fit data and tasks.
Chatfield [14] classifies these types of uncertainties as arising from i)
model misspecification.

Model Usage (Fig. 3-s8): Chatfield [14] states that a lack of previous
knowledge of the underlying phenomenon causes inadequacies of the
model, which gives rise to structural uncertainties. He introduces ii)
specifying a general class of models, where the true model is a special,
unknown case, and iii) choosing between several models of different
structures, as reasons that give rise to uncertainties in model usage.
Additionally, the model carries uncertainties in terms of its suitability to
the task at hand. Numerical errors and approximations that occur during
the implementation of a model gives rise to algorithmic uncertainty
[42]. As stated by Brodlie et al. [7], these uncertainties have not been
the focus of uncertainty visualisation research thus far.

Visual Mapping (Fig. 3-s4): During the mapping process, the compu-
tation of the geometric model (typically done in the mapping process)
may be prone to errors due to approximations. Furthermore, the map-
ping itself causes errors, if the mapping does not fit the underlying data,
e.g., when the chosen visual variables do not correspond to the underly-
ing data types. These issues cause uncertainties in this process, which
may hinder the comprehensibility of the underlying data. In general,
data should be mapped to proper visualisation techniques using the
right visual variables (e.g., glyph vs. colour).

Visualisation (Fig. 3-s7): In addition to the visualisation of the un-
certainties of the data and above processes, the visualisation itself may
contain uncertainties. This is mainly due to the resolution, clutter, and
contrast effects of the output visualisation which may hinder the user in
gaining insights of the underlying data. Such effects in visualisations
that cause uncertainty in the reasoning process are discussed by Zuk
and Carpendale [83] and MacEachren and Ganter [53].

Model-Vis Coupling (Fig. 3-s6): One other aspect that we identified
for uncertainty propagation in the system, is the uncertainties caused
while coupling the model and the visualisation. These uncertainties
mainly impact the users’ interaction with the system and the model
steering that is coupled to the visualisation interactions. Endert et
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Fig. 3: Each system component may change the data and consequently introduce additional uncertainty. Human trust building within knowledge
generation processes is affected by many human factors. The relation between uncertainty and trust is included as the awareness of uncertainties.

al. [23] propose an approach where direct interactions on visualisations
are directly translated to model steering interactions (e.g., highlighting
an item will increase weighting of the models distance function). If
these mappings are not well-designed, these model interactions are
translated to model steering interactions that do not fit to the users’
intent. Furthermore, the visualisation of the model can be realised in
different ways. For example, it is possible to visualise incremental
model changes during the training phase (e.g., [26]). However, many
visual analytics application just visualise the model result.

All the uncertainties are propagated to the final system output (Fig. 3-
s9) which will be observed (Fig. 3-h9) and used by the human for
knowledge generation. As important as it is to account for the uncer-
tainties in a system mentioned above, which uncertainties to account
for is highly dependent on the application scenario of the data.

3.2 Trust Building within Human Analytic Processes

We define trust on the human side as a counter part to the machine’s
uncertainties (similar to MacEachran et al.’s [54] distinction between
human and machine uncertainties). In the following, we walk through
the human concepts of the knowledge generation model [64] and de-
scribe them with respect to trust building and highlight influences that
are caused by uncertainties. Human trust building can be described as a
process of passing and accepting knowledge [11], in our case between
human and machine. On the other hand, there are many individual
factors that indirectly influence trust building, such as the technical
competence [58] and visualisation literacy that is dependent on the
users expertise and previous experience with a system.

Trust Calibration (Fig. 3-h6): In each knowledge generation step,
users have to calibrate their trust towards their counterpart, the system
(or automation as in [19], Fig. 3-s1), and they also need to calibrate their
trust between their own previous knowledge (Fig. 3-h1), hypotheses
(Fig. 3-h2) and the information that is presented by the system (Fig. 3-
s9, h10, h7). Trust calibration is influenced by all the dimensions
mentioned by Muir [58]: The “expectation of the persistence of natural
physical laws” allows for the creation and usage of mental models
(or rule bases). Further, Muir distinguishes three types of technical
competence (expert knowledge, technical facility and everyday routine
performance) that are essential for trust building. Finally, fiduciary
responsibility “is invoked as a basis for trust when the trustor’s own
technical competence is exceeded by the referent’s [(in our case the
VA-system)], or is not known to him” [58]. In visual analytics this is
often the case when complex processing or data mining algorithms are
applied but hidden behind the final visual output.

3.2.1

The knowledge generation loop steers the whole analysis process and
consists of knowledge externalisation (there is a knowledge gap) and
internalisation (when sufficient trust has been developed). We start our
description with the knowledge generation loop because the analysts’

Knowledge Generation Loop

initial trust and hypotheses are based on the prior knowledge and are
the foundation for all trust building activities [64].

Knowledge: In general, knowledge can be split into many subparts
such as domain-, tactic-, data-, system- or experience-based knowledge
(Fig. 3-h2) and has consequently a very individual nature [76, 80].
However, we can distinguish prior knowledge from the knowledge that
is gained during analysis and has to be internalised, synthesised and
related to the prior knowledge. Within this process, trust develops
and pieces of evidence that match or contradict the mental model of
the problem are collected and increase or decrease human trust levels.
Therefore, trust building depends heavily on the trustworthiness of
the machine counterparts (system or data). At the beginning the prior
knowledge is assumed to be valid or verified until the analysis reveals
evidence that strengthen or weaken it. Through evidence collection
supplemental trust emerges and finally transfers gained information to
internalised knowledge (Fig. 3-h4). Within this process humans utilize
their “private knowledge” in order to judge or interprete pieces of evi-
dences [75, 83]. It is also possible to gain knowledge with analytics,
even though the knowledge is based on high uncertainty (if the uncer-
tainty is known and understood as described in [21]). At this stage,
we also consider the type of user as an important factor (Fig. 3-h1). A
domain expert will behave differently from a machine learning-expert
or a novice user. The relation and former experiences with data analysis
systems also play a crucial role in trust building. The claim by Muir
that “the trust in a machine, once betrayed, may be hard to recover”
[58] is backed up by Manzey’s study that revealed a similar relation-
ship between error and subjective trust [56]. Furthermore, knowledge
includes many sub-components that influence trust building (e.g., the
technical competence or subjective attitudes [58]).

3.2.2 Verification Loop

This loop describes higher-level trust building and covers confrontation
(of information) and human reasoning. If the trust in the combination
of all insights related to the hypothesis exceeds a certain amount and
integrates with prior knowledge, we leave the verification loop and
arrive at new accepted knowledge (by induction).

Hypothesis: Hypotheses are derived from prior knowledge (because
there is a gap) and are the foundation for each verification and explo-
ration cycle (abduction). Initially the trust in a hypothesis is derived
from prior knowledge and develops during the analysis process by
revealing pieces of evidence (insights) that support or contradict them
(Fig. 3-h3). With that respect, humans callibrate their trust and refine
their hypothesis in order to come up with an explanation [28]. Also
the type and the initial trust in this hypothesis more or less defines the
following analysis type (Fig. 3-h5) as the verification loop steers the
exploration loop [64]. A very vague and open hypothesis that is weakly
trusted will originate analysis with an exploratory fashion that solidifies
the analysis step by step, whereas a very defined and a highly trusted
hypothesis generates a confirmatory analysis. In reality there are often
multiple, conflicting or dependent hypotheses that can be resolved with
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the detection of a single expected or unexpected insight.

Insight: Insights are directly related to hypotheses and can be seen
as the pieces of evidence for or against them. The trust in insights
relates to the amount of similar findings that were produced by the
system that support the insight and also on their match to the domain
knowledge or the user’s mental model of the problem (i.e. what is
expected, Fig. 3-h7). If there is a mismatch between the user’s men-
tal model and the gained insight one of them has to be adjusted. In
other words, the user has to decide whether he trusts himself or the
information that was obtained using the machine. As described by
Green and Maciejewski [30], human higher level (“System 2”) ana-
lytical reasoning is able to modify the mental model. Another aspect
is that there might be more than one possible interpretation (insight
candidates) for a finding that can be tested. The analyst develops trust
in the alternative interpretations and may (or may not) be able to verify
them. However, insights are more likely to occur if they contribute
to a plausible narrative (because confirmatory evidence is more likely
accepted by humans than disconfirmatory [31]) and therefore calibrate
their trust towards evidences that they are comfortable with.

3.2.3 Exploration Loop

The exploration loop covers lower-level trust building and evidence
search processes through analysis (deductive). Humans stay in the
exploration loop until they develop enough trust in their findings and
gain insights by appling their domain knowledge.

Action: Actions reflect many aspects in trust building (Fig. 3-h8) as
they are the direct interface between human and machine. In general,
actions can help the human to develop more trust in the system itself
if the user feels in control of the system. On the other hand, hard
operable systems and unexpected behaviour (or errors) may result in
a general decrease of trust in the system [21]. This trust depends on
the humans technical competence and familiarity with the system and
its subcomponents (as described by Muir [58]). Actions further help
the human to understand and decrease uncertainties. The ability to
explore different kinds of uncertainties enables the user to develop
an understanding of these uncertainties, where they arise and how
they impact the whole system pipeline (or the sensitivity of data items
[17]). Another approach is to actively reduce uncertainties by changing
the pipeline or the data (e.g., by choosing more suitable processing
methods, mappings or models that introduce less uncertainties). Data
changes can be done manually by correction or enrichment. In this
case an expert is enabled to bring in his user truth (expert knowledge)
in order to change data. However, at this stage users adjusting the data
according to their needs are at risk of introducing new human created
uncertainties.

Finding: As immediate results of an action, users observe a system
reaction (Fig. 3-h9, h10). This reaction (either expected or unexpected)
contributes to human trust building [21]. If users develop enough trust
in their observations they make them to findings. Or in other words,
they stay in the exploration loop until they are able to trust what they
see. On a perceptual level, users have to consider being misled by their
interpretation of visual elements. For example, a user might spot a
visual artefact that is not there in reality (e.g. Muller-Lyon illusion).
Furthermore, a finding may include many known and visualised, but
also hidden, uncertainties that have been propagated through the system.
With this respect, human trust building differentiates when uncertainty
information of a finding is communicated and considered [28, 77].
Findings are directly related to insights, which are themselves directly
related to gained knowledge. Consequently uncertainty propagates
from its root, the data source, through the system and human reason-
ing until knowledge. This is illustrated by the red flow lines in the
knowledge generation model in Figures 1 and 3.

3.3 Awareness

We have considered the relationship between trust and uncertainties
within the system. Thus far, we assumed that the user is aware (Fig. 3-
h9) of the uncertainties. We now consider the possible effect on trust
when the user is unaware of uncertainties and how this might manifest

Table 1: Awareness classification

system

no uncertainties uncertainties

trust = high trust = med-low'

aware

chance of human error = low ﬁl

—
chance of human error = none (;, )

istaken? trust = med-low’ (over) trust = high
mistaken - T~
chance of human error = med-low (&/\ chance of human error = high (=)

human

(under) trust = medium trust = medium

unaware

o LT
chance of human error = none () chance of human error = high | =)

1 depends on degree of understanding

2 'mistaken awareness’ is when the user wrongly believes the opposite, e.g. no uncertainties
when in fact there are uncertainties in the system

itself in subsequent errors (similar to [71]). In addition, we illustrate
the situation that the user mistakenly believes there are no uncertainties
when in fact there are, and vice versa. A proposed classification of the
different states of awareness and uncertainties is shown in Table 1.

We can see that trust it is highest when the user is either aware
of no uncertainties or mistakenly believes there are no uncertainties.
The latter is a case of over-trust leading to a high chance of errors.
The lowest trust is when the user is either aware of uncertainties or
mistakenly believes there are uncertainties. These are given a value
of medium to low as it depends on the users understanding of the
uncertainties, the higher the understanding (or mistaken understanding)
the higher the trust. The situation where the user is unaware that there
are no uncertainties, is a case of under-trust. Making the user aware
would increase their confidence and hence trust. In terms of the chance
of errors occurring, this is highest when the user is either unaware of
uncertainties or wrongly believes that there are no uncertainties, and
lowest when the user is aware or unaware that there are no uncertainties.

Whether or not a user becomes aware of uncertainties and indeed
takes note of information presented to them, can be influenced by cog-
nitive biases. These, so called, cognitive biases, first introduced by
Kahneman and Tversky in the 1970s [40], are deviations in judgment
from what rational decision models would predict that occur in particu-
lar situations. Importantly, they are involuntary, affect most people to
some degree and generally have a negative impact on decision making.
For instance, most people have a poor understanding of statistics and
instead apply simplifying heuristics to cope with the uncertainty, which
leads to irrational decisions. Arnott [2] lists such statistical biases
which highlight the inability to comprehend the practical implications
of randomness, base rate, sample size, correlations, regression to the
mean and probability in many guises.

Visual analytic systems allow the user to explore datasets but this
relies on the user wanting to seek further information. Unfortunately,
confirmation bias is the tendency to ignore information that does not
agree with the user preconception or hypothesis [41]. In a recent study,
Phillips et al. [62] demonstrate that users of information systems, tend
to reduce the perceived usefulness of information that does not reinforce
their current premise, which in turn reduces their likelihood to explore
the data. Over-confidence and perceived expertise has a similar effect.
Completeness bias, where the user perceives that the data is logical and
correct, without uncertainties, may also reduce information seeking.

We need to be aware of other perceptual and behavioural traits when
utilising visualisation and automated systems. For instance, our visual
perceptual system is subject to errors due to effects such as contrast,
colour, clutter and pre-attentive processing. In addition, automation
bias can lead the user to overtrust and relying on wrong information
that is produced by an automation, overriding their own ability to judge
the situation (“looking-but-not-seeing effect”[56]).

As suggested at the start of this section, awareness of uncertainties
can reduce errors and increase the users trust in the data. However,
cognitive biases may impede the users awareness and additionally
may lead to poor decisions, especially when the user is in a state of
uncertainty. Principally due to the involuntary nature of cognitive



biases, reducing their negative effects has proved difficult, even when
the user is informed of the possible impact of particular cognitive biases.
In the next section, we will enumerate some methods to reduce the
impact of cognitive biases, perception effects and the automation bias.

4 GUIDELINES, EXAMPLES & CHALLENGES FOR HANDLING
UNCERTAINTIES

In this section we formulate guidelines for handling uncertainties and
illustrate them with examples from literature. G1 and G2 are the
foundation for uncertainty communication by tracking, quantifying and
combining uncertainties. G3, G4 and G6 aim to improve the perception
of a systems’ trustworthiness through the communication of uncertainty
information. G5, G7 and G8 take human issues into account in order
to enhance, identify and recalibrate poorly calibrated trust dimensions.
Our guidelines have been influenced by Muirs recommendations for
improving trust calibration [58] (see Section 2.2). Additionally, we put
forward some extensions and challenges that suggest future research
directions.

4.1 Uncertainties in a System

G1: Quantify Uncertainties in Each Component: We recommend
to quantify uncertainties at every stage of the visual analytics pipeline.
In the following we give examples for each component starting from
left to right side of the model in Figure 3.

Data Source: Data source uncertainty can be quantitatively measured
by, for example, standard deviation to measure the precision of the
instrument used to collect data, or counting the number of omissions
or commissions in a database to measure the completeness of the
data. Furthermore, several qualitative measures can be used to get an
overview of the source uncertainty of a dataset. These are the lineage,
purpose, and usage (described in Section 3.1). These measures are
typically documented in the metadata of a dataset by the data producer.
These qualitative measures are subjective measures as they pertain to
the views of the producer who documents this metadata according to
their use cases. In authoritative data, this metadata will be adequately
documented due to the professional gate-keeping of this data. In non-
authoritative data (such as social media data) we will see little or
none such documentation of measures, due to the lack of gate-keepers.
Measure such as credibility [12], reputation [57], or trustworthiness [6]
are used to measure the uncertainty of such non-authoritative data.

Data Processing: System inputs that go through transformations
such as interpolation, extrapolation, normalisation etc., propagate uncer-
tainty at the system output. Choosing a suitable uncertainty propagation
method depends on the confidence level, the extent to which uncer-
tainty quantification is needed, and the computational cost that one can
endure [49]. Probabilistic approaches (e.g., Monte Carlo Simulation
methods) are known to be most robust in quantifying such uncertain-
ties. Lee and Chen [49] describe in detail five types of probabilistic
approaches in their comparative study of uncertainty propagation meth-
ods. Statistics such as standard deviation, variance and range are further
used to propagate data processing uncertainties. Additionally, Cedilnk
and Mendoza [13] use distance based functions to measure the similar-
ity of values and point out that interpolated values can also be used.

Model Building: According to Chatfield [14] uncertainties that arise
at the model building stage can be lessened by expert background
knowledge (e.g., to know which variables to include), and previous
experience/information from similar datasets. However, such expert
knowledge may not prevent the user in mistakenly excluding an impor-
tant variable or adding excess variables. The author points out that one
way of avoiding model building uncertainty is to use nonparametric
procedures that are based on fewer assumptions. One approach to
quantify the uncertainties is to use distance functions to measure the
distance of parameterisation from the true value.

Model Usage: Chatfield [14] gives a broad discussion on how un-
certainties arise in many aspects of a model (as briefly discussed in
Section 3.1). To propagate the uncertainties in the model selection
bias, he suggests using the Bayesian averaging approach, and points
out the non-triviality of biases. He recommends replicating the study
to check if the new data fits the model, although makes the point that
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replicating studies are not all that simple to conduct. Works of Fernan-
dez et al. [25], and Kennedy and OHagan [42] demonstrate the use of
Bayesian approaches to dealing with model uncertainty.

Visual Mapping: Uncertainties that occur at the visual mapping stage
are mainly due to the use of inappropriate visual variables that do not ad-
here to the data and task at hand. The most sensible approach to assess
these uncertainties is through analysing the chosen visual variables and
metaphors against existing systematic taxonomies. In his task by data
type taxonomy, Schneiderman [69] categorises existing information
visualisation techniques according to the type of data (e.g., temporal
data) and the task (e.g., zoom or filter). In the case of uncertainty
visualisation, we need to consider the added uncertainty dimension to
the underlying data. In addition to MacEachrens [51] work on manipu-
lating several visual metaphors to represent uncertainty, Buttenfield and
Weibel [9] present a framework for categorising different cartographic
visualisation methods according to the uncertainty elements (e.g., posi-
tional accuracy or the lineage of the data) and the measurement scale
of the data (e.g. discrete or categorical data). Furthermore, in a recent
classification, Senaratne and Gerharz [67] categorised popular uncer-
tainty visualisation methods according to the measurement scale of
the data (e.g., continuous or categorical), supported data format (e.g.,
raster or vector), and the type of uncertainty element in the data (e.g.,
positional or thematic uncertainty).

Visualisation: The works of MacEachren and Howard [37, 51] have
developed visual metaphors for representing uncertainty, that fits well
with the human cognition model. Examples are the use of blurring
effects, transparency, or coarsely structured surfaces to represent un-
certainty. Their impact on decision making under uncertainty has been
explored in several studies (e.g., [68]). MacEachren and Ganter [53]
classify visualisation uncertainties as being developed through two
types of errors. Type 1: seeing what is not really there and Type 2:
over-seeing what is really there. The authors emphasise the need for
tools to aid the users in seeing through these Type 1 and Type 2 errors
in visualisations. Relating to the Type 2 errors in particular, Brodlie
et al. [7] point out uncertainties caused by the lower resolution of the
visualisation in contrast to the resolution of the data.

Model-Vis Coupling: We are not aware of existing methods that
quantify the uncertainties that arise due to the coupling between visu-
alisation and models. One possibility to quantify differences between
model and visualisations is to compare measures of the different spaces
(e.g., visual 2D compared to HD as described in [73]) in order to com-
pare model and visualisation characteristics. For example, groups and
distances between data items in model space (e.g., between cluster
centroids) can be compared to their distances in visual space (e.g.,
projected distances between cluster centroids). Another approach is
to measure how model changes (e.g., via human interaction or data
streaming) are propagated to the visualisation. Most of the visualisa-
tions take the final model result but there are several cases, and models
that deliver incremental results that can be visualised (e.g., [26]).

G2: Propagate and Aggregate Uncertainties: Systems require
powerful and sophisticated techniques to support exploration of large
datasets. Adding different kinds of uncertainty to this data requires
an increase in the level of sophistication of the system. Works of [17]
estimate the data source uncertainty and the propagated uncertainty
through transformations, via sensitivity analysis and error modeling. To
simplify the computations, we require intelligent methods to aggregate
these propagated uncertainties. Klir and Wierman [44] describe meth-
ods to aggregate source uncertainties and propagated uncertainties in
the visualisation pipeline. Also, through a remote sensing classification
application, Van de Wel et al. [78] describe the use of an entropy mea-
sure to build a weighted uncertainty aggregation measure. They map
the different kinds of uncertainty to one measure based on a weighted
criteria. Learning from this, an alternative would be for the user of the
system to weigh each kind of uncertainty stemming from the system,
based on its importance to the use case at hand.

G3: Visualise Uncertainty Information: Uncertainty visualisation
is known to be a most effective medium to communicate such source
and propagated uncertainties. Griethe and Schumann [32] present
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a pipeline to show the process of uncertainty visualisation. In their
pipeline, they differentiate between four different kinds of data flows. 1)
the basic data transformation process through the visualisation pipeline:
is separated in to data components and their corresponding uncertain-
ties, such that the user sees the underlying uncertainty; 2) in/output of
the acquisition of uncertainty data: data at every stage of the visualisa-
tion will carry uncertainty, and needs to be considered; 3) dependencies
between the visualisation of the raw data and its uncertainty: while the
data is explored, its uncertainty is considered as an integral part of the
data. However, decisions in processing the uncertainty is dependent on
what raw data is focused on, which rendering techniques and geomet-
ric forms for models are chosen. 4) parameterisation of the pipeline:
uncertainty is not visible by itself at every data component as in 1). In-
stead, uncertainty will be used to parameterise visualisation of the other
data (as done by Schmidt et al. [65]). Furthermore, in visualising the
uncertainties in the different stages of the data, one needs to carefully
consider the different design principles. Works such as of Pang [60]
focus on visualising multi-dimensional uncertainties in data. These can
be used as guidelines on how to design visualisations to incorporate
different uncertainties propagated through analysis system. Griethe and
Schumann [32] further emphasise that the decisions on the amount of
user interaction on such an uncertainty visualisation process depends
on the users experience and the principles of the visualisation system.
Finally, a system should report the uncertainties as cognitive cues about
its self-confidence as suggested by Cai and Lin [10]. As a result, users
are more comfortable in adjusting their trust appropriately.

G4: Enable Interactive Uncertainty Exploration: Within a vi-
sual analytics environment, enabling the user to interact and explore
different visualisations for different uncertainties stemming from the
different components of the system will enrich the users understanding
of the true nature of the data, and additionally, how different propa-
gated uncertainties influence the final output. Also, the ability to use
a variety of visualisations may also help with illusion type cognitive
biases such as clustering and correlation. It is also important to give
the user control to decide which of these uncertainties should influence
the final output, or with how much importance it should influence the
output. Providing the user with the possibility of giving weighted mea-
sures for each uncertainty component would be a realistic approach.
Furthermore, Correa at al. [17] present several approaches including
uncertainty projections and visualisations that enable the user to explore
the uncertainties of individual data items and the impacts of different
uncertainties (Figure 4-a).

4.2 Supporting Human Factors

G5: Make the Systems Functions Accessible: Accessible, intu-
itive and easy to use interaction techniques will increase the technical
competence of the analyst and consequently enhance human trust build-
ing [58]. In this respect, different user groups have to be considered.
Expert and power-users of an analysis tool will need different interac-
tion possibilities and guidance than novice users. For example, with
visual analytics tools we often observe users having problems with
model steering interactions such as parameter setting [64]. In this case,
switching between expert or learning mode might be a first step in that
direction. Endert et al. give a nice example of “semantic interaction”
[22] where direct manipulation interactions are directly translated to
model steering interactions. Furthermore, Chuang et al. [16] provide
guidelines for designing trustworthy and understandable visual analyt-
ics systems. Their recommendations can verify modeling decisions and
provide model interactions during analysis.

G6: Support the Analyst in Uncertainty Aware Sensemaking:
Human sensemaking can be supported by offering note-taking or knowl-
edge management components connected to the systems, where humans
can externalise and organise their thoughts in order to bridge data and
knowledge management [64] (see Figure 4-d, e.g., the Sandbox for
Analysis [15, 81]). Our recommendation is to transfer and visualise un-
certainty information to the findings that are imported from the analysis
part in order to support humans in calibrating their trust in the findings’
trustworthiness [19]. We can imagine that a system will automatically

take care of relations between (conflicting) hypotheses, findings, in-
sights and take the role of an unbiased counterpart to the human by
including uncertainty information at any stage [31]. A system could, for
example, calculate aggregated uncertainty scores for pieces of evidence
that have been grouped by the user. In addition, evidence connected to
hypotheses and insights may be explicitly marked by the user as trusted
or unknown (or intermediate value). This would be a form of trust
annotation that can be matched to uncertainty measures. Furthermore,
humans can integrate external evidences from other systems or their
own knowledge that might complete the big picture of the analysis.
Utilising all the connected information enables a system to offer un-
certainty and trust cues e.g., as glyphs connected to the items (such as
traffic lights, radar charts or avatars as described in [19]). Figure 4-b
illustrates an example view of automation blocks that are enriched with
specially designed glyphs that serve as trust cues.

G7: Analyse Human Behaviour in order to Derive Hints on
Problems and Biases: Tracking human behaviour can be beneficial
in deriving hints on the users of a system. We therefore recommend
to leverage analytic provenance approaches suggested by Nguyen et
al. [59]. Low level interaction tracking can be used to predict users
performance [8] or infer the user frustration [34]. These methods could
be enhanced for predicting a users trust level. Closer measures related
to uncertainties and trust building can be captured by the rate of overall
decision switching. Goddard et al. [29] measured automation bias by
noting correct to incorrect prescription switching. Furthermore, Klem-
mer et al. were able to detect important notes or items based on user
tracking [43] (see Figure 4-c). These methods could be leveraged by
a system to automatically suggest alternative visualisations or items
that have not been utilised. The latter may be useful in mitigating
some selection based cognitive biases such as confirmation bias [46].
Another approach to derive human trust measures is to analyse user
generated contents. A system could automatically seek for signal words
such as “unsure, uncertain, maybe, perhaps ...”. Zhou et al. describe 27
language features grouped as: quantity, informality, expressivity, affect,
uncertainty, nonimmediacy, diversity, specificity, and complexity [82].
Also, Tenbrink [74] investigated how to derive cognitive analytical
processes based on language data. Physical or other human sensors
such as eye-tracking can also be used. Kurzhals et al. give an overview
on the potential for eye tracking in visual analytics [47]. Furthermore,
user analysis may be used during system development and evaluation.
Scholtz describes five evaluation areas: Situation awareness, collab-
oration, interaction, creativity, and utility [66]. We imagine protocol
analysis [24] as a useful method to interpret “think aloud” evaluations.
User interviews using trust questionnaires could also be conducted [77]
in order to investigate the relation between uncertainty and trust for
system evaluations. In addition, Bass et al. propose a method to analyse
and predict a humans understanding of automation [4].

G8: Enable Analysts to Track and Review their Analysis: This
guideline points to post-analysis activities as a method to detect and
mitigate biases. During analysis, users often focus on searching poten-
tial evidences without considering alternatives, errors or uncertainties.
In addition, users in their “work flow” should not be interrupted [38].
Therefore, we recommend that the analyst is able (or even encouraged)
to look and think about his analysis afterwards, without interruption
during the analysis. In our opinion this is a better way than warning
users during their analysis (e.g., by popup dialogs) as recent studies
show that too often warnings may lead to the opposite [1]. Support to
mitigate statistical biases (see Section 3.3) should be provided, such
as presenting the user with base rate information (e.g., typical distri-
bution), estimating realistic probabilities or indicating that a particular
‘behaviour’ is expected rather than a special case, as with regression
to the mean. Structured analytic techniques such as a devils advocate
may also be ways that help the user to detect problems and lessen
the impact of confirmation bias in particular. Furthermore, analysis
process visualisation enables involving other users and story telling.
Provenance systems such as CzSaw [39], but also systems including
story telling [45], are a good starting point in that direction.
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Fig. 4: Examples for uncertainty aware trust building from different domains: (a) An uncertainty projection to explore how data items are affected
by uncertainties [17], (b) decision support including trust cue design from [19], (c) deriving important user notes based on user tracking [43], (d)
integrating evidences for computer assisted knowledge management [15].

5 DISCUSSION, LIMITATION AND CONCLUSION

In this section, we discuss our findings, provide limitations and open
questions of our study, and conclude with some takeaway messages.

5.1 Discussion

Our framework shows that human trust building under uncertainty is an
extremely complicated, individual process and is influenced by many
factors directly as well as indirectly. Furthermore, users informed
with uncertainty information can avoid falling into traps concerning
mistaken uncertainties and unaware uncertainties. Readers also need
to note that the framework has to be tailored to concrete, individual
cases where the scope of uncertainties, users and their tasks are known.
The core value of our framework is to provide a balanced view on the
role of uncertainty propagation and trust building in visual analytics by
considering human and machine aspects together.

The guidelines in this paper will be useful to estimate the dynamics
of uncertainties in developing visual analytics applications. The terms
and structure we outline in Section 3 provide an overview of uncertainty
propagation, both from the source data and from algorithmic manipu-
lation. With this structure, practitioners and researchers can attempt
to quantify uncertainties though the process of data transformations.
Depending on its use, this quantification will help users determine
effective visualisation techniques by thinking of the trade-offs between
gaining insights and showing uncertainties.

The framework we provide in Section 3 can be used to educate users
of visual analytics applications about uncertainties and their impact,
so that they might reduce errors (e.g., cognitive biases) and build trust
whilst analysing data. We recommend system developers to provide a
simple tutorial of their visual analytics applications using some usage
scenarios. In addition to assisting users, the material itself provides
a groundwork for education of uncertainties and trust building for
designers, practitioners, and researchers. We believe that the impact of
uncertainties will decrease as users gain awareness.

There are many implications of this model. As explained, it is
necessary for us to capture humans perceived uncertainties and trust
levels at a given moment of analysis. One way is to intervene in the
analysis process by asking the users to input this directly, which will
ensure accurate estimates of their current status. However, to avoid
interruptions it would be useful to compute this automatically. This
may be possible through tracing and interpreting usage logs to estimate
the level of trust. Data provenance may be an effective method to
track uncertainty propagation that enables us to increase uncertainty
awareness. On the other hand, if analytic provenance methods are used
to infer human measures this may give hints on trust building processes.
Combining measures/methods from both sides has the potential to
identify relations between uncertainty propagation and human trust
building.

Our contribution is to categorise types of uncertainties, awareness
of them, and human trust building process. However, there are many
external factors that can influence individual processes. For example,
our model assumes a single analyst perspective, which simplifies the
knowledge generation process. In the real world, many interdependent

knowledge generation loops run in parallel and often conflict each
other, which can result in uncertain outcomes. Furthermore, taking into
account collaboration between human analysts would extend the model
to explain the dynamics of real world scenarios with a team of analysts.

5.2 Limitations and Open Questions

The scope of this study provides a framework of unpacking uncertainty
propagation within visual analytics processes as well as discovering
the human trust building process. Here we provide limitations of
our approach as well as open questions that future researchers can
investigate.

Firstly, uncertainties are difficult to be quantified and categorised
into a single process. In visual analytics systems, uncertainties can
be propagated and implied through the pipelines, as we discussed.
Thus, combination of uncertainties from multiple sources could be
larger than the sum. Our model does not provide a quantified model
of such intertwined process of uncertainty propagation just yet. As
outlined in G1 and G2, some efforts have been made to quantify and
aggregate different subsets of uncertainty propagation within visual
analytics process. Researchers may need to integrate such efforts using
our overarching model and predict such uncertainty propagation in a
specific context.

Secondly, another open question is whether the transparency of un-
certainty propagation is always good and how much of it is beneficial
to users. Our model builds upon an assumption that making the uncer-
tainty propagation transparent will let users be aware of variation in
their outcomes. However, providing too much information could con-
fuse, overwhelm, and mislead users, thereby making unwanted human
errors. Furthermore, it is also a tradeoff between efficiency and accu-
racy. For instance, applications for human safety, where uncertainty
can result in catastrophic results, may need to consider as much trans-
parency as possible. On the other hand, some business analytics may
require fast and reasonable analysis results. Thus, it will be interesting
to investigate what are proper amounts and methods to communicate
uncertainty information to different groups of visual analytics users.

Thirdly, in line with previous points, it is also an open question
whether the awareness of uncertainties leads to increasing or decreas-
ing trust. This question may be from the human’s trust building process.
To build trust in visual analytics outcomes, users may need to build
trust in the visual analytics system first. In this process, the awareness
of uncertainties may lead to increasing the awareness of visual analyt-
ics process but not to increasing trust in the outcomes. Thus, future
research may investigate the sophisticated process of human’s trust
building steps under uncertainty.

Fourthly, in this regard, we may think of the awareness provenance to
verify human’s understanding. We introduced the concept of awareness
to bridge between machine’s uncertainties and human’s trust. The
awareness again is highly subjective to individuals like the trust level,
so it will be difficult to quantify the information. Nonetheless, the
awareness indeed affects the entire process, so we call for research into
capturing it.

These points above do not capture all limitations and open question
from our study, but will be an interesting start for future work.
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5.3

Conclusion

In conclusion, we have illustrated how uncertainties arise, propagate
and impact human knowledge generation processes by relating the
concepts of trust, calibration and awareness. Further, we have given
hints on misconfigurations of uncertainty awareness that may cause
human errors in data analysis. We provide guidelines that describe
various ways to handle uncertainties and to include human factors in
order to enhance human trust calibration. Finally, we put forward
open research areas that will contribute to more reliable knowledge
generation in visual analytics in the future.
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