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Graphical Perception: Theory, Experimentation,
and Application to the Development of
Graphical Methods

WILLIAM S. CLEVELAND and ROBERT McGILL*

The subject of graphical methods for data analysis and
for data presentation needs a scientific foundation. In this
article we take a few steps in the direction of establishing
such a foundation. Our approach is based on graphical
perception—the visual decoding of information encoded
on graphs—and it includes both theory and experimen-
tation to test the theory. The theory deals with a small
but important piece of the whole process of graphical
perception. The first part is an identification of a set of
elementary perceptual tasks that are carried out when
people extract quantitative information from graphs. The
second part is an ordering of the tasks on the basis of
how accurately people perform them. Elements of the
theory are tested by experimentation in which subjects
record their judgments of the quantitative information on
graphs. The experiments validate these elements but also
suggest that the set of elementary tasks should be ex-
panded. The theory provides a guideline for graph con-
struction: Graphs should employ elementary tasks as high
in the ordering as possible. This principle is applied to a
variety of graphs, including bar charts, divided bar charts,
pie charts, and statistical maps with shading. The con-
clusion is that radical surgery on these popular graphs is
needed, and as replacements we offer alternative graph-
ical forms—dot charts, dot charts with grouping, and
framed-rectangle charts.

KEY WORDS: Computer graphics; Psychophysics.

1. INTRODUCTION

Nearly 200 years ago William Playfair (1786) began the
serious use of graphs for looking at data. More than 50
years ago a battle raged on the pages of the Journal of
the American Statistical Association about the relative
merits of bar charts and pie charts (Eells 1926; Croxton
1927; Croxton and Stryker 1927; von Huhn 1927). Today
graphs are a vital part of statistical data analysis and a
vital part of communication in science and technology,
business, education, and the mass media.

Still, graph design for data analysis and presentation is

* William S. Cleveland and Robert McGill are statisticians at AT&T
Bell Laboratories, Murray Hill, NJ 07974. The authors are indebted to
John Chambers, Ram Gnanadesikan, David Krantz, William Kruskal,
Colin Mallows, Frederick Mosteller, Henry Pollak, Paul Tukey, and the
JASA reviewers for important comments on an earlier version of this
article.

largely unscientific. This is why Cox (1978) argued,
‘“There is a major need for a theory of graphical methods’’
(p. 5), and why Kruskal (1975) stated ‘‘in choosing, con-
structing, and comparing graphical methods we have little
to go on but intuition, rule of thumb, and a kind of master-
to-apprentice passing along of information. . . . there is
neither theory nor systematic body of experiment as a
guide”’ (p. 28-29).

There is, of course, much good common sense about
how to make a graph. There are many treatises on graph
construction (e.g., Schmid and Schmid 1979), bad prac-
tice has been uncovered (e.g., Tufte 1983), graphic de-
signers certainly have shown us how to make a graph
appealing to the eye (e.g., Marcus et al. 1980), statisti-
cians have thought intensely about graphical methods for
data analysis (e.g., Tukey 1977; Chambers et al. 1983),
and cartographers have devoted great energy to the con-
struction of statistical maps (Bertin 1973; Robinson, Sale,
and Morrison 1978). The ANSI manual on time series
charts (American National Standards Institute 1979) pro-
vides guidelines for making graphs, but the manual ad-
mits, ‘“This standard ... sets forth the best current
usage, and offers standards ‘by general agreement’ rather
than ‘by scientific test’”’ (p. iii).

In this article we approach the science of graphs
through human graphical perception. Our approach in-
cludes both theory and experimentation to test it.

The first part of the theory is a list of elementary per-
ceptual tasks that people perform in extracting quanti-
tative information from graphs. In the second part we
hypothesize an ordering of the elementary tasks based
on how accurately people perform them. We do not argue
that this accuracy of quantitative extraction is the only
aspect of a graph for which one might want to develop a
theory, but it is an important one.

The theory is testable; we use it to predict the relative
performance of competing graphs, and then we run ex-
periments to check the actual performance. The experi-
ments are of two types: In one, once the graphs are
drawn, the evidence appears so strong that it is taken
prima facie to have established the case. When a strong
effect is perceived by the authors’ eyes and brains, it is
likely that it will appear to most other people as well. In
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the other type, the case is not so clear; we must show
the graphs to subjects, ask them to record their judgments
of quantitative information, and analyze the results to test
the theory. Both types of experiments are reported in this
article.

The ordering of the elementary perceptual tasks can be
used to redesign old graphical forms and to design new
ones. The goal is to construct a graph that uses elemen-
tary tasks as high in the hierarchy as possible. This ap-
proach to graph design is applied to a variety of graphs,
including bar charts, divided bar charts, pie charts, and
statistical maps with shading. The disconcerting conclu-
sion is that radical surgery on these popular types of
graphs is needed, and as replacements we offer some al-
ternative graphical forms: dot charts, dot charts with
grouping, and framed-rectangle charts.

This is not the first use of visual perception to study
graphs. A number of experiments have been run in this
area (see Feinberg and Franklin 1975; Kruskal 1975,1982;
and Cleveland, Harris, and McGill 1983 for reviews); but
most have focused on which of two or more graph forms
is better or how a particular aspect of a graph performs,
rather than attempting to develop basic principles of
graphical perception. Chambers et al. (1983, Ch. 8) pre-
sented some discussion of visual perception, along with
a host of other general considerations for making graphs
for data analysis.

Pinker (1982), in an interesting piece of work, devel-
oped a model that governs graph comprehension in a
broad way. The model deals with the whole range of per-
ceptual and cognitive tasks used when people look at a
graph, borrowing heavily from existing perceptual and
cognitive theory (e.g., the work of Marr and Nishihara
1978). No experimentation accompanies Pinker’s mod-
eling. The material in this article is much more narrowly
focused than Pinker’s; our theory deals with certain spe-
cific perceptual tasks that we believe to be critical factors
in determining the performance of a graph.

2. THEORY: ELEMENTARY PERCEPTUAL TASKS

In this and the next section we describe the two parts
of our theory, which is a set of hypotheses that deal with
the extraction of quantitative information from graphs.
The theory is an attempt to identify perceptual building
blocks and then describe one aspect of their behavior.

The value of identifying basic elements and their in-
teractions is that we thus develop a framework to organ-
ize knowledge and predict behavior. For example, Ju-
lesz’s (1981) theory of textons identified the elementary
particles of what is called preattentive vision, the instan-
taneous and effortless part of visual perception that the
brain performs without focusing attention on local detail.
He wrote that ‘‘every mature science has been able to
identify its basic elements (‘atoms,” ‘quarks,’ ‘genes,’
etc.) and to explain its phenomena as the known inter-
action between these elements’’ (Julesz in press).

Figure 1 illustrates 10 elementary perceptual tasks that
people use to extract quantitative information from
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Figure 1. Elementary perceptual tasks.

graphs. (Color saturation is not illustrated, to avoid the
nuisance and expense of color reproduction.) The pic-
torial symbol used for each task in Figure 1 is meant to
be suggestive and might not necessarily invoke only that
task if shown to a viewer. For example, a circle has an
area associated with it, but it also has a length, and a
person shown circles might well judge diameters or cir-
cumferences rather than areas, particularly if told to do
SO.

We have chosen the term elementary perceptual task
because a viewer performs one or more of these mental-
visual tasks to extract the values of real variables rep-
resented on most graphs. We do not pretend that the items
on our list are completely distinct tasks; for example,
judging angle and direction are clearly related. We do not
pretend that our list is exhaustive; for example, color hue
and texture (Bertin 1973) are two elementary tasks ex-
cluded from the list because they do not have an unam-
biguous single method of ordering from small to large and
thus might be regarded as better for encoding categories
rather than real variables. Nevertheless the list in Figure
1 is a reasonable first try and will lead to some useful
results on graph construction.

We will now show how elementary perceptual tasks
are used to extract the quantitative information on a va-
riety of common graph forms.

Sample Distribution Function Plot

Figure 2 is a sample distribution function plot of mur-
ders per 10° people per year in the continental United
States. The elementary task that one carries out to per-
ceive the relative magnitude of the values of the data is
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Figure 2. Sample distribution function of 1978 murder rate.

judging position along a common scale, which in this case
is the horizontal scale.

Bar Charts

Figures 3 and 4 contain bar charts that were shown to
subjects in perceptual experiments. The few noticeable
peculiarities are there for purposes of the experiments,
described in a later section.

Judging position is a task used to extract the values of
the data in the bar chart in the right panel of Figure 3.
But now the graphical elements used to portray the
data—the bars—also change in length and area. We con-
jecture that the primary elementary task is judging po-
sition along a common scale, but judgments of area and
length probably also play a role.

Pie Charts

The left panel of Figure 3 is a pie chart, one of the most
commonly used graphs for showing the relative sizes of
the parts of a whole. For this graph we conjecture that
the primary elementary visual task for extracting the nu-
merical information is perception of angle, but the areas
and arc lengths of the pie slices are variable and probably
are also involved in judging the data.

Divided Bar Charts

Figure 4 has three divided bar charts (Types 2, 4, and
5). For each of the three, the totals of A and B can be
compared by perceiving position along the scale. Position
judgments can also be used to compare the two bottom
divisions in each case; for Type 2 the bottom divisions
are marked with dots. All other values must be compared
by the elementary task of perceiving different bar lengths;

533

examples are the two divisions marked with dots in Type
4 and the two marked in Type 5.

Statistical Maps With Shading

A chart frequently used to portray information as a
function of geographical location is a statistical map with
shading, such as Figure 5 (from Gale and Halperin 1982),
which shows the murder data of Figure 2. Values of a
real variable are encoded by filling in geographical re-
gions using any one of many techniques that produce
gray-scale shadings. In Figure 5 the technique illustrated
uses grids drawn with different spacings; the data are not
proportional to the grid spacing but, rather, to a compli-
cated function of spacing. We conjecture that the primary
elementary task used to extract the data in this case is
the perception of shading, but judging the sizes of the
squares formed by the grids probably also plays a role,
particularly for the large squares.

Curve-Difference Charts

Another class of commonly used graphs is curve-dif-
ference charts: Two or more curves are drawn on the
graph, and vertical differences between some of the
curves encode real variables that are to be extracted. One
type of curve-difference chart is a divided, or aggregate,
line chart (Monkhouse and Wilkinson 1963), which is typ-
ically used to show how parts of a whole change through
time.

Figure 6 is a curve-difference chart. The original was
drawn by William Playfair; because our photograph of
the original was of poor quality, we had the figure re-
drafted, trying to keep as close to the original as possible.
The two curves portray exports from England to the East
Indies and imports to England from the East Indies. The
vertical distances between the two curves, which encode
the export—import imbalance, are highlighted. The quan-
titative information about imports and exports is ex-
tracted by perceiving position along a common scale, and
the information about the imbalances is extracted by per-
ceiving length, that is, vertical distance between the two
curves.

Cartesian Graphs and Why They Work

Figure 7 is a Cartesian graph of paired values of two
variables, x and y. The values of x can be visually ex-
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Figure 3. Graphs from position—angle experiment.
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Figure 4. Graphs from position—length experiment.

tracted by perceiving position along a scale, in this case
the horizontal axis. The y values can be perceived in a
similar manner.

The real power of a Cartesian graph, however, does
not derive only from one’s ability to perceive the x and
y values separately but, rather, from one’s ability to un-
derstand the relationship of x and y. For example, in Fig-
ure 7 we see that the relationship is nonlinear and see the
nature of that nonlinearity. The elementary task that en-
ables us to do this is perception of direction. Each pair
of points on the plot, (x;, y;) and (x;, y;), with x; # x;,
has an associated slope

(yj — ylx; — x3).

The eye-brain system is capable of extracting such a
slope by perceiving the direction of the line segment join-
ing (x;, y;) and (x;, y;). We conjecture that the perception
of these slopes allows the eye—brain system to imagine
a smooth curve through the points, which is then used to
judge the pattern. For example, in Figure 7 one can per-
ceive that the slopes for pairs of points on the left side
of the plot are greater than those on the right side of the
plot, which is what enables one to judge that the rela-
tionship is nonlinear.

That the elementary task of judging directions on a
Cartesian graph is vital for understanding the relationship
of x and y is demonstrated in Figure 8. The same x and
y values are shown by paired bars. As with the Cartesian

MURDER RATES, 1978
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Figure 5. Statistical map with shading.
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Figure 6. Curve-difference chart after Playfair.

graph, one can perceive the x and y values by perceiving
their positions along a common scale. But with the ability
to perceive slopes removed, the pattern of the nonlinear
relationship is difficult to perceive.

Triple Scatterplots

Figure 9 is a triple scatterplot of three real variables,
(x:, ¥i, 20), for i = 1 to 25. (The name triple scatterplot
was suggested by Anscombe 1973.) The x and y values
are portrayed by the centers of the circles and so form
an ordinary Cartesian graph. The third variable is en-
coded by the areas of the circles; thus the elementary
perceptual task for extracting the z; is area perception.

Volume Charts

The elementary task required in Figure 10 is volume
perception. Such volume charts are used very infre-
quently in science and technology but are common in
mass-media graphics (Tufte 1983).

Juxtaposed Cartesian Graphs

Frequently two or more panels of graphs are juxta-
posed with the scales on the panels the same. Figure 11,
which will be explained later, is an example of this; we
juxtaposed the graphs because superimposing them
would have resulted in an uninterpretable mess. In Figure
11, when we compare the log errors from two panels that

are not in the same row, we must make judgments of
positions along nonaligned scales.

3. THEORY: ORDERING THE ELEMENTARY
PERCEPTUAL TASKS BY THE ACCURACY
OF EXTRACTION

In this section we hypothesize an ordering of the 10
elementary perceptual tasks on the basis of the accuracy
with which people can extract quantitative information
by using them. One elementary perceptual task is taken
to be more accurate than another if it leads to human
judgments that come closer to the actual encoded quan-
tities.

One must be careful not to fall into a conceptual trap
by adopting accuracy as a criterion. We are not saying
that the primary purpose of a graph is to convey numbers
with as many decimal places as possible. We agree with
Ehrenberg (1975) that if this were the only goal, tables
would be better. The power of a graph is its ability to
enable one to take in the quantitative information, or-
ganize it, and see patterns and structure not readily re-
vealed by other means of studying the data.

Our premise, however, is this:

A graphical form that involves elementary perceptual
tasks that lead to more accurate judgments than an-
other graphical form (with the same quantitative in-

This content downloaded from 115.27.200.10 on Sun, 15 Sep 2019 14:13:33 UTC
All use subject to https://about.jstor.org/terms



536

o | 'y
@® 'y
'y
d ° °
o0
[=
© .
> °
o ]
<
'y
°
o |
N .
°
°
T T T T
20 40 60 80
X

Figure 7. Cartesian graph.

formation) will result in better organization and in-
crease the chances of a correct perception of patterns
and behavior.

In Section 5 we give examples of patterns emerging when
elementary perceptual tasks are changed to increase the
accuracy of judgments.

100
|
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20
1
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Figure 8. Bar chart with paired X and Y values.
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Figure 9. Triple scatterplot.

The following are the 10 elementary tasks in Figure 1,
ordered from most to least accurate:

Position along a common scale
Positions along nonaligned scales
Length, direction, angle

Area

. Volume, curvature

. Shading, color saturation

A E W~

Figure 10. Volume chart.
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Figure 11. Position—length experiment: Midmeans of log absolute errors against judgment type for 10 pairs of judged values.

Three of the ranks—3, 5, and 6—have more than one
task; at the moment there is not enough information to
separate the ties.

The hypothesized ordering of the elementary tasks is
based on information from a variety of sources: our own
reasoning and experimentation with various graph forms,
results of psychophysical experiments, and the theory of
psychophysics. The following discussion attempts only a
partial documentation. The sources of the theoretical or-
dering are not the most cogent factors in establishing it;
rather, using the theory to predict the performance of
graph forms and then running experiments to check the
predictions is the cogent process for validating and re-
vising the theory. It is only through such a procedure that
we can claim to be establishing a science of graphical
perception. A few comments about the sources of the
ordering, however, will at least convey the process used
to devise it.

In the ordering of perceptual tasks, length judgments
are hypothesized to be more accurate than area judg-
ments, which in turn are hypothesized to be more ac-
curate than volume judgments. This ordering is based on
a combination of psychophysical theory and experimental
results.

Suppose an individual is asked to judge the magnitude
of some aspect of a physical object such as length, area,
volume, distance, loudness, weight, or pitch. The power
law of theoretical psychophysics (Stevens 1975) says that
if p is the perceived magnitude and a is the actual mag-
nitude, then p is related to a by p = ka*. If a; and a, are
two such magnitudes and p; and p, are corresponding
perceived values, then p;/p» = (ai/a2)*. Thus only if
= 1is the perceived scale the same as the actual physical
scale. For visual perception this power law appears to be
a good description of reality (Baird 1970).

Many psychophysical experiments have been con-
ducted to estimate values of a. For judgments of length,
area, or volume, average values of o from different ex-
periments can vary according to how instructions are
phrased and according to many experimental factors.
And for a particular experiment, values of a can vary
substantially for different subjects. Baird (1970) gave an
excellent review of a large number of experiments; one
pattern that emerges is that values of a tend to be rea-
sonably close to 1 for length judgments, smaller than 1
for area judgments, and even smaller for volume judg-
ments. This means that length judgments tend to be un-
biased, whereas there tends to be distortion in area judg-
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ments and even more in volume judgments. Partly for
this reason we have set the order (as given previously)
to be length, then area, and then volume.

Of course increased bias does not necessarily imply
less overall accuracy. The reasoning, however, is that the
mechanism leading to bias might well lead to other types
of inaccuracy as well. We might try to combat bias and
increase the accuracy of judgments by taking the areas
or volumes to be proportional to power-transformed val-
ues of the data. Cleveland, Harris, and McGill (1983) gave
reasons for not doing this, however, one of which is that
the power coefficients vary from one person to the next.

The reason for putting position along nonaligned scales
ahead of length is that there are additional visual cues on
nonaligned scales to help in making judgments. We il-
lustrate this with one particular graph form. The top of
Figure 12 shows two bars, or rectangles, with equal
widths and unequal heights. Suppose bar height encodes
some real variable; the elementary perceptual task—
judging length—is hard enough that we cannot easily per-
ceive which bar is longer in Figure 12.

In the bottom of Figure 12, the same bars are drawn,
but they are surrounded by frames of equal size and con-
struction. Each symbol, called a framed rectangle, is ac-
tually a little graph with a scale and with one number
portrayed. The elementary perceptual task is judging po-
sition along nonaligned scales, and now we can easily see
that the right bar represents a larger quantity than the
left. Actually, because the framed rectangle is such a sim-
ple graphical form, the task of judging position along non-
aligned scales really amounts to two length judgments (as
will be discussed shortly). In other circumstances, where
the graph form is more complex (such as Figure 11, which
was discussed in Section 2), a more complex set of visual
tasks makes up the position-along-nonaligned-scales task
because there are more visual cues.

Weber’s Law (cf. Baird and Noma 1978), an important
law of theoretical psychophysics, helps to explain how
the frame of a framed rectangle increases accuracy. Sup-
pose x is the length of some physical object, such as a
line or bar. Suppose that d,(x), a positive number, is de-
fined by the following: An object with length x + d,(x)
is detected with probability p to be longer than the object
with length x. Then Weber’s Law states that for fixed p,
dy,(x) = kpx, where k, does not depend on x. This law
appears to hold up well for a variety of perceptual judg-
ments, although Gregory (1966) argued that a modifica-
tion for small values of x is needed.

The unfilled portion of a framed rectangle creates an
unfilled bar with a length equal to the length of the frame
minus the length of the filled bar. The lengths of the un-
filled bars give additional visual cues to help in judging
the encoded numerical quantities. Suppose two framed
rectangles have filled bars that are long and close in
length, such as in the bottom of Figure 12. Then the per-
centage difference of the lengths of the unfilled bars is
much greater than that of the filled bars; by Weber’s Law
one can much more readily detect a difference in the short
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Figure 12. Bars and framed rectangles.

unfilled bars than in the long filled bars. Thus it is the
unfilled bars in the bottom of Figure 12 that allow the
perception of a difference that is not perceptible in the
top.

In Section 5.3 we put the framed rectangle to work to
design a new type of statistical map.

4. EXPERIMENTATION
41 Introduction

We began checking the hypothesized ordering by run-
ning two experiments. The experiments demonstrated
very clearly that some judgments of position along a com-
mon scale are more accurate than some judgments of
length and of angle. Strictly speaking we cannot do more
than assert that the results hold for the particular types
of graphs in the experiment, but the important point is
that the theory has correctly predicted the outcome. This
section contains a detailed description of the experiment
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and a detailed analysis of the data. (Those not interested
in the details can read the summary in Section 4.5 and
proceed to the application of the theory and experiments
to graph design in Section 5.)

4.2 Design

In one experiment 55 subjects were shown the five
types of graphs depicted in Figure 4. (The graphs used in
the experiment were much larger than in Figure 4, each
being on a separate 8% X 11 page and filling a large portion
of the page.) Each graph was either a divided bar chart
(as in the rightmost panel) or a grouped bar chart (as in
the leftmost panel). A grouped bar chart can be used to
show the same type of data as a divided bar chart by
encoding the total by the left bar of each group and en-
coding the divisions by the remaining bars. On a grouped
bar chart, unlike on a divided bar chart, all values can be
extracted and compared by judging position along a com-
mon scale.

On each graph two bars or divisions were marked with
dots, and subjects were asked to judge what percent the
smaller is of the larger. For the grouped bar charts, the
dots appeared either in the second and third bars of the
left group or in the second bars of the two groups. For
the divided bar chart, the dots appeared either in the bot-
tom divisions of the two bars or in the top divisions of
the two bars or in the top two divisions of the left bar.
For Judgment Types 1-3, subjects had to judge position
along a common scale, and for Judgment Types 4 and 5,
subjects had to judge length. Hence we call this the po-
sition—length experiment.

In this position-length experiment, the values involved
in the subjects’ judgments were

si =10 x 10¢-D12 j=1,...,10,

which are equally spaced on a log scale and range from
10 to 56.2. Subjects judged the ratios of 10 pairs of values;
the ratios ranged from .18 to .83. Each pair of values was
judged five times, once for each of the five judgment
types.

Bar segments and heights not judged were chosen es-
sentially at random, but subject to certain constraints. In
particular, for Type 4 stimuli neither the top nor the bot-
tom of the two topmost bar segments was permitted to
have the same y value, since this would permit judgment
along a common scale.

For each graph the subjects were asked to indicate
which of the two bars or two segments was the smaller.
Next they were to judge what percentage the smaller was
of the larger. The instructions specifically stated that sub-
jects were to make ‘‘a quick visual judgment and not try
to make precise measurements, either mentally or with
a physical object such as a pencil or your finger.”” Only
four errors occurred in the choice of which bar or segment
was smaller.

Graphs were presented in stapled packets. The instruc-
tion sheet was the first page. The next five were practice
graphs, one of each type, followed by a page marked
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““STOP.”’ The 50 graphs, in random order, completed the
packet. All packets were identical. Answers were rec-
orded on separate answer sheets, and subjects were in-
structed not to write on the graphs.

In the second experiment 54 subjects judged the two
types of graphs shown in Figure 3; one type was a pie
chart and the other was an ordinary bar chart. Ten sets
of five numbers that added to 100 were generated, and
each set was encoded by a bar chart and a pie chart,
resulting in 20 graphs. For each graph, the answer sheet
indicated which pie segment or bar was largest and sub-
jects were asked to judge what percentage each of the
other four values was of the maximum. Since subjects
were judging position or angle, we call this the position—
angle experiment.

The values were randomly generated by a uniform ran-
dom-number generator, with results rescaled to sum to
100. Each set was constrained to meet three require-
ments: The minimum value had to be greater than 3; the
maximum value had to be less than 39, and all differences
between values in a set had to be greater than .1. Sets
not meeting these requirements were rejected. For the
values that actually arose in the constrained random se-
lection, the ratios ranged from 10.0 to 99.7%.

The instruction sheet described the task to be per-
formed on each stimulus—*‘‘to judge what percent each
of the other segments or bars is of the largest.”” It also
explained that on the answer sheet, the largest segment
would be marked with an X. As in the previous experi-
ment, subjects were instructed to make quick visual judg-
ments, not measurements.

Graphs were put in stapled packets. The instruction
sheet was the first page. The next two pages were practice
graphs—one bar chart and one pie chart—followed by a
page marked ‘“STOP.”’ The 20 graphs, in random order,
completed the packets. All packets were identical. An-
swers were recorded on separate sheets.

4.3 Data Exploration
Subjects and Experimental Units

In the position-length experiment, the judgments of
four people were deleted because it was clear from their
answers that they had not followed instructions. In the
position—angle experiment, the judgments of three sub-
jects were deleted for the same reason. For both exper-
iments, 51 subjects remained for analysis.

For each experiment the subjects fell into two cate-
gories: (1) a group of females, mostly housewives, with-
out substantial technical experience; (2) a mixture of
males and females with substantial technical training and
working in technical jobs. Most of the subjects in the
position-length experiment participated in the position—
angle experiment; in all cases repeat subjects judged the
position—angle graphs first.

We did not detect any differences in the accuracies of
the judgments of the nontechnical and technical groups.
This is not surprising, since the perceptual tasks that sub-
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jects were asked to carry out were very basic ones carried
out in everyday activities. Thus we treated the subjects
as a homogeneous sample that could be used to make
inferences about people in general.

It is important to think of each judgment made from a
graph in the two experiments as an experimental unit. In
the position—length experiment there were 50 judgments,
which can be cross-classified into 10 ratios judged for
each of five types of judgments: three length judgments
and two position judgments. In the position—angle ex-
periment there were 80 judgments, which can be cross-
classified into 40 judged ratios for each of two types of
jugments: one angle judgment and one position judgment.

Accuracy
To measure accuracy we used
logz( | judged percent — true percent | + 1/8).

A log scale seemed appropriate to measure relative error;
we added 1/8 to prevent a distortion of the scale at the
bottom end because the absolute errors in some cases got
very close to zero. We used log base 2 because average
relative errors tended to change by factors less than 10.

For a large number of the experimental units in each
experiment, normal probability plots were made of the
log errors; they showed substantial nonnormality in the
empirical distribution of the log errors across subjects for
each experimental unit. The deviations from normality
were

1. Discrete data caused by subjects’ tendencies to use
multiples of five as answers

2. Mild skewness, sometimes to the left and sometimes
to the right

3. Frequent outliers

Principally because of the outliers, we estimated the lo-
cation of the distribution of the 51 log error values for
each experimental unit by the midmean, a robust estimate
of location (Mosteller and Tukey 1977).

Figure 13 shows plots of the 50 midmeans of the log
absolute errors for the position-length experiment, and
Figure 14 shows plots of the 80 midmeans for the posi-
tion—angle experiment. In both figures the log absolute
errors are plotted against the true percentages for each
judgment type; superimposed on each plot are smooth
curves computed by a scatterplot smoothing procedure
called lowess (Cleveland 1979). For the position—-length
experiment, there appears to be a mild dependence of the
log absolute errors on the true value for Judgment Types
1-4 and a larger dependence for Type 5. In the position—
angle experiment, there is a dependence for the pie charts
but very little for the bar charts.

Figure 11 is another plot of the 50 midmeans of the log
absolute errors for the position—length experiment. Each
panel shows the five midmeans for one of the 10 pairs of
values whose ratio was judged; the five midmeans for the
five types of judgments are plotted against the type num-
ber. Above each panel is the true percentage that the
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Figure 13. Position—length experiment: Midmeans of log absolute
errors against true percentages for five judgment types.

subjects were judging. The striking pattern is that the log
absolute errors almost always increase from Type 1
through Type 5. (The type numbers were chosen after the
analysis to correspond to most accurate (1) to least ac-
curate (5).) We will discuss this pattern in more detail
later.

The midmeans from the left panel of Figure 14 minus
the corresponding midmeans in the right panel are plotted
in Figure 15 against the true percentage, with a lowess
curve superimposed. In only 3 of the 40 cases was the
pie chart more accurate on average than the bar chart.

Figure 16 shows average errors for each of the five
judgment types in the position-length experiment (top)
and each of the two judgment types in the position—angle
experiment (bottom). The five values in the top panel are
the means of the 10 midmeans for each judgment type
(i.e., the means of the 10 midmeans in each panel of Fig-
ure 13). The two values in the bottom panel are the means
of the 40 midmeans for each judgment type (i.e., the
means of the 40 midmeans in each panel of Figure 14).
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Figure 14. Position—angle experiment: Midmeans of log absolute errors against true percentages for two judgment types.

A 95% confidence interval is shown for each mean; these
intervals are discussed in Section 4.4. The initial mid-
means provide the requisite robustness to a small number
of unusual observations. Since the midmeans are well
behaved and have no distant outliers, we have taken a
mean, rather than a robust statistic, to summarize them.

The means in Figure 16 provide convenient, but rough,

DIFFERENCE OF LOG ABSOLUTE ERRORS
1

T ! ! ! !
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Figure 15. Positon—-angle experiment: Angle midmeans minus po-
sition midmeans against true percentages.

summaries of the two experiments. The summaries are
rough because it is clear from Figures 13 and 14 that there
is some dependence of log error on the true percent.
Within an experiment it is reasonable to compare the
means of the judgments because the set of true percent-
ages is the same for each judgment, but it would be in-
appropriate to compare the means of the first experiment
with those of the second.

The top panel of Figure 16 shows that average errors
for length judgments are considerably larger than those
for position judgments. A multiple comparison analysis
(discussed in Section 4.4) showed that all pairs of the five
averages are significantly different at the .05 level, except
for Judgment Types 2 and 3. The larger of the two length
values is 1.32 log units greater than the smallest of the
three position values, which is a factor of 2'3? = 2.5.
The smaller length value is .51 log units greater than the
largest position value, which is a factor of 1.4. Thus the
average errors for length judgments are 40%-250% larger
than those for position judgments.

The bottom panel of Figure 16 shows that the average
error for angle judgments is considerably larger than for
position judgments. The difference is .97 on the log scale,
which is a factor of 2-°7 = 1.96, and is statistically sig-
nificant.

Large Absolute Errors

The top panel of Figure 17 shows a summary of the
large errors for the position—length experiment. Of the
2,550 judgments made by the subjects, 136 had a log error
greater than 4. The top panel of Figure 17 shows the per-
centage of these large errors that occurred for each of the
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Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position—length experiment (top) and position—

angle experiment (bottom).

judgment types. Seventy-eight percent of the large errors
occurred for the length judgments; since there were three
position judgments for each two length judgments, the
rate of occurrence of large errors for length judgments is
5.3 times that for position judgments.

The bottom panel of Figure 17 shows the percentage
of large errors (those greater than 4) for the position—
angle experiment; in this experiment 219 of the 4,080
judgments had large errors. Eighty-eight percent of the
large errors occurred for the angle judgments; thus the
rate of occurrence of large errors for the angle judgments
is 7.3 times that for the position judgments.

Bias

Previously it was pointed out that subjective estimates
of physical magnitudes can have systematic biases. To
check for this in the two experiments, the errors,

judged percentage — true percentage,

were analyzed. Just as for the log absolute errors, the
midmeans of the errors across subjects were computed
for each experimental unit in the two experiments. These
midmeans are plotted against the true percentages for
each judgment type in the position-length experiment
(Figure 18) and the position-angle experiment (Figure

19), just as they were for the midmeans of the log absolute
errors in Figures 13 and 14.

Figure 18 shows a convincing pattern for Judgment
Type 5; there appears to be substantial negative bias for
true percentages between 30 and 70. Figure 19 shows a
pattern for the angle judgments on the pie charts; again,
in the middle range of the true percentages, there are
many experimental units with a negative bias.

Figure 20 shows the means of the midmeans for each
judgment type in the two experiments; thus each value
in the top panel is the mean of the midmeans in one panel
of Figure 18, and each value in the bottom panel is the
mean of the midmeans in one panel of Figure 19. As with
the log absolute errors, these values are rough summaries
because there appears to be a dependence of bias on the
true percentage. Also shown are 95% confidence inter-
vals for each mean, computed by a procedure described
in the next section. The only source of significant bias
appears to be the two length judgments and the angle
judgment. The biases in these cases obviously contribute
significantly to the log absolute errors. To see this, sup-
pose that all subjects’ judgments for an experimental unit
had been identical; then we would have had

log>( | bias | + .125) = log absolute error.
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The values of the log absolute bias for the Type 4 length
judgment, the Type 5 length judgment, and the angle judg-
ment are

98 220 1.36,

respectively. The corresponding actual log absolute er-
rors are
2.36 2.01.

Thus the log absolute biases are not small compared with
the log absolute errors.

2.72

4.4 Confidence Intervals

The bootstrap (Efron 1982) proved to be a very con-
venient tool for estimating the sampling distributions of
the means of the log absolute errors and the biases. Be-
cause each subject judged all of the experimental units
in an experiment, the judgments of one unit are correlated
with those of another, and modeling this correlation
would have been a substantial chore. This correlation,
the nonnormality of the log errors, and the use of the
midmean make mathematical deviations of sampling dis-
tributions intractable.

Bootstrap Distribution of Means for Log Absolute Errors

For each experiment we bootstrapped by drawing 1,000
random samples of size 51 with replacement from the 51
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subjects. For each sample, the means of the midmeans
of the log absolute errors were computed as in Figure 16.
Thus in the position-length experiment, there were 1,000
values of the five judgment-type means for the log ab-
solute errors; this multivariate empirical distribution in
five dimensions appeared to be well approximated by a
multivariate normal distribution. This was established by
making probability plots of the five marginal distributions
and a number of linear combinations. The standard de-
viations and the correlation coefficients computed from
the five vectors of 1,000 numbers serve as estimates of
the standard deviations and correlations of the five judg-
ment-type means. Similarly in the position—angle exper-
iment, there were 1,000 values of the two judgment-type
means; for the log absolute errors, this bootstrap distri-
bution was well approximated by a bivariate normal one.
The 95% confidence intervals in Figure 16 are simply plus
and minus 1.96 times the bootstrap standard deviation
estimates.

Using the normal approximation to the bootstrap dis-
tribution of the means in the position—angle experiment,
a 95% confidence interval for the difference (angle —
position) in the log absolute error means is (.79, 1.15).
For the position—-length experiment, the bootstrap dis-
tribution can be used to generate simultaneous confi-.
dence intervals for all pairs of differences of the means
without being tied to any specific multiple comparison
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Figure 17. Percentage of large errors.

This content downloaded from 115.27.200.10 on Sun, 15 Sep 2019 14:13:33 UTC
All use subject to https://about.jstor.org/terms



544

TYPE = 1 TYPE = 2
" 4
(-]
o O % o °
o4 — ° \oo o
° °
g ] 8 o
w
0 " °
o ] 2.
1 1
T T T T T T T T
20 40 a0 -] 20 40 60 8o
TYPE = 3 TYPE = 4
" n °
° 8
° °
7 —v——/’\ o 4 o
2 °
g o oo °
°
w J 0 | ° o
1 1
°
o o
- - -
1 1
- T T - T T T T
20 40 0 80 20 40 80 eo
TRUE PERCENT

TYPE = S

o

° o
R °
! T T T
20 40 80 80
TRUE PERCENT

Figure 18. Position-length experiment: Midmeans of errors
against true percentages for five judgment types.

method, such as the S or T method (Scheffé 1959). Let
0;,fori =1,...,35,be the judgment-type means for the
log absolute errors. Let 0;*, fork =1,...,5andj =
1, ..., 1,000, be the 5,000 bootstrap values, and let s;;
be the standard deviation of 6* — 6;,*,fork =1, ...,
1,000. We found the ¢ such that for 95% of the 1,000
bootstrap S-tuples,

I (éi - éj) = (Oa* — ;%) l = CSyj.
This turned out to be 2.79. Thus
é,‘ — éj + 2.79 Sij

are a set of simultaneous 95% intervals for the differences
of the means; these intervals are displayed in Figure 21.
Note that only the means for Types 2 and 3 are not sig-
nificantly different at the .05 level.

fori,j=1,...,5

Bootstrap Distribution of Means for Errors

The bootstrap was used to assess the sampling distri-
bution of the error means displayed in Figure 20; the
bootstrap distribution was generated by 1,000 samples in

Journal of the American Statistical Association, September 1984

a manner analogous to that described for the log absolute
errors. Again, the multivariate normal was found to be a
good approximation, and the confidence intervals in Fig-
ure 20 show plus and minus 1.96 times the bootstrap stan-
dard errors.

4.5 Summary of the Experiments

Two experiments were run in which subjects judged
bar charts and pie charts. In the first experiment, five
types of judgments were made—two length judgments
and three judgments of position along a common scale.
In the second experiment, there were two types of judg-
ment—position and angle. For all types of judgments,
subjects made visual assessments of what percentage one
value was of a larger value; thus all recorded values were
between 0 and 100. In both experiments there were 51
subjects with usable data.

Figure 16 summarizes the accuracy of the judgments.
The top panel shows the first experiment and the bottom
panel shows the second. The scale is the log base 2 of
the absolute errors plus 1/8. In the first experiment, po-
sition judgments were more accurate than length judg-
ments by factors varying from 1.4 to 2.5. In the second
experiment, position judgments were 1.96 times as ac-
curate as angle judgments. The 95% confidence intervals
shown in Figure 16 were computed by using the boot-
strap. An important part of the contribution to the errors
for length and angle judgments is consistent bias. When
the true percentages are in the range of 25-50, subjects
tend to underestimate values for these types of judg-
ments.

The first experiment suggested that the position task
should be expanded to a whole range of tasks. As the
distance between the two values being judged increased
along an axis perpendicular to the common scale, the
accuracy decreased. Type 1 judgments had the smallest
distance, Type 2 the next smallest, and Type 3 the largest.
Not surprisingly, after just two experiments a revision of
the theory seems appropriate.

5. APPLYING THE THEORY TO ANALYZE AND
REDESIGN SEVERAL MUCH-USED
GRAPH FORMS

The mode of graph design that we advocate is the con-
struction of a graphical form that uses elementary per-
ceptual tasks as high in the hierarchy as possible. The
hypothesis is that by selecting as high as possible, we will
elicit judgments that are as accurate as possible, and
therefore the graph will maximize a viewer’s ability to
detect patterns and organize the quantitative information.

In this section we use this mode of graph design to
analyze several much-used graph forms and to construct
replacements for some of them. The comparison of old
graph forms and new ones provides another type of ex-
periment that can be used to decide the validity of our
approach.
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Figure 19. Position—angle experiment: Midmeans of errors against true percentages for two judgment types.
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5.1 Dot Charis and Bar Charts as Replacements

for Divided Bar Charts and Pie Charts;
Grouped Dot Charts and Grouped Bar Charts
as Replacements for Divided Bar Charts

For certain types of data structures, one cannot always
use the most accurate elementary task, judging position
along a common scale. But this is not true of the data
represented in divided bar charts and pie charts; one can
always represent such data along a common scale.

A pie chart can always be replaced by a bar chart, thus
replacing angle judgments by position judgments. In so
doing it might be sensible in many cases to make the scale
go from 0 to 100% so that the viewer can more readily
appreciate the fraction that each bar is of 100%; but 0 to
25 or 50% are also reasonable simple choices.

Actually we prefer dot charts, which are introduced
and discussed in Cleveland (1983), to bar charts. Figures
16, 17, and 20 are dot charts. (The reasons for our pref-
erence depart somewhat from our theme, so we refer the
reader to Cleveland 1983.)

Figure 22 is a pie chart. What is the ordering of the
values of the five categories? The answer is not easy to
find from the pie chart. From the dot chart in Figure 23,
it is clear that the ordering from smallest to largest is A
to E. This demonstrates the increase in ability to perceive
patterns that results from the increased accuracy of per-
ceptions based on position relative to that based on angle
judgments.

A divided bar chart can always be replaced by a
grouped bar chart; again, we prefer a grouped dot chart
(discussed in Cleveland 1982) to a grouped bar chart. To

illustrate the replacement of divided bar charts, consider
the graph in Figure 24. What is the ordering of the five
items in category A? As with the pie chart, making the
judgments is not easy. Figure 25 is a grouped dot chart
of the data in Figure 24. For each of the categories A, B,
and C, the totals and the item values are shown. Thus
the many length judgments in the divided bar chart have
been replaced by position judgments. It is clear that the
order of the items in category A from smallest to largest
is 1 to 5. Again, there is an increased ability to perceive
patterns as a result of the increased accuracy of percep-
tions.

Our analysis has provided, in a sense, a resolution of
the ‘‘Bar-Circle Debate,’’ as Kruskal (1982) refers to it.
This was a controversy (Eells 1926; Croxton 1927; Crox-
ton and Stryker 1927; von Huhn 1927) about whether the
divided bar chart or the pie chart was superior for por-
traying the parts of a whole. The contest appears to have
ended in a draw. We conclude that neither graphical form
should be used because other methods are demonstrably
better.

5.2 Showing Differences Directly for
Curve-Difference Charts

In the Playfair chart of Figure 6, the vertical distances
between the two curves encode pictorially England’s bal-
ance of payments with the East Indies. Thus the ele-
mentary task in extracting the curve differences is per-
ceiving length. It turns out that making such length
judgments is inaccurate and even more difficult than on
a divided bar chart. In fact the situation is so striking that
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Figure 20. Error means and 95% confidence intervals for judgment types in position—length experiment (top) and position—angle

experiment (bottom).

an experiment with subjects recording judgments is not
necessary; it has taken only a few examples to convince
us. One is shown in Figure 26. It is almost impossible to
get even a rough idea of the behavior of the differences
of the curves in the nine panels. The problem is that the
brain wants to judge minimum distance between the

TYPE 1 TYPE 2

curves in different regions, and not vertical distance.
Thus in each panel of Figure 26, one tends to see the
curves getting closer, going from left to right. The actual
vertical differences are plotted in Figure 27; it is clear
that Figure 26 has not conveyed even the grossest qual-
itative behavior of the differences.

TYPE 3 TYPE 4 TYPE S

T R e od

DIFFERENCE OF MEANS

TYPE OF JUDGEMENT

Figure 21. Simultaneous 95% confidence intervals for differences of judgment-type means in position—length experiment.
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Figure 22. Pie chart.

The same problem exists in the Playfair chart of Figure
6, although a little less severely. Figure 28 contains a
Cartesian graph of the differences, which does a far better
job of portraying them because the elementary perceptual
task is judging position along a common scale. For ex-
ample, Figure 28 does a far better job of showing the
occurrence of the rapid rise and descent of the balance
against England around 1760; in Figure 6 this peak goes
almost unnoticed unless considerable cognitive mental
effort is expended. A sensible graphing of these data
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Figure 23. Dot chart.
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Figure 24. Divided bar chart.

would show the import—export curves and the differences
graphed directly, as in Figure 28.

The remedy in this case seems simple: If differences
are to be conveyed, they should also be plotted on their
own Cartesian graph. This applies equally to the much-
used divided line chart, sometimes called an aggregate
line chart (Monkhouse and Wilkinson 1963). In such a
graph the amounts in various categories, say A to D, are
portrayed through time by plotting A, A + B,A + B +
C,and A + B + C + D against time as four curves.
Thus only A and the total, T = A + B + C + D, can
be judged by perception along a common scale, whereas
B, C, and D must be judged by perceiving vertical lengths
between two curves. Our perceptual theory and examples
strongly indicate that abandoning divided line charts and
plotting A, B, C, D, and T directly will lead to far more
accurate judgments.

5.3 Framed-Rectangle Charts as Replacements
for Statistical Maps With Shading

Statistical maps that use shading (or color saturation
or color hue) to encode a real variable, which Tukey
(1979) called patch maps, are commonly used for por-
traying measurements as a function of geographical lo-
cation. Figure 5 is one example. Murder rate is encoded
by the grid spacing, forming a kind of graph-paper col-
lage.

To judge the values of a real variable encoded on a
patch map with shading, one must perform the elemen-
tary perceptual task of judging shading, which is at the
bottom of our perceptual hierarchy. One can move much
farther up the hierarchy by using the framed rectangles
discussed earlier to form a framed-rectangle chart. This
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Figure 25. Dot chart with grouping.

is illustrated in Figure 29 with the murder data portrayed
in Figure 5. Had we merely shown the bars without the
frames, we would have had what Monkhouse and Wilk-
inson (1963) called a statistical map with located bars; the
elementary task would then have been perceiving length.
The framed rectangles, which are one step higher in the
hierarchy, lead to more accurate judgments, for the rea-
sons discussed in Section 3.

The framed-rectangle chart also solves another serious
problem of statistical maps with shading. On such patch
maps the states are treated in a very uneven way because
of their different areas. For example, in Figure 5 the total
amount of black for each state is actually encoding

number of murders
number of people

area.

The result is that Texas is imposing and Rhode Island is
hard to see.

There is another, more subtle perceptual problem that
arises on a patch map with shading. In Figure §, for ex-
ample, one tends to see contiguous clusters of states: The
two most prominent clusters are the north central states
(North Dakota, South Dakota, Nebraska, Minnesota,
Towa, and Wisconsin) and New England (Maine, New

Hampshire, Vermont, Massachusetts, Connecticut, and
Rhode Island).

Part of the reason why the clustering occurs so strongly
on the patch map is the reduction in the accuracy of the
perceived quantitative information; values group together
because we cannot visually differentiate them. Thus the
encoding of the data on the patch map provides a kind
of visual data reduction scheme in which noise is reduced
and a signal comes through. Unfortunately the signal is
of poor quality, since the clustering is subject to the va-
garies of the shading scheme. For example, the deep
South states (Texas, Louisiana, Mississippi, Alabama,
and Georgia) deserve to cluster together as forcefully as
the New England states but do not because our sensitivity
to differences at the high end of the scale appears to be
greater than at the low end of the scale. The deep South
states contain five of the six largest rates, and their range
is 3.2. The range for New England is 2.7. Furthermore
the largest deep South value (Louisiana) is 1.4 units larger
than the next largest value in the cluster, and the smallest
New England value (New Hampshire) is 1.3 units less
than the next smallest value; but Louisiana appears to
stand out in its cluster much more forcefully than does
New Hampshire.

If we want to perform data reduction, eliminating noise
to allow a signal to come through, then we can use a

This content downloaded from 115.27.200.10 on Sun, 15 Sep 2019 14:13:33 UTC
All use subject to https://about.jstor.org/terms



D=
N
DB

Figure 26. Curve-difference chart.

sensible numerical scheme together with a higher accu-
racy chart such as the framed-rectangle chart. One pro-
cedure, suggested by Tukey (1979), would be to smooth

Figure 27. Curve differences.

the variable as a function of geographical location and
portray smoothed values. Another somewhat crude, but
reasonable data reduction procedure is to group the data

CHART OF BALANCE AGAINST ENGLAND

MILLIONS OF POUNDS

1700 1720

T T T
1740 1760 1780

Figure 28. Playfair data.
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Figure 29. Framed-rectangle chart.

into equal-length intervals and portray the midpoints.
This has been done in Figure 30, and now the north cen-
tral states, northern New England, and the deep South
form more clear-cut visual clusters than in Figure 29.

Another data reduction technique, a visual one, that
results in effective but somewhat fuzzier clusters is sim-
ply to reduce the vertical resolution of the framed rec-
tangles by reducing their heights. This has been done in
Figure 31; clusters of states now appear to form more
readily than in Figure 29. It should be noted that this
technique works because the reduction prevents one from
optically detecting certain differences. In general one
would not expect graph size to be a major factor in graph-
ical perception until things were so small that differences
would be optically blurred. Because the graph elements
in our experiments were sufficiently large, as graph ele-
ments usually are, size was not a factor that we needed
to take into account. It is fortunate that this was so; other-
wise the distance the viewer held the graph from his or
her eyes would have been a factor.

Our conclusion about patch maps agrees with Tukey’s
(1979), who left little doubt about his opinions by stating,
“I am coming to be less and less satisfied with the set of
maps that some dignify by the name statistical map and

that I would gladly revile with the name patch map’’ (p.
792).

5.4 Graphs for Data Analysis

The graphical forms discussed so far in this section are
used more in data presentation than in data analysis. But
our perceptual theory can serve equally well as a guide
for designing graphical methods for statistical analyses.

Triple Scatterplots

The triple scatterplot is a useful tool in data analysis
for understanding the structure of three-dimensional data.
Figure 9 shows one implementation; perceiving the val-
ues encoded by the circles requires the elementary task
of judging area. Anscombe (1973) has suggested another
scheme for typewriter terminals and printers in which
overplotted characters, increasing in size and amount of
black, encode the third variable.

In a sense the framed-rectangle chart is a triple scat-
terplot; thus one might think in terms of a general triple
scatterplot procedure in which the third variable is coded
by framed rectangles. But for general data analytic pur-
poses, this is unlikely to work well because of a practical
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difficulty—overlapping symbols. For the statistical map
it was easy to avoid overlap, but for general scatterplots,
where points can get very crowded, the problem would
often be insurmountable.

Circles can overlap a lot and still permit perception of
circle. Part of the reason for this is that overlapping cir-
cles tend to form regions that do not look like circles, so
the individuals stand out. Since squares do not have this
property, overlap becomes a problem much more
quickly.

Our perceptual theory suggests that the third variable
be encoded by line length so that a more accurate ele-
mentary perceptual task can be performed. We have not
experimented with this procedure enough to know
whether line overlap is a lesser or greater problem than
circle overlap.

Hanging Rootograms and Slopes of Normal
Probability Plots

It can be said that John Tukey has already implemented
a part of our perceptual theory by recommending the
redesign of two common statistical graphical methods.
The hanging rootogram (Tukey 1972) modifies the usual
method of superimposing a normal density on a histo-

0 o4 @

4-8
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gram, converting the perceptual task from judging length
to judging position along a common scale. Tukey (1962)
also suggested modifying normal probability plots by
plotting the slopes of lines connecting the median point
(i.e., data median vs. the median of the normal, which is
usually taken to be zero) with other points on the plot;
the slope from the median point to the point associated
with the ith largest order statistic is plotted against i. The
viewer of an ordinary normal probability plot must judge
whether the points form a straight line pattern, so Tukey’s
modification converts judgment of direction (slope) to
judgment of position along a common scale.

Symbols for Multidimensional Data

One area of statistical graphics that has received a lot
of attention is designing symbols for representing multi-
dimensional data. Examples are polygons, Anderson
glyphs, faces, profiles, and Kleiner-Hartigan trees
(Chambers et al. 1983). Let us consider faces. Judging
the values of the individual encoded variables requires
five elementary perceptual tasks: position along non-
aligned scales, length, direction, area, and amount of cur-
vature. Thus extracting the quantitative information re-
quires substantial perceptual processing; and there is no

8-12 = 12-16
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Figure 30. Framed-rectangle chart.
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Figure 31. Framed-rectangle chart.

easy and direct elementary task that one can perform to
allow the study of the relationship between two variables,
as for a Cartesian plot. For this reason faces and the other
symbolic displays tend not to tell us much about the ge-
ometry of the multidimensional point cloud. Fixed or
data-driven projections of the points onto planes (Tukey
and Tukey 1981) appear to be more useful; each projec-
tion is portrayed by a scatterplot, so the elementary tasks
performed are judgments of position along a common
scale and direction (slope). Of course the integration of
the projections requires complex perceptual and cogni-
tive mental tasks.

6. PERSPECTIVES, REALISM, AND CRITICISM

For some the word theory implies a detailed, system-
atic, and comprehensive description of a subject. Such a
meaning would, of course, be ludicrous for the tentative
first step in this article. For us the identification and or-
dering of the perceptual tasks is a theory in a less re-
strictive sense: It is a set of plausible statements that
describe a phenomenon—the relative accuracy with
which various graphical forms convey quantitative infor-
mation.

We expect that our theory, like all theories, will
undergo much revision as new experimental information

is accumulated. The outcomes of the two experiments
reported here were correctly predicted by the theory; po-
sition judgments were more accurate than length judg-
ments and angle judgments. The position—length exper-
iment suggests, however, that a revision in the theory
might be appropriate. Although Judgment Types 1-3 in-
volved judgments of position along a common scale,
namely the vertical scale of the bar charts, the horizontal
distance between the graphical elements being judged
varied from 0 cm for Type 1 to 2.8 cm for Type 2 to 5.6
cm for Type 3; Figures 16 and 17 show that errors in-
creased in going from Type 1 to Type 2 to Type 3. This
suggests that the elementary task of judging position be
expanded into a continuum of tasks for which accuracy
is conjectured to decrease with increasing distance be-
tween the graphical elements encoding the data, where
distance is measured perpendicular to the axis along
which the data are plotted. Not surprisingly, after just
two experiments a revision in the theory appears nec-
essary.

The ordering of the perceptual tasks does not provide
a complete prescription for how to make a graph. Rather,
it provides a set of guidelines that must be used with
judgment in designing a graph. Many other factors, such
as what functions of the data to plot, must be taken into
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account in the design of a graph. A discussion of this is
given in Chambers et al. (1983, Ch. 8).

We have used elementary perceptual task to describe
the basic elements involved in our theory. It may have
been more appropriate to call them elementary graphical
encodings, emphasizing that they are basic ways of en-
coding data on graphs. We cannot realistically claim to
have isolated 10 basic, independent perceptual tasks.
Each task is really a complex set of tasks, and there is
much overlap. For example, it might be argued that judg-
ing positions along nonaligned scales really involves mak-
ing two length judgments, one from each end of the axis.
Despite these shortcomings, we have used elementary
perceptual task to emphasize that we are studying the
decoding process of the human—graph interface.

One substantial danger in performing graphical per-
ceptual experiments is that asking people to record judg-
ments will make them perform judgments differently from
the way they perform them when they look at graphs in
real life. Subjects will try to get the right answer and might
perform much more highly cognitive tasks than the basic
perceptual tasks they perform in real life. We tried to
guard against this in various ways in our experiments:
One way was to encourage subjects to work quickly,
much as they might in looking at a graph in real life.
Another was to omit tick marks and labels on axes except
at the extremes. For example, consider the bar chart in
the right panel of Figure 3. Had we put many tick marks
and labels on the vertical axis, subjects could have judged
ratios by reading values off the axis and performing a
mental division. Although some people may perform such
an operation in real life, it is not the basic perceptual
processing from geometrical information that we wanted
to study and that we conjecture is the main way viewers
judge ratios in real life. We have no proof that our lab-
oratory results are realistic and work in the field, but it
appears plausible that this is so.

Whatever the limitations of the current theory, it ap-
pears to have led to some useful results. Its application
to some of the most-used charts in graphical communi-
cation (bar charts, divided bar charts, pie charts, and sta-
tistical maps with shading) has led to replacements (dot
charts, dot charts with grouping, and framed-rectangle
charts). We do not lightly recommend the dismissal of
some of the most popular graph forms, but it appears to
be the inescapable conclusion of this analysis of graph
design. If progress is to be made in graphics, we must be
prepared to set aside old procedures when better ones
are developed, just as is done in other areas of science.

[Received May 1983. Revised October 1983.]
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