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Improved Circular Layouts

Emden R. Gansner and Yehuda Koren
AT&T Labs — Research
Florham Park, NJ 07932, USA
{erg, yehuda}@research.att.com

Abstract. Circular graph layout is a drawing scheme where all nodes are placed
on the perimeter of a circle. An inherent issue with circular layouts is that the
rigid restriction on node placement often gives rise to long edges and an overall
dense drawing. We suggest here three independent, complementary techniques
for lowering the density and improving the readability of circular layouts. First, a
new algorithm is given for placing the nodes on the circle such that edge lengths
are reduced. Second, we enhance the circular drawing style by allowing some of
the edges to be routed around the exterior of the circle. This is accomplished with
an algorithm for optimally selecting such a set of externally routed edges. The
third technique reduces density by coupling groups of edges as bundled splines
that share part of their route. Together, these techniques are able to reduce clutter,
density and crossings compared with existing methods.

1 Introduction

Circular layouts are among the most prominent and oldest conventions used to draw
graphs. In such layouts, nodes are drawn on a circle, while the edges connecting these
nodes are line segments passing within the circle, e.g., Figure 1(a). This drawing con-
vention is often used for the layout of networks and systems management diagrams,
where it naturally captures the essence of ring and star topologies. It can be also used
for other kinds of graphs, such as social networks and WWW graphs. In particular, a
circular layout is appropriate for applications that emphasize the clustering decompo-
sition of a graph, where each cluster is drawn on a separate circle. Much work [1, 4,
12,13, 17, 18,20] has been done on these layouts, most of it addressing both the layout
of a single circle as well as positioning multiple circles together in order to show the
various clusters composing the full graph. Here we concentrate on the former. Circular
layouts are highly regularized — nodes placed on a circle — achieving a very clear de-
piction of each individual node. A node cannot be occluded by another node or by an
edge. Moreover, since it is impossible to have three collinear nodes, the problem of two
edges obscuring each other is avoided. In general, these layouts can provide a compact
presentation, focusing on individual nodes and edges. Additionally, well-designed cir-
cular layouts sometimes reveal global properties of the graph such as symmetries and
patterns of collective behavior. On the other hand, this strong regularity can obscure
other information. For example, these drawings can be very dense, and following paths
on them can be difficult.

In this work we suggest methods for improving the clarity of circular layouts through
better node placement and edge routing. This is achieved using three contributions. The
first shows how to adapt traditional energy based node placement considerations in or-
der to shorten edges in circular layouts. This is different from most previous work which
concentrated on reducing edge crossings. Experiments show that our method is com-
petitive in terms of edge crossing minimization, while being constantly better in terms
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Fig. 1. Variations on circular layouts of a random graph (|V| = 80,| F| = 241): (a) random order;
(b) edge-length minimizing order; (¢) bundling edges to save ink and to improve area utilization
(colors used to enhance readability); (d) exterior routing lessens crossings and alleviates density;
(e) combining exterior routing with edge bundling.

of overall edge length. Such a shortening of edge lengths allows the use of less “ink”
for drawing the graph, thereby improving clarity. This ink saving paradigm brings us to
the second contribution of the paper. We suggest a novel edge routing technique, which
uses less ink compared with the common convention of drawing edges as straight lines.
This is performed by carefully bundling together line segments between a few edges in
a way that frees up drawing area without compromising structural clarity. Considering
non-straight line edges opens up even more possibilities for better clarity. Accordingly,
our third contribution suggests routing some of the edges through the external face. The
externally routed edges are optimally selected in order to minimize certain criteria. In
particular, external routing can be very effective in reducing edge crossings.

When used together, one normally performs node placement, followed by exterior
routing, then edge bundling. Sections 2-4 consider these techniques in that order. Ex-
perimental studies for the techniques are given in Section 5.



2 Node placement

We are looking for the “best placement” of the n nodes of a graph G(V = {1, ... ,n}, E).
By convention, we assume nodes are equally spaced on the circle, which reduces the
problem to finding a circular ordering of the nodes. This requirement imposes a cer-
tain regularity on the resulting layouts, while having no effect on the number of edge
crossings, since only the ordering affects edge crossings.

Some related computational problems are known to be NP-hard. One example is
the Minimum Circular Arrangement problem, where nodes are arranged on a circle
(with equal gaps) in order to minimize the total angular edge lengths. This problem
is reducible from the extensively studied NP-complete problem of Minimum Linear
Arrangement [9]. Additional related circular arrangement problems and applications
are mentioned in [6, 14]. Another NP-hard problem is Circular Crossing Minimization
[15], where the goal is to minimize the number of edge crossings in the layout. Given the
NP-hardness of the relevant problems, our approach is based on heuristics that cannot
guarantee finding an optimal solution.

2.1 Mean- and median- iterations

While previous work [1,4, 12, 17] explicitly addressed edge crossings, we prefer to deal
with the simpler node-node interactions governing edge lengths. That way we can use
ideas developed in other areas of graph drawing, which seek to minimize edge length.
The rationale here is that long edges are hard to follow, prone to crossings, and cause
unnecessary clutter and density. One such class of methods consists of force-directed
algorithms, which define the layout by minimizing a cost function. The methods of Tutte
[21] and Hall [10] are probably closest to the one used here. In addition, our technique
is closely related to the mean-iteration and the median-iteration heuristics widely used
within the crossing minimization phase of Sugiyama-based digraph drawing algorithms
[19].

We denote the coordinates of anode i € V by (z;, ;) € R?. Assume that the nodes
are arranged on the unit circle centered at the origin. We would like to minimize the
total squared edge lengths, resulting in the following optimization problem:

min > (wi— )+ (v — )’
(i,j)EE (D
subject to : x?—i—y?:l,i:l,...,n

Tutte [21] and Hall [10] dealt with strategies to minimize the same function, but
here we also need to account for the unit circle constraints. Such equality constraints
are usually addressed by Lagrange multipliers. Therefore, for each node 7, we introduce

a Lagrange multiplier )\;, and define the function:

flay )= > (@-2)"+w-y)+ Y N@i+y-1) @
(i,5)EE i=1
Any minimum of (1) must be a zero for all partial derivatives of (2). In other words,
we require 9f /Ox = 0, 0f /0y = 0, Of/OX = 0. Notice that 9f/OX = 0 means that
all constraints are satisfied. The other equalities, 9f/0x = 0f /0y = 0, imply that for
each node i:
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where N (i) = {j | (i,j) € E} is the set of neighbors of i. Notice that the =5- multi-
plier provides the degree of freedom necessary for satisfying the unit circle constraint.
In plain words, these equations state that each node on the unit circle should lie on the
line connecting the origin and the barycenter of its neighbors. Equivalently, the angular
coordinate of each node is the mean of the angular coordinates of its neighbors, while
the radial coordinate is always 1.

To solve this problem, we fix the positions of all the nodes but one, giving rise to
an iterative optimization process, which we naturally name the mean iteration. At each
iteration, we sequentially move each single node to the barycenter of its neighbors, and
then project it back to the circle:

ZjeN(i)(xj7yj) (i, i)

IN @] (i, ya)

A known problem with the mean iteration is that the global minimum of (1) is attained
when all nodes are positioned at the same location. Since we are looking for more use-
ful local minima, we avoid such a collapse of the layout by interfering with the process
after each few tens of iterations and making the gaps between consecutive nodes uni-
form. That is, we preserve the current angular order of the nodes, but impose a uniform
distribution along the circle. Additionally (or, alternatively), we adopt the anchoring
mechanism suggested by Tutte, fixing the positions of three nodes, which prevents the
collapse of the layout. During the process we change the anchors to avoid bias toward
specific nodes.

While the mean iteration addresses squared edge lengths, a similar median iteration
addresses non-squared edge lengths. The only difference is the use of the median instead
of the mean. Therefore, in this algorithm, the coordinates of a node are iteratively de-
termined by the component-wise median of its neighbors’ coordinates, projected back
onto the circle. We experienced slightly better results using median iteration over mean
iteration in terms of crossing minimization.

The complexity of a single iteration is O (n+| E|). The number of required iterations
is less clear. We regularly use O(n) iterations.

(1) (zi,9:) < (2) (24, v:) <

2.2 Local refinement through dynamic programming

The median (or mean) iteration is a continuous approximation to the circular ordering
problem. We derive the circular order by sorting the nodes according to their angular
coordinates. The resulting circular order can be refined by utilizing an algorithm that
explicitly considers the discrete nature of the problem. At this stage, we hope that the
median iteration already gave us an adequate global positioning of the nodes. Therefore,
we opt for using a localized refinement procedure. This refinement procedure considers
every sequence of k nodes, and reorders the sequence in a way that minimizes the total
edge length.

More formally, assume that the circle contains n equally spaced points named
0,1,...,n — 1, where point i is located at (cos 2%, sin 27*). In addition, each of the n
nodes is uniquely associated with one of the n circle points via the bijection p(i) : V —
{0,1,...,n — 1}. The (angular) distance between two nodes ¢ and j is defined as:



dij = min (p(i) — p(j) mod n, p(j) — p(i) mod n)

Given k nodes V = {vy, va, ..., v}, located consecutively at p(v1), p(v1)+1, ..., p(vr)+
k—1, we would like to reorder V' to minimize (), the total length of the edges adjacent

to V, which is defined as:
W= > dj

(i,j)EEIEV

Minimization of [()) is done by a dynamic programming algorithm which re-
arranges increasingly larger subsets of V. The pseudocode is given in Figure 2. The
complexity of the algorithm is O(2% + |E(V)|), where E(V) is the set of edges con-
nected to V. Typical values of k are between 5 and 10 (our default is 6). We iteratively
run it on each of the n (overlapping) subsequences of length &, so the running time of a
full sweep optimizing each subsequence is O(n(2* + |E|)). We run a few sweeps until
the total edge length cannot be further reduced. Typically, a very low number of sweeps
(10 or less) is required for convergence.

Figure 1(b) illustrates the application of these techniques to the initial layout of
Figure 1(a).

3 Exterior routing

Node ordering, using the method described in Section 2 (or one of the methods de-
scribed in the literature [1,4, 12, 17]), improves the readability of the layout by remov-
ing edge crossings and shortening edges. At this stage, further readability improvement
can be achieved without altering the node positions. This is accomplished by taking a
subset of the edges from the interior of the circle, and routing them around the exterior
of the circle, as depicted in Figure 1(d). Importantly, this can be done in an optimal way
which maximizes the number of extracted edges or minimizes the number of crossings.

Since exterior routing of an edge is inherently longer than interior routing, we
should utilize the exterior routing carefully, and make sure that edges routed externally
are readable. Therefore, we do not allow any edge crossing within the external face.
Notice that two edges cross in the external face if and only if they cross internally.

We associate weights with the edges (as explained below), and strive to maximize
the total weight of the extracted edges. This is carried out using a dynamic program-
ming algorithm. Before describing the algorithm, we make an observation about “edge
flipping”. Each exterior edge (7, j) can be drawn in two ways: either along the short arc
connecting ¢ and j, or along the complementary long arc connecting ¢ and j. Therefore,
we assume that all exterior edges are flipped so that no edge is passing over the length-1
arc connecting point n — 1 with point 0 on the circle. Note that this flipping will not
introduce any crossing into a crossing-free layout. As a consequence, we can cut the
circle between point n — 1 and 0, where no edge passes, and solve an equivalent prob-
lem on a line starting at 0 and ending at n — 1. By solving the problem on a line, we
determine which edges should be extracted. Then, each of these edges will be drawn on
the exterior of the circle along the shorter of the two possible arcs.

The intuition behind the algorithm for solving the problem on the line is based
on likening each edge to parentheses, where the left endpoint of the edge opens the
parenthesis, and the right endpoint closes it. Accordingly, a non-crossing set of edges
is equivalent to a valid sequence of nested parentheses. This induces the following re-
currence relation, where p;; is the maximal weighted sum of edges that can be legally
routed between ¢ and j:



Function MinCA DP (G(V, E), p,V = {v1,ve,...,vx} C V, ordering)

% Given a graph (G), circular node positioning (p), and a subset of consecutive nodes (V)
% ordered from vy (leftmost) to v (rightmost)

% compute an ordering of V (ordering) that minimizes total edge length

% Data structure: A table T" whose entries are indexed by subsets of V

% The function Cut(z, S) returns the number of edges between i and S C V.

for each 7 € V compute
left(i) ={(i,j) € E|d(j,v1) <d(j,vk),j ¢ V}
right (i) = {(i,j) € B | d(j,vx) < d(j,v1),5 ¢ V}
end for

% Initialize table:

for every S C V do
table[S].cost «— o0

end for

table[(].cost «— 0

table[(].cut —= 3", ,, [left(i)]

% Fill table:
fori =1to k do
forevery S C V, |S|=i—1do
cut® « tablelS].cut
new_cost «— table[S].cost + cut® % total edge length is a sum of cuts
for every j € V — S do
if table[S U {j}].cost > new_cost then
table[S U {j}].cost — new_cost
table[S U {j}]|.right-vtz «— j
table[S U {j}].cut «— cut® — |left(5)| + |right(j)| — Cut(j, S) + Cut(j,V — S)
end if
end for
end for
end for

% Retrieve optimal ordering:

Sy

fori =kto1ldo
v « table[S].right_vtx
orderingli] <« v
S —S—{v}

end for

end

Fig. 2. A dynamic programming algorithm for reordering a sequence of nodes in order to mini-
mize total edge length
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Here, w;; is the weight of (p~!(i),p~1(j)) € E. Also, w;; = 0if (p~1(:),p~(j)) ¢
E. The target value, po,,—1, is computed in time O(n?) by dynamic programming.
This value indicates the maximal weighted sum of edges that can be extracted. The
edges themselves are easily recovered using an auxiliary data structure which enables
tracking the computation of pg 1.

The choice of edge weights (w;;) allows flexibility in the optimization goal. Our de-
fault is to pick the weights in a way that ensures minimizing the number of edge cross-
ings. To this end, we set w;; to the number of crossings involving (p~* (i), p~*(j)). In
this way, the maximized value pg ,—1 is exactly the number of saved edge crossings.
Note that there is no problem of double counting, since two extracted edges cannot
cross each other.

Our experience shows that exterior routing is a very effective technique, which can
remove a significant portion of the edge crossings. The effect is shown in Figure 1(d)
and studied in Section 5.

An additional pleasing outcome of exterior routing is that it tends to extract many
of the short edges, such as edges of length 2. These edges are often hard to read when
drawn as straight lines, as they are almost collinear with the adjacent length-1 edges.
Furthermore, collinearity issue of specific edges can be explicitly addressed by increas-
ing their weights, thus encouraging the algorithm to pick them for exterior routing.

4 Edge bundling

After node places are computed and possibly some edges are extracted to be drawn
outside the circle, we can further improve the clarity of the drawing by using edge
bundling. The essence of this technique is a controlled deformation of the edges, such
that groups of edges share long common segments, thereby improving the utilization of
the drawing area by saving ink. Put differently, while the most economical way to draw
a single edge is by using a straight line, when displaying of group of edges, there might
be more efficient ways. For illustration, consider Figure 1(c,e).

The idea of bundling edges is related to the work on confluent drawing [3], where
edge crossings are eliminated by grouping edges in tracks. Newbery [16] applied bund-
ling to Sugiyama-style layouts to reduce clutter. Additionally, we were inspired by a
recent work by Holten and van Wijk [11] that suggested bundling edges based on hi-
erarchical structure associated with the nodes. Our approach is based on a different
technique for bundling edges. In the following, we split the description of the technique
into two parts. First, we describe how to bundle together a given set of edges in a way
that maximizes area utilization and readability. Second, we describe the algorithm for
computing the sets of edges that will be bundled.

Consider the case where we are given a set of m lines (“edges™), Q@ = {e; =
(v1,u1), €2 = (v2,u2),...,ex = (Um,Um)}, where v;, u; € R?. In the accompanying
example, given in Figure 3, this set includes the 4 edges (4, E), (B, F), (C,G) and
(D, H). Our first step is to divide the 2m endpoints of the edges into two equally sized
sets — S (“sources”) and T (“targets”) — such that for each (v;,u;) € Q, either v; €
S,u; € T,oru; € S,v; € T. The intention here is to produce two compact sets,
minimizing Euclidean distances between nodes belonging to the same set. We achieve



this by a variant of the K-means algorithm, where we iteratively assign each point to
the set with the closer mean while continually updating the means. Accordingly, in the
given example we would choose S = {A,B,C,D}, T ={E,F,G,H}.

9Q
Temm

Step 4

Fig. 3. Non-crossing edges are bundled together thereby freeing up drawing area

The next step is to compute the centroids of S and 7', denoted as S and T, respec-
tively. We denote by L the line containing S and T'. The prospective bundling should
pass along this line. More specifically, we compute two points — My and My —on L
such that the bundling is carried out by replacing the original line segments by the fol-
lowing line segments: First, a line from each node of S to M7, the meeting point of the
“sources”. Then, a line from M; to M>. Finally, a line from each node of T' to M, the
meeting point of the “targets”. See Step 3 in Figure 3. Since we want to reduce the use
of ink, the exact positions of M7 and M5 minimize the total line length:

(My, My) = argmin [[My — pl| + [|My — Mo|| + ) [|M2 —p|
My ,Ma peS peT

We solve this using a numerical method.
At this stage, we can infer if bundling the lines of () is profitable, as the ink poten-
tially saved is exactly the difference:

Do M =gl = Do IMy = pll + 1My — Mo+ Y || M2 —p|

(vj,u;)EQ peES peT

If this difference is positive, we know that we gain area by bundling.

If bundling is @ worthwhile, we recommend depicting each line (v;,u;) using a
Bézier spline with M; and M as control points. See Step 4 in Figure 3, and Fig-
ure 1(c,e). Our experience is that by incorporating Bézier splines, the drawing is smoother
and more readable. Also, the readability of edge bundles is improved when each of them
is uniquely colored, as can be seen in Figure 1(c,e).

A possible problem when bundling edges is that we might lose the information
about which “source” is connected to which “target”. For example, in the final picture of
Figure 3, it is unclear whether A is connected to E or maybe to F', GG, or H. We adopt a
simple rule to address this problem: crossing edges can never be bundled together. The
edges exit the bundle at the same order they entered it, thus avoiding any ambiguity
when each source is connected to a unique target.

Now, we turn to the problem of identifying the sets of edges to be bundled. We
pick the sets of edges such that, by bundling them, we minimize the amount of ink
used. Our choice is to use a bottom-up, agglomerative approach. The process starts
with multiple sets, each of which contains a single edge. Then, sets are merged as long



Function BundlingGain (Q1, Q> C F)
% Return the ink gain by bundling two edge sets (negative value means no gain)
% The function Ink(S) returns total ink needed for most efficient drawing of S C E
if EdgeCrossing(Q1,Q)2) then
return -1
else
return Ink(Q;) + Ink(Q2) — Ink(Q1 U Q2)
end if
end

Function AgglomerativeBundling (£ = {e1,ea,...,€,})
% lteratively, grow edge bundles that improve drawing area utilization
sets — {{e1},{ea}, ..., {em}}
while profitable bundling is possible do
% Pick two sets generating most gain:
(Q1,Q2) « argmaxg, o, csers BundlingGain(Q1, Q2)
sets — sets U{Q1 UQ2} — {Q1,Q2}

end
return sets
end

Fig. 4. Agglomerative edge bundling algorithm

as the corresponding bundling improves drawing area utilization; see pseudocode is
given in Figure 4.

Concerning computational complexity, this algorithm is essentially a hierarchical
clustering algorithm performed on the edges, and therefore it has O(|E|?) time and
space complexity (counting “bundlingGain” calculations), according to Eppstein [5].
The practical situation, however, is better here. First, only a tiny fraction of edge pairs
are mergeable since, for most pairs, there is no gain from bundling or the edges cross.
Therefore, O(| E|?) space is unnecessary in practice, and we use a sparse data structure
holding only profitable edge pairs. Moreover, when bundling two sets (01 and @2, we
would consider for potential bundling with Q1 U@ only sets that could be bundled with
Q1 or Q5. Finally, the O(|E|?) time complexity needed for evaluating the bundling
gain of all possible edge pairs can be significantly alleviated if we initially consider
only bundles involving two nearby edges; other bundles can be considered later by
transitivity. Here, two edges e, eo are considered “nearby” if one of e;’s endpoints is
sufficiently close to one of e5’s endpoints in the given circular ordering.

S Experiments

We evaluated the performance of our methods on the known benchmark set of Rome
graphs [2], which contains 11,534 real-life, sparse graphs with 10-109 nodes. In addi-
tion, we tested our algorithms on a set of pseudo-random graphs characterized by their
average degrees; all these graphs contain 100 nodes.

As a reference, we picked the CIRCULAR algorithm by Six and Tollis [17]. This
algorithm finds a circular ordering in two steps. The first step creates an initial ordering
based on the largest outerplanar subgraph. Then, the second step iteratively reduces



the number of crossings by carefully moving nodes. We used the publicly available
implementation circo, which is part of the Graphviz package [8].

Another circular ordering algorithm is that of Baur and Brandes [1]. They also ex-
plicitly address edge crossings using a two phase process. The reported numbers of
crossings are better — by up to 20% — compared with the aforementioned CIRCULAR
algorithm. We did not have an implementation of this algorithm, so no direct compari-
son was performed.

The quality of the drawings was assessed using two aesthetic criteria: number of
crossings and total used ink.! The results are given in Tables 1 and 2.

The evaluated algorithms are coded in the tables as follows: C=CIRCULAR; M
= Median iteration followed by fine-tuning, as described in Section 2; MC = Median
iteration followed by fine-tuning and then by the second step of CIRCULAR.

No exterior routing Exterior routing
Name #graphs C M MC C M MC
Rome, 10-19 nodes 1407 2.61 3.19 2.11 0.16 0.15 0.09
Rome, 20-29 nodes 839 7.18 8.01 5.51 0.83 0.68 | 0.46
Rome, 30-39 nodes 2037 || 21.42 | 22.17 | 1642 || 4.29 3.33 2.48
Rome, 4049 nodes 1802 || 41.49 | 41.06 | 31.68 11 8.77 6.66
Rome, 50-59 nodes 1045 || 66.46 | 65.16 | 51.16 || 20.66 | 16.67 | 12.8
Rome, 60-69 nodes 1172 || 92.76 | 91.3 | 72.51 324 | 2693 | 2133
Rome, 70-79 nodes 1008 || 123.47 | 120.94 | 96.23 || 47.43 | 39.46 | 31.04
Rome, 80-89 nodes 788 || 167.29 | 161.84 | 130.41 || 69.84 | 58.53 | 46.73
Rome, 90-99 nodes 1296 || 209.12|205.64 | 165.4 || 92.64 | 80.24 | 64.28
Rome, 100-109 nodes| 140 230.1 |229.52 | 183.83 | 103.45 | 92.74 | 72.97

Random, avg. deg. 3 100 || 383.23 | 357.68 | 302.29 || 195.22 | 166.18 | 139.12
Random, avg. deg. 4 100 ||1337.68|1186.50(1048.19(| 838.42 | 714.08 | 627.06
Random, avg. deg. 5 100 ||2709.35|2489.69|2230.24(/1858.20|1678.77|1487.14
Random, avg. deg. 6 100 ||4437.51|4252.31(3843.23(|3192.80|3043.01|2719.80
Random, avg. deg. 7 100 {/6979.42|6843.71(6210.86(|5216.34|5126.31|14594.56
Random, avg. deg. 8 100 {|9931.27|9808.96(8992.901|7646.76|7545.26(6865.73
Table 1. Comparing number of crossings across different circular ordering options, with and
without exterior edge routing

We begin with observations about the circular orderings. In terms of crossings mini-
mization, there is no marked difference between our method (M) and CIRCULAR (C)
for the Rome graphs, while M could produce fewer edge crossings than C for the ran-
dom graphs. As for the edge lengths (Table 2), M consistently achieves better results,
which is not surprising as CIRCULAR does not address edge lengths but crossings.
Since M does not directly deal with edge crossings, we tried to make it more “crossings
aware”, by integrating it with the second step of CIRCULAR, obtaining the method
coded by MC. As the table shows, MC is consistently the best performer in terms of
crossing minimization, outperforming both C and M.

So far, we have compared plain circular orderings. Interestingly, all differences, in
terms of number of crossings, are dwarfed by the effect of exterior routing (Section 3).

' We prefer the term “total used ink” over the more common “total edge length”, since when
edge bundling is activated they are no longer equivalent.



No edge bundling Edge bundling
Name #graphs|| C M MC C M MC
Rome, 10-19 nodes 1407 || 12.94 | 12.34 | 12.33 || 10.33 | 10.11 | 10.11
Rome, 20-29 nodes 839 || 17.16 | 15.49 | 15.50 || 13.23 | 12.52 | 12.54
Rome, 30-39 nodes 2037 || 23.12 | 20.38 | 20.34 || 17.46 | 16.26 | 16.25
Rome, 4049 nodes 1802 || 29.08 | 25.26 | 25.19 || 22.26 | 19.73 | 19.68
Rome, 50-59 nodes 1045 || 34.51 | 29.59 | 29.34 || 24.59 | 22.71 | 22.57
Rome, 60-69 nodes 1172 || 39.04 | 33.53 | 33.19 || 27.39 | 25.38 | 25.10
Rome, 70-79 nodes 1008 || 43.57 | 37.28 | 36.58 || 30.30 | 27.98 | 27.56
Rome, 80-89 nodes 788 || 49.39|42.16 | 41.33 || 33.62 | 31.02 | 30.58
Rome, 90-99 nodes 1296 || 53.99 | 46.21 | 45.14 || 36.31 | 33.63 | 33.03
Rome, 100-109 nodes| 140 || 56.19 | 48.68 | 47.11 || 37.51 | 35.08 | 34.31

Random, avg. deg. 3 100 || 72.44|62.72 | 61.99 || 46.07 | 43.56 | 42.59
Random, avg. deg. 4 100 |{124.08(109.29|107.96|| 72.04 | 68.20 | 66.77
Random, avg. deg. 5 100 |{171.85(156.19|153.97|| 93.73 | 90.08 | 88.52
Random, avg. deg. 6 100 |220.81(206.14|202.87|/114.39|111.47{109.45
Random, avg. deg. 7 100 [|273.35|260.37|254.79{|207.10/198.32|194.59
Random, avg. deg. 8 100 {{325.10(312.25|306.18[243.18|234.58(230.81
Table 2. Comparing total used ink (total length of edges) across different circular ordering op-
tions, with and without edge bundling

As can be seen in the right columns of Table 1, exterior routing is capable of eliminating
a significant portion of the edge crossings. Also, when exterior routing is activated, our
method (M) produces fewer crossings than CIRCULAR (C) even for the Rome graphs,
whereas the combined method — MC - is still superior. Apparently, our method can
better benefit from exterior routing because, by producing shorter edges, it allows more
non-crossing edges to be routed externally. In fact, for the Rome graphs, M allows an
external routing of 23% of the edges (on average, surprisingly uniform for all graph
sizes), while C allows external routing of 18% of the edges and MC routes 19% of the
edges externally.

We see that M has an advantage in reducing the total used ink. When allowing edge
bundling (Section 4), a further significant improvement in drawing area utilization is
achieved, as shown in the right columns of Table 2. Our experience shows that this
ink saving is helpful in conveying a clearer layout. Notice that a further reduction of
drawing density could be obtained by exterior routing, but it was not considered in
Table 2, as our intention is to isolate the effect of circular ordering and bundling on ink
usage.

Finally, as to running time, the average measured running time on the 100-node
graphs is around 1 second on a Pentium 4 machine. This is comparable with the run-
ning time of the CIRCULAR algorithm. Almost all running time is dedicated to the
computation of the circular ordering. The time needed for computing the edge bundling
is 50-200ms (depending on the number of edges), whereas the time for computing the
external edges is insignificant.

6 Summary

Circular layouts are a rather restrictive layout scheme, offering a simple and highly
regularized picture of the graph where nodes cannot be occluded. The limiting nature
of circular layouts makes it very important to capitalize on all available degrees of



freedom. In this work, we explored new ways for positioning nodes and routing edges in
order to maximize the readability of the layouts. In particular, the density of the drawing
is alleviated by shortening edge lengths, moving part of the edges to the exterior of the
circle, and bundling some edges together. In addition, shortening edges and exterior
routing significantly reduce the number of edge crossings.
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