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How data are represented visually has a pow-
erful effect on the perception and interpreta-
tion of the structure in those data. In Fig. 1, four
representations of a magnetic-resonance-imaging
(MRI) scan of a human head are shown. The only
difference between these images is the mapping of
color to data values, yet the four representations
look very different. Furthermore, the inferences an
analyst would draw from these representations
would vary considerably.

The importance of visual representation has been a lively
topic at the annual IEEE Computer Society Visualization
conferences. This concept was first publicized by Huff in his
book How to Lie with Statistics.! In this book and in the “How
to Lie with Visualization” sessions at those conferences, the
major concern is how the interpretation of data can be sub-
verted by manipulating the data representation. In this article,
we take a converse tack and ask: How can the interpretation
of data be enhanced? To address this question, we consider
the structure of the data, the perception of the visual dimen-
sions used in visualization, and the task the analyst is trying
to solve. We illustrate our discussion with examples drawn
from a variety of color-mapping schemes.

The complexity of data mapping

Modem interactive systems give the user free rein over
the mapping of data onto visual dimensions, and the number
of visual dimensions available for data representation is ex-
ploding. A visualization can use x, y, and z to represent the
spatial dimensions of an object, color can be mapped onto a
surface representing a fourth dimension, the surface can be
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Figure 1. Choices in the representation of data can influence their interpretation. Here,
four color maps have been applied to the same slice of an MRI scan of a human head.
The resulting images convey different information. '

deformed according to a fifth, isocontour lines can represent
a sixth, coloring them can represent a seventh, and glyphs on
the surface can represent a few more dimensions, not to
mention animation, transparency, and stereo. This great flexi-
bility, however, can open a Pandora’s box of problems for the
user and easily give rise to visual representations that do not
adequately reveal the structure in the data or that introduce
misleading visual artifacts.

The appropriate use of color is an area of particular
consternation. This is partly because the perceptual impact of
a color cannot be reliably predicted from a knowledge of the
red, green, and blue components generally made available to
users. Furthermore, even if the three perceptual dimensions
of color are surfaced to the users, they may not be aware that
different aspects of the color signal communicate different
characteristics of the data. Without guidance about the physi-
cal or psychophysical properties of color, or about which
color maps are most appropriate for which types of data, the
user is at a loss, even if the system provides a color-map editor
or a library of precomputed color maps.

One common way developers of visualization software
address this problem is to provide users with a default color
map. The most common default color map, shown in the top
left panel of Fig. 1, maps the lowest value in the variable to
blue and the highest value to red and interpolates in color
space (red, green, blue) to produce a color scale. This rain-
bow-hue color map is widely used in visualization but pro-
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duces several well-documented artifacts.>* In this MRI im-
age, for example, the color map creates perceived contours
that do not reflect discrete transitions in the data, structures in
the data that fall within one of these artificial bands are not
represented, and attention is drawn to the yellow areas be-
cause they are the brightest, not because they are in any way
the most important.

Helping users to avoid inaccurate and ineffective repre-
sentations of their data, furthermore, is not confined to offer-
ing a selection of color maps. Confusion also arises in the
application of contours, transparency, depth, and animation,
especially since the perception of one attribute can affect the
perception of another. For example, if a blue and a red object
are placed behind a translucent green object, observers might
expect that both objects would maintain their color but be
tinged by the color of the transparent layer. This is true for the
blue object, which appears bluish-green, but not for the red
object, which appears yellow. This effect is well understood
within the context of the algorithm by which transparency is
generally computed and principles of additive color mix-
ture, but can produce surprising results for the user.’

Using perceptual rules

Since most users do not want to become experts in human
perception, our strategy is to incorporate guidance directly
into the visualization software to aid in the the visual-design
process.>® In our approach, which we call Perceptual Rule-
based Architecture for Visualizing Data Accurately
(PRAVDA), rules filter the choices offered to the user, based
on principles of human perception, attention, and color theory.

In the case of color-map selection, for example, we have
constructed a library of color maps and a set of perceptual
rules that constrain the set of color maps offered to the user.
These rules are parameterized by metadata about data type,
data spatial frequency, visualization task, and other design
choices made by the user. Three color maps designed for
different visualization tasks are compared with the default
color map in Fig. 1. The isomorphic color map (upper right)
is designed to produce a faithful representation of the structure
in the data. In this color map, equal steps in data value
correspond to equal perceptual steps in the color scale. The
segmented color map (lower left) is designed to delineate
regions visually. The highlighting color map (lower right) is
designed to draw the user’s attention to regions in the image
that have certain characteristic features. This specific color
map was designed to draw attention to areas that have data
values near the median of the range.

The four color maps in Fig. 1 clearly demonstrate how
different mappings of data onto color scales produce different
representations of the data. The goal of our work is to under-
stand how different information in the data is communicated
by specific characteristics of the visual representation and to
harness this knowledge so it can be used routinely in visuali-
zation. The rest of this article focuses on the color-map
problem; we describe perceptual rules and metadata required
to drive color-map selection.

Faithfully representing the structure
To represent accurately the structure in the data, we must

try to understand the relationship between data structure and
visual representation. For nominal data, objects should be
distinguishably different, but since the data themselves are not
ordered, there should be no perceptual ordering in the repre-
sentation. For ordinal data, objects should be perceptually
discriminable, but the ordering of the objects should be ap-
parent in the representation. In interval data, equal steps in
data value should appear as steps of equal perceived magni-
tude in the representation. In ratio data, values increase and
decrease monotonically about a true zero or other threshold,
which should be preserved in the data representation.

One important application of scientific visualization is to
represent the magnitude of a variable at every spatial position.
In many cases, the interpretation of the data depends on hav-
ing the visual picture accurately represent the structure in the
data. In order to represent interval data accurately, for exam-
ple, the visual dimension chosen should appear continuous to
the user. Candidate color maps that preserve the monotonic
relationship between data values and perceived magnitude
can be drawn from psychophysical scaling expériments.
Stevens, for example, identified a set of sensory dimensions
for which a monotonic increase in stimulus intensity produced
a monotonic increase in perceived magnitude.’ He found the
shape of this relationship to be a power law, with each sensory
dimension characterized by its exponent. Perceived magni-
tude obeys a power relationship with physical luminance over
a large range of gray scales, which may explain why grayscale
color maps are commonly used in medical imaging. Another
dimension that displays this behavior is color saturation, the
progression of a color from vivid to pastel.

The top row of Fig. 1 compares the effectiveness of the
default color map and a color map designed to produce an
isomorphic representation of interval data. Looking at the
color bar for the default color map, we see bands of colors,
not a gradual increase across the range. For example, nearly
the entire range from 50 to 100 looks uniformly cyan. Al-
though the data values change by almost a factor of two, all
the values in this range look identical. This is also true for
magnetic resonances in the range from 125 to 200, which
appear to be green. This color map produces a contoured
impression that masks the subtle variations in MRI intensity.

The isomorphic representation used in the upper right,
although less dramatic, more accurately reflects the underly-
ing structure in the data. In this color map, luminance and
saturation both increase monotonically with data value. That
is, brightness increases monotonically, and hue, which begins
as a pure vivid blue, becomes more and more pastel. This
color map produces a monotonic increase in perceived mag-
nitude over the range. Using this color map, structures that are
invisible using the rainbow-hue map can be easily seen. For
example, the spatial structure in the midbrain and striate
cortex that appears uniform green in the default map is highly
detailed in the isomorphic map. Given the artifacts introduced
by the default color map, we can easily understand why
members of the medical community have been so cautious
about adding color to their visual representations.

Importance of spatial frequency
Not all isomorphic color maps are appropriate for all data
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Figure 2. For effectiveness in visualization low- and high-spatial-frequency data should receive
different treatments. Top row shows low-spatial-frequency data from a weather model. Bottom row
shows high-spatial-frequency data from a radar scan. The high-frequency color map (left) reveals
more detail in the radar data, whereas the low-frequency color map (right) reveals more structure in

the weather data.

sets because different components of the color signal are
processed differently by the human visual system. In particu-
lar, different components of the color signal have different
spatial sensitivities. The luminance component in a color (the
brightness/darkness component) is critical for carrying infor-
mation about high-spatial-frequency variations in the data. If
the color map does not contain a monotonic luminance
(brightness/darkness) variation, fine-resolution information
will not be seen. Conversely, the saturation and hue compo-
nents in color are critical for carrying information about
low-spatial-frequency variations in the data. A color map that
varies only in luminance, such as a grayscale image, cannot
adequately communicate information about gradual changes
in the spatial structure of the data.

This means that the balance of luminance and saturation
variation in an isomorphic color map depends on the spatial
frequency of the data. Interval data with high spatial fre-
quency call for a monotonic scale with a strong luminance
component; interval data with low spatial frequency call for
a monotonic scale with a strong saturation component.

These ideas are illustrated in Fig. 2, in which a lumi-
nance-based color map (left side) and saturation-based color
map (right side) have been applied to low-spatial-frequency
data (top) and high-spatial-frequency data (bottom). In all
four cases, continuous data are mapped onto isomorphic color
maps, and so contouring and other artifacts have already been
eliminated. This figure thus highlights additional advantages
of taking spatial frequency into account.

The data in the top row were generated by a weather
model that computes, among other things, the variation in
relative humidity over a geographic region. The structure of
this low-spatial-frequency variation is practically lost when
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the data are depicted with a map de-
signed for depicting high-spatial-fre-
B quency information (top left). The
2] right-hand map, designed to expose
: low-spatial-frequency structure, gives
i the analyst more information, espe-
- cially in regions where the humidity
i changes slowly over the geographic re-
: gion, such as near the lower central por-
tion below 65%. Also, in the lower
right-hand corner of the image, the in-
fusion of the high-humidity air into the
low-humidity area is clearly seen as a
S yellow stream, virtually invisible with
g the color map intended for high-spatial-
£ frequency data.
The images in the bottom row show
a radial sweep from a weather radar
sensor, measuring the high-spatial-fre-
quency variation of reflected intensity
(from thick clouds, for example). The
high-spatial-frequency map (left) repre-
sents clearly the finely detailed struc-
ture of these data and also reveals sam-
pling artifacts introduced by the sensor.
The low-spatial-frequency color map
(right) blurs the fine detail and, because
the values above the mean are a different hue, puts inappro-
priate emphasis on these regions, shown in yellow.

Color maps for segmentation

The rules for providing isomorphic color maps for ratio
and interval data are also effective in creating maps for
segmenting data. The luminance component conveys mono-
tonicity for high-spatial-frequency data, while the saturation
component can be used to convey monotonicity in low-spa-

Figure 3. Fine-tuning the parameters of segmented color maps improves
the visualization of low- and high-spatial-frequency data. Top row shows
low-spatial-frequency data of Earth's magnetic field. Bottom row shows
high-spatial-frequency cloud-fraction data. The high-frequency color map
(right) reveals more information about the structure of the low-frequency
data but reduces the information communicated for the high-frequency data.
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Figure 4. Color highlights regions 0f interestina wsualzzatwn of remotely sensed data wzthout dtsturbmg the percelved spatzal structure (right). Two left

panels are two isomorphic color maps applied to the same image.

tial-frequency data. Since the steps are explicitly defined,
however, luminance steps can also be effectively used for
low-spatial-frequency data. In creating a segmented color
map, it is important that the segments be discriminably dif-
ferent from one another. This discriminability limits the num-
ber of steps that can be represented. We have found that more
steps can be effectively discriminated for low-spatial-fre-
quency data than for high-spatial-frequency data.

Figure 3 shows a five-level segmented color map (left
side) and a 10-level segmented color map (right side) applied
to low-spatial-frequency data (top) and high-spatial-fre-
quency data (bottom). For low-spatial-frequency data (top
row), additional levels provide additional information. In this
case, additional features of Earth’s magnetic field in the
Southern Hemisphere are revealed. For example, in the right-
hand image, the gradient about the south magnetic pole is
clearer. By contrast, additional features of the high-spatial-
frequency cloud-fraction observations (bottom row) are not
revealed by increasing the number of color-map steps, which
effectively blur the segmentation.

Color maps for highlighting

Rules for selecting color maps that highlight particular
features in the data can be drawn from the literature on
attention.!*!! Using these rules, we can construct color maps
that highlight particular ranges in the data. An interesting
extension of this approach is illustrated in Fig. 4, which
displays data from the visible part of the spectrum remotely
sensed from space. The left-hand panels display these data
using two isomorphic color maps designed for high-spatial-
frequency data. The right-hand panel shows how color can be
used to highlight a region of interest without disturbing the
perception of other aspects of the data. Across the entire
image, the luminance component of the color map is identical.
Within the regions of interest, however, the hue component
has been varied, producing three distinct, semantically differ-
entiable regions, one blue, one green, and one yellow. This
method has been used successfully to mark regions of interest
in the image and to highlight regions that display certain
characteristics, such as those regions containing data that
match a template.

Complementary visual techniques

An important task in visualization is to represent data
from many sources simultaneously. The image at the top of
Fig. 5 is derived from three spectral bands of a remotely
sensed image. These data are displayed in a typical fashion,
by mapping the values of each spectral band to levels of red,
green, and blue. This representation provides a crude classi-
fication of the pixels.

Fach pixel in the image has also been categorized into
five classes with the help of an external land-use classification
scheme. This land-use information could be displayed to the

120

Figure 5. Application of a land-use classification model uncovers hidden
relationships in remotely sensed data. Top figure shows a typical pixel-
based color map. Bottom figure illustrates a graphical approach to exam-
ining differences between classes with respect to two spectral bands.
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user by coloring the pixels according to class membership,
with a different color for each class. If the spatial regions
occupied by the classes are sufficiently large, each pixel could
be mapped onto isoluminant blue, cyan, green, yellow, and
red, as described above, to highlight the different categories
without perturbing the spatial structure of the data.

The six panels on the bottom illustrate a complemen-
tary method for using color to understand the semantics of
class membership. In this representation, each pixel has
also been assigned a color according to its class member-
ship. The coloring is used, however, to study the behavior
of the different classes in terms of relationships among the
various spectral bands. The top left plot shows the rela-
tionship between IR1 and IR2, the near-infrared and
far-infrared bands. These bands are highly correlated (the
correlation coefficient r = 0.92). The next five plots show
this same relationship separately for each of the five classes.
Visualization of this one bivariate relationship reveals that
the “red” and “blue” classes are different from the whole
population and from the other classes. There is a much
smaller correlation between these two bands: The “green”
and “yellow” classes are the only classes with low values
in both infrared bands, and the “cyan” class is the only one
with high values in both infrared bands. This type of
analysis allows the user to gain insight into the semantics
of class membership.

PRAVDAColor

Figure 6 shows the PRAVDA rule-based color map-se-
lection tool incorporated into an IBM Visualization Data
Explorer program.'? In this visual program, imported data
flow into a module called PRAVDAColor. PRAVDAColor
computes metadata describing the spatial frequency of the
data and the data type (such as ordinal, interval, or ratio) and

asks the user to select the goal of the visual representation
(such as isomorphic, segmentation, or highlighting) via a
control-panel widget. These metadata flow to rules that con-
strain the set of color maps offered to the user. In the screen
depicted in Fig. 6, three color maps are offered to the user.
Since the simulated jet-engine-noise data shown in this exam-
ple have low spatial frequency, are of interval type, and the
task selected is isomorphic, these color maps all encode
variations in magnitude as variations in the saturation of
opponent-process pairs. Clicking on any of the color maps
applies them directly to the data, and the user is free to vary
the range of the color map. In this case, the full range of the
first color map was selected, and the data are represented by
a blue/yellow saturation scale.

Rule-based visualization

Moderm systems for creating visualizations have evolved
to the extent that nonexperts can create meaningful repre-
sentations of their data. However, the process is still not easy
enough, mainly because the visual effects of processing,
realizing, and rendering data are not well understood by users,
and the process of creating visualizations is largely ad hoc.
Often countless iterations are undertaken to get a color right,
to draw attention to a particular juxtaposition in the data, or
to understand why a feature on the display screen does not
seem to correlate to a physical phenomenon.

Our approach emphasizes a migration from a tool-based
visualization system to a rule-based system that helps the user
to navigate through a complex design space. Since the design
process is iterative, the application of the rules is under
interactive user control. The rules we have implemented so
far draw on knowledge from the areas of human perception
and color theory, but this structure could easily be extended
to incorporate expertise from other domains. Our goal is to

help users to make better, faster repre-
sentations of their data.
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