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H ow data are represented visually has a pow­
erful effect on the perception and interpreta­

tion of the structure in those data. In Fig. I, four 
representations of a magnetic-resonance-imaging 
(MRI) scan of a human head are shown. The only 
difference between these images is the mapping of 
color to data values, yet the four representations 
look very different. Furthermore, the inferences an 
analyst would draw from these representations 

Figure 1. Choices in the representation of data can influence their interpretation. Here, 
four color maps have been applied to the same slice of an MRI scan of a human head. 
The resulting images convey different information. 

would vary considerably. 
The importance of visual representation has been a lively 

topic at the annual IEEE Computer Society Visualization 
conferences. This concept was first publicized by Huff in his 
book How to Lie with Statistics . I In this book and in the "How 
to Lie with Visualization" sessions at those conferences, the 
major concern is how the interpretation of data can be sub­
verted by manipulating the data representation. In this article, 
we take a converse tack and ask: How can the interpretation 
of data be enhanced? To address this question, we consider 
the structure of the data, the perception of the visual dimen­
sions used in visualization, and the task the analyst is trying 
to solve. We illustrate our discussion with examples drawn 
from a variety of color-mapping schemes. 

The complexity of data mapping 
Modem interactive systems give the user free rein over 

the mapping of data onto visual dimensions, and the number 
of visual dimensions available for data representation is ex­
ploding. A visualization can use x, y, and z to represent the 
spatial dimensions of an object, color can be mapped onto a 
surface representing a fourth dimension, the surface can be 
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deformed according to a fifth, isocontour lines can represent 
a sixth, coloring them can represent a seventh, and glyphs on 
the surface can represent a few more dimensions, not to 
mention animation, transparency, and stereo. This great flexi­
bility, however, can open a Pandora's box of problems for the 
user and easily give rise to visual representations that do not 
adequately reveal the structure in the data or that introduce 
misleading visual artifacts. 

The appropriate use of color is an area of particular 
consternation. This is partly because the perceptual impact of 
a color cannot be reliably predicted from a knowledge of the 
red, green, and blue components generally made available to 
users. Furthermore, even if the three perceptual dimensions 
of color are surfaced to the users, they may not be aware that 
different aspects of the color signal communicate different 
characteristics of the data. Without guidance about the physi­
calor psychophysical properties of color, or about which 
color maps are most appropriate for which types of data, the 
user is at a loss, even if the system provides a color-map editor 
or a library of precomputed color maps. 

One common way developers of visualization software 
address this problem is to provide users with a default color 
map. The most common default color map, shown in the top 
left panel of Fig. I, maps the lowest value in the variable to 
blue and the highest value to red and interpolates in color 
space (red, green, blue) to produce a color scale. This rain­
bow-hue color map is widely used in visualization but pro-
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duces several well-documented artifacts.2-4 In this MRI im­
age, for example, the color map creates perceived contours 
that do not reflect discrete transitions in the data, structures in 
the data that fall within one of these artificial bands are not 
represented, and attention is drawn to the yellow areas be­
cause they are the brightest, not because they are in any way 
the most important. 

Helping users to avoid inaccurate and ineffective repre­
sentations of their data, furthermore, is not confined to offer­
ing a selection of color maps. Confusion also arises in the 
application of contours, transparency, depth, and animation, 
especially since the perception of one attribute can affect the 
perception of another. For example, if a blue and a red object 
are placed behind a translucent green object, observers might 
expect that both objects would maintain their color but be 
tinged by the color ofthe transparent layer. This is true for the 
blue object, which appears bluish-green, but not for the red 
object, which appears yellow. This effect is well understood 
within the context of the algorithm by which transparency is 
generally computed and principles of additive color mix­
ture, but can produce surprising results for the user. 5 

Using perceptual rules 
Since most users do not want to become experts in human 

perception, our strategy is to incorporate guidance directly 
into the visualization software to aid in the the visual-design 
process.5-8 In our approach, which we call Perceptual Rule­
based Architecture for Visualizing Data Accurately 
(PRAVDA), rules filter the choices offered to the user, based 
on principles of human perception, attention, and color theory. 

In the case of color-map selection, for example, we have 
constructed a library of color maps and a set of perceptual 
rules that constrain the set of color maps offered to the user. 
These rules are parameterized by metadata about data type, 
data spatial frequency, visualization task, and other design 
choices made by the user. Three color maps designed for 
different visualization tasks are compared with the default 
color map in Fig. I. The isomorphic color map (upper right) 
is designed to produce a faithful representation of the structure 
in the data. In this color map, equal steps in data value 
correspond to equal perceptual steps in the color scale. The 
segmented color map (lower left) is designed to delineate 
regions visually. The highlighting color map (lower right) is 
designed to draw the user's attention to regions in the image 
that have certain characteristic features. This specific color 
map was designed to draw attention to areas that have data 
values near the median of the range. 

The four color maps in Fig. I clearly demonstrate how 
different mappings of data onto color scales produce different 
representations of the data. The goal of our work is to under­
stand how different information in the data is communicated 
by specific characteristics of the visual representation and to 
harness this knowledge so it can be used routinely in visuali­
zation. The rest of this article focuses on the color-map 
problem; we describe perceptual rules and metadata required 
to drive color-map selection. 

Faithfully representing the structure 
To represent accurately the structure in the data, we must 

try to understand the relationship between data structure and 
visual representation. For nominal data, objects should be 
distinguishably different, but since the data themselves are not 
ordered, there should be no perceptual ordering in the repre­
sentation. For ordinal data, objects should be perceptually 
discriminable, but the ordering of the objects should be ap­
parent in the representation. In interval data, equal steps in 
data value should appear as steps of equal perceived magni­
tude in the representation. In ratio data, values increase and 
decrease monotonically about a true zero or other threshold, 
which should be preserved in the data representation. 

One important application of scientific visualization is to 
represent the magnitude of a variable at every spatial position. 
In many cases, the interpretation of the data depends on hav­
ing the visual picture accurately represent the structure in the 
data. In order to represent interval data accurately, for exam­
ple, the visual dimension chosen should appear continuous to 
the user. Candidate color maps that preserve the monotonic 
relationship between data values and perceived magnitude 
can be drawn from psychophysical scaling experiments. 
Stevens, for example, identified a set of sensory dimensions 
for which a monotonic increase in stimulus intensity produced 
a monotonic increase in perceived magnitude.9 He found the 
shape of this relationship to be a power law, with each sensory 
dimension characterized by its exponent. Perceived magni­
tude obeys a power relationship with physical luminance over 
a large range of gray scales, which may explain why grayscale 
color maps are commonly used in medical imaging. Another 
dimension that displays this behavior is color saturation, the 
progression of a color from vivid to pastel. 

The top row of Fig. 1 compares the effectiveness of the 
default color map and a color map designed to produce an 
isomorphic representation of interval data. Looking at the 
color bar for the default color map, we see bands of colors, 
not a gradual increase across the range. For example, nearly 
the entire range from 50 to 100 looks uniformly cyan. Al­
though the data values change by almost a factor of two, all 
the values in this range look identical. This is also true for 
magnetic resonances in the range from 125 to 200, which 
appear to be green. This color map produces a contoured 
impression that masks the subtle variations in MRI intensity. 

The isomorphic representation used in the upper right, 
although less dramatic, more accurately reflects the underly­
ing structure in the data. In this color map, luminance and 
saturation both increase monotonically with data value. That 
is, brightness increases monotonically, and hue, which begins 
as a pure vivid blue, becomes more and more pastel. This 
color map produces a monotonic increase in perceived mag­
nitude over the range. Using this color map, structures that are 
invisible using the rainbow-hue map can be easily seen. For 
example, the spatial structure in the midbrain and striate 
cortex that appears uniform green in the default map is highly 
detailed in the isomorphic map. Given the artifacts introduced 
by the default color map, we can easily understand why 
members of the medical community have been so cautious 
about adding color to their visual representations. 

Importance of spatial frequency 
Not all isomorphic color maps are appropriate for all data 
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the data are depicted with a map de­
signed for depicting high-spatial-fre­
quency information (top left). The 
right-hand map, designed to expose 
low-spatial-frequency structure, gives 
the analyst more information, espe­
cially in regions where the humidity 
changes slowly over the geographic re­
gion, such as near the lower central por­
tion below 65%. Also, in the lower 
right-hand comer of the image, the in­
fusion of the high-humidity air into the 
low-humidity area is clearly seen as a 
yellow stream, virtually invisible with 
the color map intended for high-spatial­
frequency data. 

Figure 2. For effectiveness in visualization low- and high-spalial-frequency data should receive 
different treatments. Top row shows low-spatial-frequency data from a weather model. Bottom row 
shows high-spatial-frequency data from a radar scan. The high-frequency color map (left) reveals 
more detail in the radar data, whereas the low-frequency color map (right) reveals more structure in 
the weather data. 

The images in the bottom row show 
a radial sweep from a weather radar 
sensor, measuring the high-spatial-fre­
quency variation of reflected intensity 
(from thick clouds, for example). The 
high-spatial-frequency map (left) repre­
sents clearly the finely detailed struc­
ture of these data and also reveals sam­
pling artifacts introduced by the sensor. 
The low-spatial-frequency color map 
(right) blurs the fine detail and, because 

sets because different components of the color signal are 
processed differently by the human visual system. In particu­
lar, different components of the color signal have different 
spatial sensitivities. The luminance component in a color (the 
brightness/darkness component) is critical for carrying infor­
mation about high-spatial-frequency variations in the data. If 
the color map does not contain a monotonic luminance 
(brightness/darkness) variation, fine-resolution information 
will not be seen. Conversely, the saturation and hue compo­
nents in color are critical for carrying information about 
low-spatial-frequency variations in the data. A color map that 
varies only in luminance, such as a grayscale image, cannot 
adequately communicate information about gradual changes 
in the spatial structure of the data. 

This means that the balance of luminance and saturation 
variation in an isomorphic color map depends on the spatial 
frequency of the data. Interval data with high spatial fre­
quency call for a monotonic scale with a strong luminance 
component; interval data with low spatial frequency call for 
a monotonic scale with a strong saturation component. 

These ideas are illustrated in Fig. 2, in which a lumi­
nance-based color map (left side) and saturation-based color 
map (right side) have been applied to low-spatial-frequency 
data (top) and high-spatial-frequency data (bottom). In all 
four cases, continuous data are mapped onto isomorphic color 
maps, and so contouring and other artifacts have already been 
eliminated. This figure thus highlights additional advantages 
of taking spatial frequency into account. 

The data in the top row were generated by a weather 
model that computes, among other things, the variation in 
relative humidity over a geographic region. The structure of 
this low-spatial-frequency variation is practically lost when 
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the values above the mean are a different hue, puts inappro­
priate emphasis on these regions, shown in yellow. 

Color maps for segmentation 
The rules for providing isomorphic color maps for ratio 

and interval data are also effective in creating maps for 
segmenting data. The luminance component conveys mono­
tonicity for high-spatial-frequency data, while the saturation 
component can be used to convey monotonicity in low-spa-

Figure 3. Fine-tuning the parameters of segmented color maps improves 
the visUillization of low- and high-spatial-frequency data. Top row shows 
low-spatial1requency dala of Earth 's magnetic field. Bottom row shows 
high-spatial-frequency cloud-fraction data. The high1requency color map 
(right) reveals more information about the structure of the low-frequency 
data but reduces the information communicated for the high-frequency data. 



Figure 4. Color highlights regions of interest in a visualization of remotely sensed data without disturbing the perceived spatial structure (right). Two left 
panels are two isomorphic color maps applied to the same image. 

tial-frequency data. Since the steps are explicitly defined, 
however, luminance steps can also be effectively used for 
low-spatial-frequency data. In creating a segmented color 
map, it is important that the segments be discriminably dif­
ferent from one another. This discriminability limits the num­
ber of steps that can be represented. We have found that more 
steps can be effectively discriminated for low-spatial-fre­
quency data than for high-spatial-frequency data. 

Figure 3 shows a five-level segmented color map (left 
side) and a lO-level segmented color map (right side) applied 
to low-spatial-frequency data (top) and high-spatial-fre­
quency data (bottom). For low-spatial-frequency data (top 
row), additional levels provide additional information. In this 
case, additional features of Earth's magnetic field in the 
Southern Hemisphere are revealed. For example, in the right­
hand image, the gradient about the south magnetic pole is 
clearer. By contrast, additional features of the high-spatial­
frequency cloud-fraction observations (bottom row) are not 
revealed by increasing the number of color-map steps, which 
effectively blur the segmentation. 

Color maps for highlighting 
Rules for selecting color maps that highlight particular 

features in the data can be drawn from the literature on 
attention. 10-1 1 Using these rules, we can construct color maps 
that highlight particular ranges in the data. An interesting 
extension of this approach is illustrated in Fig. 4, which 
displays data from the visible part of the spectrum remotely 
sensed from space. The left-hand panels display these data 
using two isomorphic color maps designed for high-spatial­
frequency data. The right-hand panel shows how color can be 
used to highlight a region of interest without disturbing the 
perception of other aspects of the data. Across the entire 
image, the luminance component ofthe color map is identical. 
Within the regions of interest, however, the hue component 
has been varied, producing three distinct, semantically differ­
entiable regions, one blue, one green, and one yellow. This 
method has been used successfully to mark regions of interest 
in the image and to highlight regions that display certain 
characteristics, such as those regions containing data that 
match a template. 

Complementary visual techniques 
An important task in visualization is to represent data 

from many sources simultaneously. The image at the top of 
Fig. 5 is derived from three spectral bands of a remotely 
sensed image. These data are displayed in a typical fashion, 
by mapping the values of each spectral band to levels of red, 
green, and blue. This representation provides a crude classi­
fication of the pixels. 

Each pixel in the image has also been categorized into 
five classes with the help of an extemalland-use classification 
scheme. This land-use information could be displayed to the 

Figure 5. Application of a land-use classification model uncovers hidden 
relationships in remotely sensed data. Top figure shows a typical pixel­
based color map. Bottomfigure illustrates a graphical approach to exam­
ining differences between classes with respect to two spectral bands. 
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user by coloring the pixels according to class membership, 
with a different color for each class. If the spatial regions 
occupied by the classes are sufficiently large, each pixel could 
be mapped onto isoluminant blue, cyan, green, yellow, and 
red, as described above, to highlight the different categories 
without perturbing the spatial structure of the data. 

The six panels on the bottom illustrate a complemen­
tary method for using color to understand the semantics of 
class membership. In this representation, each pixel has 
also been assigned a color according to its class member­
ship. The coloring is used, however, to study the behavior 
of the different classes in terms of relationships among the 
various spectral bands. The top left plot shows the rela­
tionship between IR 1 and IR2, the near-infrared and 
far-infrared bands. These bands are highly correlated (the 
correlation coefficient r = 0.92). The next five plots show 
this same relationship separately for each of the five classes. 
Visualization of this one bivariate relationship reveals that 
the "red" and "blue" classes are different from the whole 
population and from the other classes. There is a much 
smaller correlation between these two bands: The "green" 
and "yellow" classes are the only classes with low values 
in both infrared bands, and the "cyan" class is the only one 
with high values in both infrared bands. This type of 
analysis allows the user to gain insight into the semantics 
of class membership. 

PRA VDAColor 
Figure 6 shows the PRAVDA rule-based color map-se­

lection tool incorporated into an IBM Visualization Data 
Explorer program. 12 In this visual program, imported data 
flow into a module called PRA VDAColor. PRA VDAColor 
computes metadata describing the spatial frequency of the 
data and the data type (such as ordinal, interval, or ratio) and 

• " . U.1 

asks the user to select the goal of the visual representation 
(such as isomorphic, segmentation, or highlighting) via a 
control-panel widget. These metadata flow to rules that con­
strain the set of color maps offered to the user. In the screen 
depicted in Fig. 6, three color maps are offered to the user. 
Since the simulatedjet-engine-noise data shown in this exam­
ple have low spatial frequency, are of interval type, and the 
task selected is isomorphic, these color maps all encode 
variations in magnitude as variations in the saturation of 
opponent-process pairs. Clicking on any of the color maps 
applies them directly to the data, and the user is free to vary 
the range of the color map. In this case, the full range of the 
first color map was selected, and the data are represented by 
a blue/yellow saturation scale. 

Rule-based visualization 
Modem systems for creating visualizations have evolved 

to the extent that nonexperts can create meaningful repre­
sentations of their data. However, the process is still not easy 
enough, mainly because the visual effects of processing, 
realizing, and rendering data are not well understood by users, 
and the process of creating visualizations is largely ad hoc. 
Often countless iterations are undertaken to get a color right, 
to draw attention to a particular juxtaposition in the data, or 
to understand why a feature on the display screen does not 
seem to correlate to a physical phenomenon. 

Our approach emphasizes a migration from a tool-based 
visualization system to a rule-based system that helps the user 
to navigate through a complex design space. Since the design 
process is iterative, the application of the rules is under 
interactive user control. The rules we have implemented so 
far draw on knowledge from the areas of human perception 
and color theory, but this structure could easily be extended 
to incorporate expertise from other domains. Our goal is to 

.. " 

help users to make better, faster repre­
sentations of their data . 
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Figure 6. The PRA VDA Color offers users appropriate choices of color maps for representing data in 
a Data Explorer visual program. Here the rule-based system has offered choices appropriate for a 
low-spatial-frequency data set, the simulated jet-engine noise depicted in the window. 
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The analysis and visualization at the bottom of Fig. 5 
were produced using the Diamond software, which was de­
veloped at the IBM T. J. Watson Research Center and is 
marketed by SPSS Inc. (http://www.spss.com). 

All other figures were produced with the IBM Visualiza­
tion Data Explorer software, which was developed at the IBM 
T. J. Watson Research Center (http://www.almaden.ibm. 
comldx). 
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