
A Framework for Multiclass Contour Visualization
Sihang Li, Jiacheng Yu, Mingxuan Li, Le Liu, Xiaolong (Luke) Zhang, and Xiaoru Yuan

①

②

(a) Line Number

①

②

(f) Mix

①

②

(e) Order

①

②

(d) Fill

①

②

(c) Halo

①

②

(b) Line Style

Fig. 1. Examples of some design parameter attribute under our proposed multiclass contour visualization framework. (a) Line Number:
the number of contour lines in each class, 12 (1) vs. 6 (2). (b) Line Style: solid (1) vs. dashed (2). (c) Halo: contour lines without halos
(1) vs. with halos (2). (d) Fill: the contours without fillings (1) vs. with fillings (2). (e) Order: multiple contours plotted by level (1) vs. by
class (2). (f) Mix: multiple contours stacked with direct overlay (1) vs. with color blending (2).

Abstract— Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting,
computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns
and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions
when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to
make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The
framework has two components: a set of four visualization design parameters, which are developed based on an extensive review
of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering,
which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design
parameters affect users’ interpretations of real-world data. The study results offered some suggestions on the value choices of design
parameters in multiclass contour visualization.

Index Terms—Contour, multiclass visualization, visualization framework, domain-specific language, visualization design

1 INTRODUCTION

Contour plots are widely used to visualize scalar quantities and field
data in many fields, such as weather analysis [2], computational fluid
dynamics [1], and artificial intelligence [25]. A contour plot draws a
set of contour lines by setting different values and connecting points
with the same value of a given attribute. We call the lines representing

• Sihang Li, Jiacheng Yu, Mingxuan Li and Xiaoru Yuan are with Key
Laboratory of Machine Perception (Ministry of Education), School of AI,
Peking University. E-mail: {lisihang, jiachengyu, catherine9946,
xiaoru.yuan}@pku.edu.cn.

• Sihang Li and Jiacheng Yu are also with Center for Data Science, Academy
for Advanced Interdisciplinary Studies, Peking University. Xiaoru Yuan is
also with National Engineering Laboratory for Big Data Analysis and
Application, Peking University. Xiaoru Yuan is the corresponding author.

• Le Liu is with School of Computer Science, Northwestern Polytechnical
University. E-mail: lel@nwpu.edu.cn.

• Xiaolong (Luke) Zhang is with College of Information Sciences and
Technology, Pennsylvania State University. E-mail: lzhang@ist.psu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

higher values the higher-level contour lines. The contour with contour
lines of different levels shows the data attribute’s value levels and helps
users see its distribution and identify some essential characteristics such
as extreme points.

Nowadays, field data has become more complex. Visualizing and
analyzing the contours of multiple variables and attributes associated
with the same spatial region has become a common practice. Such
contours are referred to as multiclass contours. A typical example is
meteorological data, which contains attributes like air temperature, pres-
sure, humidity, etc., and different data in different years. The multiclass
contours of meteorological data are essential for meteorologists to ob-
tain a comprehensive overview of climate change over a specific region.
In addition, multiclass contours have recently been extended to other
fields [15, 19], where they can help compare the multiple distributions.

Multiple contours can be rendered as separate displays. However,
Early studies have reported that using separate displays creates more
perceptual and cognitive work for viewers and significantly prevents
them from discovering and analyzing patterns of multiple variables [9].
Another method is to overlay the contours into a single view. However,
directly overlaying these contours will inevitably lead to visual clutters.
Researchers have proposed various design approaches to address this
issue, including reducing the number of contour lines of individual
classes and using different visual channels for portraying contours [21,
37]. However, little research is done to consider how these approaches
should be integrated holistically. On the one hand, there is a lack of

summary of the existing approaches, and what design parameters can be
chosen in the visualization designs of the multiclass contour is unclear.
Designers are hard to explore the design parameters and possible values
systematically. On the other hand, in practice, it is often difficult for
users to choose appropriate multiclass contour designs for different
tasks. Even for the contours from experienced visual designers, such
as those in visualization research papers, the rationales behind designs
are often missing. We argued that the design parameters of multiclass
contour visualization must be carefully chosen to make the display
more comprehensible and enable users to perform specific tasks better.
The guidance of the design parameters selection strategy is essential.

With this in mind, we proposed a framework for multiclass contour
visualization. This paper reports our work in constructing two compo-
nents of the framework: identifying some essential design parameters
and developing a declarative language to facilitate the description and
design of multiclass contour visualization. To identify the design pa-
rameters, we conducted an extensive review of literature in the field of
multiclass contour visualization and summarized four design parame-
ters: Line, Fill, Order, and Mix. Each of these parameters has some
attributes that can be considered in the design. Then, to streamline the
design by using these parameters, we developed a declarative domain-
specific language (DSL) so that users can quickly generate multiclass
contour visualizations with a simple text description of samples.

We also set up a task-oriented lab study on the impacts of some
design parameters on user interpretations of multiclass contours. The
results of the user study, which examined how different value choices
and combinations of some design parameters influence the understand-
ing of multiclass contours, offer suggestions on the design choices of
multiclass contour visualization.

In general, our research made the following contributions:

• Developed a framework for multiclass contour visualization, in-
cluding a set of essential design parameters based on literature
review and a declarative domain-specific language for quick gen-
eration of multiclass contour visualization.

• Provided design suggestions based on the results of a task-
oriented user study on the impacts of design parameters on the
understanding of multiclass contours.

2 RELATED WORK

In this section, we reviewed previous work on two areas: contour
visualizations and declarative languages for visualization generation.

2.1 Contour Visualization

Contour is a very common visualization method to visualize scalar
fields. By setting different value thresholds, multiple closed contour
lines can be obtained to represent the distribution of the values. In
the visualization community, research in this direction includes the
use of contour lines to represent the area with high density and outlier
points [21], the combination of multiple contours to express uncer-
tainty [35], the application of line width to encode extreme values [37],
and the incorporation of contour-like strokes into the nodes of scatter-
plot to show global data structure [17].

Another usage of the contour is to visually enclosure objects to
indicate classes explicitly. Research efforts have been made to improve
contour visualizations by incorporating other visualization parameters,
such as the textures and alpha blending to show intersecting sets [31],
Bubble Sets to show sets and their relationships [6], and Rectangular
Euler Diagrams to improve the readability of the set intersections [23].

In addition to research on new methods to enhance contour visu-
alization, some efforts were made to adapt traditional contour visual-
ization methods to different data types, including density maps [12],
texts [3, 15, 16], graphs [4, 38], scatterplots [32], spatial data [18],
high-dimensional data [19], and medical data [29].

These novel approaches lay the foundation for our framework and
suggest what design parameters should be considered.

2.2 Declarative Language for Visualization Design
A declarative language allows developers to describe the results of com-
putation. Compared to traditional programming languages requiring
developers to describe how the results should be generated, declarative
languages can simplify development processes [10]. Some declarative
languages exist for visualization design. For example, Vega [27] pro-
vided a set of fundamental abstractions for constructing visualizations,
and Vega-Lite [28] offered a high-level grammar that enables rapid
specification of interactive data visualizations. However, these general
declarative languages did not cover all types of visualization designs
and could not easily accommodate the requirements in some specific
domains.

In addition, some research has focused on declarative languages for
specific domains. Such declarative domain-specific language (DSL)
can support different types of data or visualization, such as hierarchical
data [14], volume data [5,30], scalable scatterplot [32], graph [11], unit
visualization [22], and multiclass density map [12].

In this paper, we proposed a declarative DSL focusing on multiclass
contour generation based on the design parameters and their attributes.
We followed the approach of Vega, which takes JSON as the format for
the DSL.

3 ANALYSIS OF DESIGN PARAMETERS IN MULTICLASS CON-
TOUR

Multiclass contour is widely used, including some research works that
have already applied multiclass contours in different application sce-
narios and under different research problems. However, these contours
are various in design. The possible design parameters are unclear and
lack guidance on making better choices for different use. We want
first to propose a generalized framework for multiclass contour, which
includes available design parameters. The framework development
started with a survey of the literature in the visualization community
that has used multiclass contours.

The papers we reviewed meet the following two criteria: 1) the
contours used in a paper need to be multi-categorical so that research on
a single contour can be excluded; and 2) the contours must be displayed
explicitly and statically to avoid research on dynamic methods like
animation. As a result, we obtained 9 papers. We then classified them
according to different design parameters, and the taxonomy based on
their analysis is shown in Table 1.

Works Line Number Filling Mix Method
Collins et al. [6] 1 Yes Alpha Blending
Malkai et al. [19] 1 Yes Alpha Blending

Simonetto et al. [31] 1 Yes Alpha Blending
Mayorga et al. [21] 1 Yes Color Blending

Riche and Dwyer [23] 1 Yes Overlay
Yuan et al. [36] 1 No N/A

Jo et al. [12] >1 No N/A
Lu et al. [17] >1 No N/A

Scheepens et al. [29] >1 No N/A
Table 1. Taxonomy of existing papers related to multiclass contour
drawing. We classified them based on three categories: Line Number,
Filling, and Mix Method.

Here, we classified these works on three visual parameters: Line
Number, Filling, and Mix Method. Line Number refers to whether
the contour in each class contains only one line or multiple lines,
Filling concerns whether each contour line has filling inside or not,
and Mix Method is about how contours in different classes are mixed
into one view. For those contours without fillings, we excluded them
from the analysis of mix methods because the mix between the lines
becomes challenging to distinguish. We identified three mix methods:
Overlay, Alpha Blending and Color Blending. For Color Blending,
Splatterplots [21] used an approach that pushed the overlapping areas
toward black.

In addition to the above design parameters, we also found that
some researchers considered other encoding methods. Lu et al. [17]
added contour-like strokes to the scatterplots, which can be regarded

as discontinuous contour lines. Zhao et al. [37] used line width to
encode distance to the location of the maximum value. Scheepens et
al. [29] distinguished contours with line opacity and halos. Simonetto
et al. [31] used textures, instead of solid colors, in the fillings. These
design considerations can all be incorporated into our framework.

4 OUR FRAMEWORK OF MULTICLASS CONTOUR VISUALIZA-
TION

Based on the review of works and references of some basic visual chan-
nels, we developed a framework for multiclass contour visualization
by first summarizing four design parameters and then developing a
declarative domain-specific language (DSL) to facilitate the genera-
tion of multiclass contours. In this section, we described these two
components.

4.1 Design Parameters
Here, we discussed these parameters and related attributes. In the frame-
work, we want the design parameters to be generalized by avoiding
specific visual encoding methods and letting designers choose what
encoding methods to use. Here we just explained some commonly used
encoding approaches.

4.1.1 Line
The lines are the most visible visual elements in contour visualization
and can strongly influence contour representation. This parameter
contains several attributes that can be manipulated in design.

Line Number is one attribute that influences what a contour looks
like (Fig. 1(a)). As mentioned earlier, existing works used various line
numbers in their designs.

Line Style is inspired by Winglets [17], which used different vi-
sual representations (e.g., points with wings) to represent equipotential
surfaces of point density. Here we suggested that contours can be visu-
alized with different line styles, such as solid or dashed lines (Fig. 1(b)).

Line Color is very commonly used to encode information in contour
visualizations. In most papers we have surveyed, it is used to distinguish
different classes by assigning each class a specific color. Even within
the same contour, different lines can have different colors to show the
level information.

Line Width is a basic visual channel of contour and can be used to
encode additional information, such as that in PhoenixMap [37] that
encodes the distance from the position of maximum value. For the
contour with multiple lines, we can take a similar approach that relates
the level with line width: the higher the line level, the wider it is. This
approach can make the areas with higher values more visible.

Line Opacity is another basic visual channel. Scheepens et al. [29]
used different line opacities to highlight different contours. We can
also relate opacity with the level, just like Line Width.

Halo is also used by Scheepens et al. [29] to distinguish different
contours with a good result. Here we follow its approach by adding
halos to the lines (Fig. 1(c)). Similar to the Line parameter, Halo can
have attributes like Halo Color, Halo Width, and Halo Opacity.

4.1.2 Fill
A contour line depicts not only the line itself but also the area it covers.
As shown in Table 1, some research had fillings inside contour lines.
So we added Fill to our framework. It is an optional parameter: a
contour can have fillings or no filling (Fig. 1(d)). Several attributes can
be considered in the design if a filling is applied.

Fill Style is similar to Line Style. Except for common standard
colors, textures [31] and other fill patterns can also be applied to the
fillings.

Fill Color is usually used for distinguishing different classes, just
like Line Color. Generally, contour lines in the same class will use the
same color. However, a color scheme can also be used to distinguish
different contour levels in a specific contour.

Fill Opacity is similar to Line Opacity, which can be used to
indicate level information of contour lines. It can also be used to
achieve Alpha Blending, which can be regarded as a stack of multiple
contours with different fill opacities.

4.1.3 Order
When drawing multiclass contours, the Order in which individual
contours are rendered is essential. The most common approach is to
draw contours by class. However, this method can cause the classes
drawn first to be covered underneath and become invisible. In practice,
we found that users tend to be more interested in the areas with high
values, where the high-level contour lines are located. Thus, we adopted
another drawing order: drawing contours by level (Fig. 1(e)), in which
the lines of the lower levels of all classes are drawn first, and then the
lines of the higher levels are rendered in turn. This method will ensure
that the higher-level lines will always override the lower-level lines. As
a result, the areas with higher values will be more visible.

4.1.4 Mix
As we have shown in Table 1, there are some different mixing meth-
ods, and they influence the final presentation. Thus, we added Mix to
the framework as a design parameter to deal with areas with overlap-
ping contours (Fig. 1(f)), where Overlay, Alpha Blending, and Color
Blending are all common choices.

4.2 DSL for Multiclass Contour Generation
The first component of our framework only covers the design parame-
ters and their attributes that can be considered and includes no specific
encoding approaches in each parameter. To help the design processes
of multiclass contour visualization that involves these parameters, we
further developed a declarative domain-specific language (DSL) which
provides some common encoding methods to facilitate the quick gener-
ation of multiclass contours. A declarative language lets users directly
specify visualization contents and attributes without worrying about
technical implementation details [10].

Our DSL uses the JSON format to specify the visualization of mul-
ticlass contours. Its grammar is shown in Fig. 2. A specification first
refers to an array of 2D points with class labels as the data input and
then provides details on individual parameters. The required parameters
include Line, Order, and Mix. Fill is optional, and so is Halo for line
rendering.

We implemented a process with JavaScript to parse a given specifi-
cation and then render multiclass contours with SVG elements. With
the given data points which contain position information, our process
first blurs these points into scalar fields by class according to the point
density using Kernel Density Estimation (KDE) with a uniform kernel
function. Then a Marching Square algorithm, a commonly used method
for contour generation [20], is applied to create contours for each class.
The algorithm receives a list of value thresholds and outputs the contour
lines corresponding to each threshold. In this process, different canvas
sizes, cell sizes, and blur radii can affect the generation of the scalar
field and then further affect the contours generated by the algorithm.
Here we fix the drawing on a canvas of 256*256, with the cell size
of 2 and the blur radius of 8. These parameters will be allowed to be
specified in the grammar in future implementations.

The line number receives an integer as input. It is transformed into
a sequence of equivariant thresholds related to the maximum value of
all classes. For example, suppose the line number is k. In that case,
our process gets the maximum value w within all classes, divides the
interval [0,w] into k+1 equal sub-intervals, and uses k interval values
as the thresholds for contour generation. It should be noted that the
same threshold list is used in all classes, so those classes that do not
reach the maximum value will possibly have fewer contour lines than
the given number.

The process gives two ways of encoding for the attributes with
numerical values (Line Width, Line Opacity, Halo Width, Halo
Opacity, and Fill Opacity). If the input is a single number, the cor-
responding attribute of all contour lines will have the same value. If
the input is an interval, then the corresponding attribute of the lines
in the same contour will take the values in the range defined by the
interval. In addition, the attribute of the highest-level line will be set to
the maximum value of the interval to highlight the areas with higher
values, and the opposite is for the lowest-level line. The values of the
other lines are obtained by interpolation. Currently, our process only

{

 "data": <Point[]>,

 "line": {

 "number": <Number>,

 "style": "solid" | "dashed",

 "color": <Color[]> | <Color[][]>,

 "width": <Number> | <Number[2]>,

 "opacity": <Number> | <Number[2]>,

 "halo"?: {

 "color": <Color>,

 "width": <Number> | <Number[2]>,

 "opacity": <Number> | <Number[2]>

 }

 },

 "fill"?: {

 "style": "solid",

 "color": <Color[]> | <Color[][]>,

 "opacity": <Number> | <Number[2]>

 },

 "order": "class" | "level",

 "mix": {

 "level": "normal" | "multiply" | "screen" | "overlay" |

 "darken" | "lighten" | "color-dodge" | "color-burn" |

 "hard-light" | "soft-light" | "difference" | "exclusion" |

 "hue" | "saturation" | "color" | "luminosity",

 "class": "normal" | "multiply" | "screen" | "overlay" |

 "darken" | "lighten" | "color-dodge" | "color-burn" |

 "hard-light" | "soft-light" | "difference" | "exclusion" |

 "hue" | "saturation" | "color" | "luminosity"

 }

}

Fig. 2. Grammar of our DSL for multiclass contour generation. We added
input specifications to the parameter attributes in the framework. Fill and
Halo are two optional parameters.

supports linear interpolation, and other methods can be implemented
as needed.

Two attributes related to color (Line Color, Fill Color) are mainly
used to distinguish different classes, so we need to specify the colors of
different classes. Just like the numeric attributes, we want to specify
both the same color and different colors for the lines in the same
contour. However, color interpolation is challenging, so our DSL
grammar only supports the color specification for individual lines. It
should be noted that our grammar does not support different halo colors
because introducing more colors would make visual clutter worse.
Thus, a universal color is set for the halo, while white is one of the
most commonly used.

For the mix methods, as the contours are drawn on SVG, the process
uses the mix-blend-mode CSS property to do the mixing. Our grammar
supports all values of this CSS property. Two commonly used values
are normal and multiply: normal is for overlay and alpha blending,
while multiply is similar to what Splatterplots [21] did. Also, as two
different drawing orders are available, our process can distinguish two
values: the mix between levels and classes.

We have mentioned that Fill Style has other choices like textures
except for solid colors. However, in practice, we found that textures
are indistinguishable from contour lines. Thus, we only support solid
colors for the filling style in our DSL.

Fig. 3 shows an example of specifying multiclass contour visualiza-
tion with our DSL and the visualization result generated by our process.
The implementation was done upon d3-contour 1.

1https://github.com/d3/d3-contour

{

 "data": "CIFAR10",

 "line": {

 "number": 10,

 "style": "solid",

 "color": [#4e79a7, #f28e2b, #e15759, #76b7b2,

 #59a14f, #edc948, #b07aa1, #ff9da7,

 #9c755f, #bab0ac],

 "width": [0.56, 1.27],

 "opacity": [0.59, 0.92],

 "halo": {

 "color": #ffffff,

 "width": [0.83, 1.07],

 "opacity": [0.69, 0.77]

 }

 },

 "fill": {

 "style": "solid",

 "color": [#4e79a7, #f28e2b, #e15759, #76b7b2,

 #59a14f, #edc948, #b07aa1, #ff9da7,

 #9c755f, #bab0ac],

 "opacity": [0.05, 0.21]

 },

 "order": "level",

 "mix": {

 "level": "normal",

 "class": "normal"

 }

Fig. 3. An example of the declarative DSL and the corresponding contour
generated by it. Parameter attributes here are set to the default values
got from the preliminary study.

5 USER STUDY ON DIFFERENT DESIGNS

With the proposed framework, we next want to know whether different
choices of these parameters and their attributes can affect the user’s
cognitive ability, which can be summarized as guidelines for designing
multiclass contours. Using the DSL, we conducted a task-oriented user
study to evaluate the effectiveness of different designs by varying the
values of some design parameters.

5.1 Tasks
We first need to choose representative tasks for the user study, where
the validity of different multiclass contour designs can be measured.
Massive literature is available to identify relevant tasks used in the
visualization-based user study. After reviewing various tasks seen
in the literature and examining our needs, we chose four tasks listed
below:

• T1: Finding the place with the highest value of one specific class.

• T2: Finding multiple value peaks of one specific class.

• T3: Comparing values of different locations of one specific class.

• T4: Comparing values of one specific location of different classes.

In nature, these four tasks have two goals that are articulated by
Roth [24]: Identify and Compare. T1 and T2 fall into the category
of Identify, which is about to find objects, while T3 and T4 are in
the category of Compare to conduct comparisons. These tasks can
also be classified according to their target objects. T1, T2 and T3 are
for a specific class, and T4 is for the relationships between different
classes. In addition, T2 is inspired by the task of finding clusters among
different distribution areas in scatterplots by Sarikaya and Gleicher [26],
which can be analogous to scalar fields.

5.2 Preliminary Study
The design parameters in the framework for the multiclass contour are
too many to be tested for all possible combinations of attribute values,
so we had to narrow down the scope of parameters and attributes
by choosing a subset that is ”important” to users. We conducted a
preliminary study to learn which design parameters and attributes are
”important” enough to be used in the formal study and what default
values should be used for others.

We implemented a system for the preliminary study. The system
allows participants to freely adjust attribute values and generate the
resulting contours in real-time with our DSL. The system’s user inter-
face is shown in Fig. 4. It should be noted that the system does not

support color adjustment. Colors of lines and fillings are set to Tableau
10 palettes, with the same color in the same contour. The system also
provides the two most common mix methods: normal and multiply.

The procedure of the preliminary study includes the following steps.
We first provided participants with the four tasks mentioned above and
let them adjust the attribute values freely, with a goal that the generated
contours would be perceived as the best for the provided tasks. Then
they need to submit the attribute settings. A participant can submit
multiple settings for one task. After completing the adjustments, partic-
ipants were given a questionnaire on which parameters and attributes
they thought would influence the tasks. We used a Likert scale (1 to 5)
for each parameter attribute. The questionnaire also includes open-end
questions for comments.

Fig. 4. The user interface of the system used in the preliminary study.
A task is presented on the top, the interactive panel below is used to
adjust the values of parameter attributes, and the contour on the right is
generated based on selected attribute values. Clicking the submit button
to finalize a choice on the setting. Multiple settings for one task are also
allowed.

We recruited 11 participants and obtained 50 combinations of param-
eter attribute settings from them. We finally selected 3 parameters and
attributes for the user study: Line Number, Fill, and Halo. Line Num-
ber and Fill got the highest scores in the preliminary study (more than
4) and were regarded as the most ”important”. We were also interested
in Halo because some participants indicated in their comments that
halos could help them better distinguish different classes, especially in
cases where visual clutter is severe. Thus, we also chose it to test the ef-
fectiveness of halos. Some other parameters also got high scores, such
as Mix and Order. However, most participants preferred to choose the
same value (normal for Mix and level for Order), showing that other
value choices would not help users on these tasks, so we did not select
them for the user study.

The default values for other attributes were generated as follows. For
numerical intervals, we handled left and right endpoints separately. We
first used KDE to smooth the values and then selected the value with
the highest density. For other categorical attributes, we used the value
that appeared most. Fig. 3 is the contour drawn based on the obtained
default values of all attributes.

5.3 User Study

The study aims to examine the effectiveness of three selected parameters
and attributes on four proposed tasks. First, we gave three hypotheses:

• H1: Variations of individual parameters affect the user’s ability
to complete the tasks. We need to state whether the changes in
individual parameters affected the user’s ability on both accuracy
and completion time.

T1

T3 T4

T2

Fig. 5. The user interface of the system used in the user study. Partic-
ipants received a task promptly, completed the task by clicking on the
contour or dragging the icon above, and then clicked the submit button for
task completion. The system then moves to the next task automatically.

• H2: There exist interactions between pairs of parameters. This
hypothesis is based on our previous finding that filled contours
tend to have only one contour line. We want to verify whether
this phenomenon occurs due to a coupling between any pairs of
parameters.

• H3: The number of classes in the data can influence users to
complete the tasks. As well as the number of classes itself, we
also want to verify if it interacts with other design parameters.

5.3.1 Data

We used the CIFAR-10 data set [13] in the user study. The CIFAR-10
data set consists of 60,000 32x32 color images in 10 classes. We chose
this data set because after being projected to a 2D space, each image
class has several distribution centers, and there are more crossovers
between classes. These features are ideal for our tasks.

Additionally, as we were interested in the impact of the number of
classes on understanding multiclass contour, we further constructed
two more data sets by reducing the classes of CIFAR-10 to 3 and 6 by
merging some classes. Together with the original one, we had three
data sets in total.

5.3.2 Experimental Design

The study is a within-subjects design with three independent parame-
ters: Line Number, Fill, and Halo. The dependent variables are task
accuracy and completion time on the four tasks mentioned early. For
Line Number, early research showed a great variety of choices on its
value (Table 1). In this study, we selected four line numbers: 1, 4, 8,
and 12. Both Fill and Halo are binary. In our study, contours were
rendered with or without fillings and halos in different treatments. For
other attributes, we gave them a fixed value as we got in the preliminary
study.

In total, we had 16 treatment combinations (4 x 2 x 2). All partic-
ipants were asked to complete 4 tasks under these 16 treatments, so
each participant should do 64 trials. Although we used 3 data sets in
our study, we did not fully combine them with treatments because a
complete combination of data sets and treatments would result in 192
trials, which were burdensome to participants. Instead, we chose a data
set for each trial in a random manner. This approach ensured that all
data sets and treatment levels could be balanced.

5.3.3 Participants and Apparatus

We recruited 17 participants. They all had knowledge of visualization
but less knowledge of contour. None of them were involved in the
preliminary study.

The study used a web-based system shown in Fig. 5. The resolution
of the screen in the study was 3,840 x 2,160 for all participants, and all
contours were scaled to fit the screen size. To reduce the operational
burden of participants, they only needed to complete simple operations
such as clicking and dragging in the system. The system then calculated
the scores according to their operations and the task completion time.

5.3.4 Procedure

First, participants were briefed about the study and provided basic
information about contour, common features of the contours used in
the subsequent study, and details of the four tasks. Then, they were
given eight warm-up tasks for exercise, including two rounds of four
tasks. In the first round, we gave hints that helped users understand
how to complete the four tasks. In the second round, we let the users
operate independently and got familiar with the whole process. The
results of these warm-up assignments were not recorded.

After the exercise, participants completed the tasks based on the
prompt on the screen. The procedures of the four tasks are given below:

• T1: Participants were given a class and asked to click on the
location with the highest value of that class. The score is the
value at the clicked point compared to the highest value of the
given class.

• T2: Participants were given a class and the number of peaks
in that class. They were asked to click on the corresponding
positions of the peaks. The score is the percentage of peaks that
have clicked points inside. It has to be mentioned that the peaks
were gotten from the contours, and different numbers of lines may
cause different peaks.

• T3: Participants were given a class and three random positions on
the contour and asked to drag the corresponding icons between
the contour and the question to sort them according to the values
on these three positions of the given class. Scores are calculated
by the percentage of correct alignments.

• T4: Participants were given at most three classes and one position
and asked to drag the corresponding icons to sort according to
the values of the given classes on the given point. The classes
were selected randomly. To avoid a large gap between the values
of the three classes, we randomly generated 10 locations and
selected the position with the highest minimum value. The score
calculation method is the same as T3.

In addition, we randomly assigned colors to different classes in each
trial to reduce the carryover effect.

6 RESULTS

We analyzed the user study results, verified the validity of the proposed
hypotheses, and summarized the design guidelines for contours based
on the analysis results. Classes were analyzed together with the other
three design parameters.

6.1 Analysis of Individual Parameters
We analyzed how the changes of one single parameter affect users’
ability on different tasks. Fig. 6 shows the results with the distribution
of scores and time on different parameters and tasks. As shown in the
figure, user performances varied with different values of the parameters.

We used one-way ANOVA to verify whether there exists significant
differences in user performances in Line Number and Classes, which
have more than two choices, and t-test for Fill and Halo.

6.1.1 Line Number
Fig. 6 shows that different choices of Line Number affect task accuracy
scores and completion time. For accuracy, ANOVA showed a significant
difference among four choices on T1 (F(3,268) = 19.6, p < .001) and
T2 (F(3,268) = 2.75, p = .0434). Post-hoc analysis (Tukey’s HSD)
indicated that for T1, significant differences exist between the value of
1 and 4 (95% CI = [.0764, .198]), 8 (95% CI = [.0995, .221]), and 12
(95% CI = [.0800, .203]). All these values are with p < .001.

For T1, as shown in Fig. 6, the accuracy under the value of 1 is
significantly lower than those under 4, 8, and 12. This result suggests
that using more lines helps identify the highest data values. However,
even though there are no significant differences between using 4, 8, or
12 lines, an interesting observation is that the accuracy scores of using 8
lines are slightly higher than those of using 3 and 12 lines. A reasonable
interpretation of this is that using 8 lines presents more details of the
data distribution than using 4 lines, just as what using 12 lines is able
to achieve, but induces less visual clutters than using 12 lines. It also
implied that an optimal choice of line number should be able to both
convey sufficient information and reduce visual complexity, while 8
lines may be a compromise option.

For T2, we can see that task accuracy drop rapidly as the line number
increases when it is fewer than 8, but the accuracy under the value of 12
is nearly the same as that under 8. However, Tukey’s HSD showed that
the difference between them is marginally between parameter values
in T2 but gets an edge value between 1 and 8 (95% CI = [-.00174,
.195], p = .0563). It indicated that the sensitivity of this task to line
numbers is low but might also lead to a conclusion that presenting more
information by more lines prevents users from accurately identifying
multiple peaks of the data distribution to a certain extent.

Line number has obvious influence on the completion time in T2
(F(3,268) = 5.25, p = .00156) and T3 (F(3,268) = 3.23, p = .0229).
In T2, we found that the average time under the value of 8 is much
higher than 1 (95% CI = [1.58, 11.7], p = .00439) and 4 (95% CI =
[1.63, 11.7], p = .00401). It is unclear how this could happen.

For T3, we found that the time cost increases as the number of
lines increases. The results from Tukey’s HSD also showed that the
difference between the values of 1 and 12 is significant (95% CI =
[.809, 11.6], p = 0.0169). It confirmed that more lines increase the
burden on the users to make the comparison for a particular class.

6.1.2 Fill
As shown in Fig. 6, the accuracy scores with fillings are lower than
those without in T2 and T3. Results from t-test confirmed this finding
(t(270) = 2.33, p = .0207 and t(270) = 2.03, p = .0434, respectively).
It can be explained that fillings make it more difficult for users to
distinguish a particular class as the colors of different contours are
mixed. For the completion time, the results from the quantitative
analysis did not show a significant difference.

6.1.3 Halo
To our surprise, Halo does not significantly influence the four tasks.
Both the average scores and time are almost the same. It implied that
the presence or absence of a halo does not affect these tasks.

6.1.4 Classes
For task accuracy, we can generally see that in T2 and T3, user per-
formances with the 10-classes data set are worse than in the other
two data sets. Results of ANOVA confirmed this observation, with
F(2,269) = 5.90, p = .00311 for T2 and F(2,269) = 3.07, p = .0482
for T3. Post-hoc analysis indicated that in T2, accuracy performance

1 4 8

1
2

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8

1
2 1 4 8

1
2 1 4 8

1
2

Line Number

0 1

0.0

0.2

0.4

0.6

0.8

1.0
0 1 0 1 0 1

Fill

0 1

0.0

0.2

0.4

0.6

0.8

1.0

0 1 0 1 0 1

Halo

3 6

1
0

0.0

0.2

0.4

0.6

0.8

1.0

3 6

1
0 3 6

1
0 3 6

1
0

Classes

User Score

1 4 8

1
2

0

20

40

60

80

100

1 4 8

1
2 1 4 8

1
2 1 4 8

1
2

Line Number

0 1

0

20

40

60

80

100

0 1 0 1 0 1

Fill

0 1

0

20

40

60

80

100

0 1 0 1 0 1

Halo

3 6

1
0

0

20

40

60

80

100

3 6

1
0 3 6

1
0 3 6

1
0

Classes

Completion Time (s)

1

2

3

4

task

Fig. 6. Score and time distributions of different parameters on different tasks, from statistics of the user study.

with the 10-class data set is significantly worse than that with the 3-
class data set (95% CI = [.0271, .181], p = .00454), as well as that with
the 6-class data set (95% CI = [.00974, 0.164], p = .0228). For T3,
however, the post-hoc analysis did not show any pairwise difference,
indicating the low sensitivity of this task to the number of classes.

As for the time users spent on the tasks, we found in T2 that the
average completion time on the data set with the data of 10 classes
is much higher than those with the other two data sets. The post-hoc
analysis confirmed the difference is significant, with 95% CI = [4.04,
11.7] for 3 classes and [4.80, 12.5] for 6 classes. All p-values are less
than .001.

The above findings stated that more classes in the data set could
negatively influence user performances for searching value peaks of a
particular class. The more classes there are, the more difficult it is for
users to distinguish one specific class. Especially when there are more
than 10 classes, user ability will significantly decrease. Thus, designers
need to be more careful using contour or try other visualization methods
when dealing with data with many classes.

In general, H1 was confirmed to some extent. Except for the Halo
parameter, different choices of Line Number and Fill can influence
user performances. The same is true for data with a different number
of classes, which means that H3 was also confirmed.

6.2 Interaction Analysis of Pairs of Parameters

We further analyzed the interactions of pairs of parameters on user
performances by using two-way ANOVA. However, in the user study,
we did not make a complete combination of classes in data sets and
other parameters for one user, which made the results unbalanced. It is
not suitable to directly apply two-way ANOVA. To address this issue,
we used Type III ANOVA to analyze unbalanced data without the order
of specifications. Unfortunately, we did not find any significant interac-
tion between Line Number and Fill, which is not what we expected.
However, the interactions between Line Number and Classes are sig-
nificant in scores on T1 and T4, and time on T2. The results are shown

in Fig. 7.

3 6

1
0

classes

0.0

0.2

0.4

0.6

0.8

1.0

m
e

a
n

 s
c

o
re

3 6

1
0

classes

0.0

0.2

0.4

0.6

0.8

1.0

m
e

a
n

 s
c

o
re

3 6

1
0

classes

0.0

0.2

0.4

0.6

0.8

1.0

m
e

a
n

 s
c

o
re

3 6

1
0

classes

0

5

10

15

20

25

30

m
e

a
n

 t
im

e
1

4

8

12

line_number

1 4 8

1
2

line_number

0.0

0.2

0.4

0.6

0.8

1.0

m
e

a
n

 s
c

o
re

Score on T1

1 4 8

1
2

line_number

0.0

0.2

0.4

0.6

0.8

1.0

m
e

a
n

 s
c

o
re

Score on T2

1 4 8

1
2

line_number

0.0

0.2

0.4

0.6

0.8

1.0

m
e

a
n

 s
c

o
re

Score on T4

1 4 8

1
2

line_number

0

5

10

15

20

25

30

m
e

a
n

 t
im

e

Time on T2

3

6

10

classes

Fig. 7. Results by using contours with different line number choices on
different data.

For T1, Line Number and Classes have significant interactions on
score (F(6,260) = 5.26, p < .001). Fig. 7 shows that the average score
of the combination of the values of 1 line and 3 classes is low, a rather
strange phenomenon that cannot be reasonably explained. We then
checked the look of the contour with this parameter setting. We can
see that the distribution of each class in this data is sparse, as shown
in Fig. 8(a). It made the completion of T1, finding the highest value,
more complex, especially when using 1 line. So we assumed that the
use of fewer lines in the case of a more dispersed distribution would
negatively influence the search for the maximum value.

A similar situation is seen in the completion time on T2 (F(6,260) =
3.37, p = .00323). As shown in Fig. 7, the combination of 3 classes
and 1 line again showed an exceptional value. We then found that one
of the classes have two peaks so close in this case (Fig. 8(a)). It made
participants treat them as one peak and thus spend more time looking

for another peak that does not exist. Some participants also had the
same feedback during the experiment. Moreover, this is not the case
with 4 lines and more. So we attributed this to the characteristics of the
data itself rather than a general nature.

For the accuracy score on T2 (F(6,260) = 2.18, p = .0452), Fig. 7
shows that when the number of lines increases from 1 to 4, there is a
significant decrease in the score of the 10-class data. This phenomenon
suggested that finding peaks is more sensitive to the number of lines in
data with more classes. It can be explained that more data classes and
more line numbers result in more visual clutter.

For the score on T4 (F(6,260) = 2.18, p = .0450), We can see
in Fig. 7 that, unlike the other data, the accuracy rate decreases as
the number of lines rises in the data of 6 classes, which is also a
strange phenomenon. After checking the data, we found that in the
data of 6 classes, there is no heavy crossover between different classes
(Fig. 8(b)), which means that a few contour lines are enough to make
the comparison between classes. Moreover, with the increase of lines,
it will instead lead to visual clutters and affect the user’s judgment. It
is the opposite when the crossover between classes is heavy, just like
the data with 3 (Fig. 8(a)) and 10 classes (Fig. 8(c)). This result told us
that if the crossover between classes is not very serious, a few contour
lines are more appropriate for comparing different classes.

(a) (b) (c)

Fig. 8. Contours with 1 line on the data with 3 classes (a), 6 classes
(b), and 10 classes (c). For (a), the distributions are sparse, together
with two closely-connected peaks for the blue one, making the accuracy
score of both T1 and T2 relatively low. For (b), the crossover between
classes is not severe, which makes a single line already sufficient for
comparison between classes.

As the results showed, H2 was rejected, while H3 can be somewhat
confirmed. There exist interactions between Line Number and Classes
on the score of T2. Besides, we also found some valuable findings for
further guidance.

6.3 Insights
Finally, according to the previous result analysis, we gave the following
general conclusions:

• Fewer contour lines do better in finding value distribution peaks,
especially for data sets with more classes. They are also suitable
for comparing values within one class and between different
classes when the intersection is not severe. However, too few
contour lines are bad for finding the highest values, especially
when the value distribution is sparse, while the choice of 8 lines
perhaps has the best performance. They are also inappropriate
for multiclass comparison when heavy crossover exists between
classes.

• Fillings can negatively influence finding peaks and comparing
within one class because of the overlapping of colors.

• More classes in data can negatively affect the task of finding
peaks, and the limitation may be around 10.

These findings can serve as guidance for further use. For example,
suppose the goal of using multiclass contour is to show the overall
distributions and roughly show some peaks. In that case, it is better to
draw fewer lines, while in contrast, finding extreme values is better to

use more contour lines without fillings. For comparison-related tasks,
if comparisons are within a class, few contour lines with no fillings
work better. If comparisons are between classes and the crossover is
heavy, adding more contour lines can help. If the data has more than
10 classes, the multiclass contour may not be a suitable visualization
method.

7 APPLICATION

In this section, we used the guidance to illustrate how it helps generate
better contours for analyzing a real-life data set. The data set we used
here contains NSF (Nation Science Foundation) projects. NSF supports
fundamental research and education in science and engineering, and
the projects funded by it are representative of advanced research. As
time goes by, the directions of advanced research can change, which
allows us to analyze the research directions changes.

Here we used contour to show the changes. We used projects in
2000, 2010, and 2020, and then explored how the research directions
vary in these years. Each project has a title to describe its research.
We first used BERT [8] to embed each title into a 768-dimensional
vector to represent the semantics. In this high-dimensional space, the
semantics of the titles represented by the two close vectors are similar,
implying that the two projects are close in the research direction. We
then projected these vectors onto a 2D space with t-SNE [33] and used
our DSL to show the distributions.

Specific analysis goals are also needed to set appropriate attribute
values. Through the contours, we want to get: 1) peaks of the distri-
butions in 3 years, which may show the possible research directions;
and 2) areas where extreme value points are possibly located, which
may show the most popular direction. According to our insights from
the user study, a small line number performs well on finding peaks.
However, too few lines are bad for finding extreme values. To weigh
these two factors, we then set the line number to 4. For fillings that
are bad at finding peaks, we decided not to use them. For the halo, as
we found no evident impact of it on the tasks, we chose to use it as a
preference. As a result, we obtained the multiclass contour, as shown
in Fig. 9.

In the figure, we can easily see the peaks, representing the research
directions, move towards the right as time passed. This plot provides
a very intuitive representation of the general development of research
over the past 20 years. More detailed, we boxed the areas where the
extreme values most probably appear in 3 years, representing the most
popular directions. For 2020, we drew two boxes, as we thought these
two areas might have similar research popularity.

By adding more semantics information to the contour visualization,
we can know precisely the contents of the research in these areas.
We placed keywords from the titles on the contours according to the
location of the relevant projects. The keywords in the boxed areas
may give some interpretations to the semantics. For 2000, the box
contains keywords like machine, system, and structure, which may
relate to research on traditional engineering. For 2010, the box contains
keywords like plant, molecular, and experiment, indicating that research
in life science may be the most popular around 2010. For 2020, each
of the two boxes represents one possible hottest direction. One of the
boxes has keywords like network, system, and data that are more likely
to be relevant to computer science. The keyword covid-19 appears
in another box, demonstrating that the research on the COVID-19
pandemic was also popular.

In the above example, we showed how to apply our guidelines to the
design of a multiclass contour for specific tasks, which let the analysts
get findings more easily.

8 DISCUSSION

This section discussed this work’s scalability and limitations and pro-
vided some further research directions.

First, the proposed framework was developed by summarizing ex-
isting techniques in the field of multiclass contour visualization and
was further investigated via a user study. The proposed framework
and design guidance will help designers give better designs for specific
tasks to a certain extent, especially for more and more inexperienced

(a)

(b)

(d)

(c)

2000

2010

2020

(a)

(b) (c)

(d)

Fig. 9. An example of applying multiclass contour generated by our DSL and guidance into real-life data set. According to the semantics, we projected
NSF projects in 2000, 2010, and 2020 into a 2D space. Contours in three years are shown on the left, each with an independent value threshold,
while we used the same threshold in the middle multiclass contour. Additional keywords can provide more information on detailed semantics.

users, as the threshold of visualization creation is decreasing. These
guidelines will also bring help to the possible future automated gen-
eration of multiclass contours. Our proposed framework and related
research methods can be further applied to other methods in the scalar
field, such as heatmaps [7] and dots [34], or even other common visu-
alization methods that are not very relevant. However, applying it to
scenarios involving more complex tasks or data may face some chal-
lenges. Thus, more efforts are needed to enhance the framework, such
as enriching the design parameters or testing it with data from more
domains. At the same time, the proposed declarative DSL also needs
to be further extended by supporting more visual coding channels and
user interaction types.

Second, in this work, our user study only examined three design
parameters and attributes, and more research is needed to evaluate user
performances under other parameters. Contour visualization can be
used in different domains, and each domain may have its traditions
and styles in visualization designs. In addition, user tasks related to
multiclass contour can be diverse, way beyond those we used in our
experiment, and the sensitivities of different tasks to these parameters
may vary. Thus, it is necessary to investigate the effectiveness of all
essential parameters on diverse tasks and their interaction effects in
design. More user studies are needed, and the details of the experiment
also need more thought.

Last but not least, from the application in a real-world data set,
we have observed design conflicts when picking attribute values. A
specific rendering configuration that enhances one task may lead to
negative effects on completing another one. Such conflicts would be
more evident and severe when the complexity of the tasks increased. It
suggests that even a carefully constructed framework may have some
limitations in guiding practical applications; there is no panacea for
addressing every type of task. Thus, a fine-grained design summary

oriented by task type in practice is worth thinking about.

9 CONCLUSION AND FUTURE WORK

This paper aimed to provide task-oriented guidance for the design of
multiclass contour visualization. To this end, we developed a frame-
work for multiclass contour visualization by first reviewing and sum-
marizing existing technologies and then developing a declarative DSL
for fast implementation of multiclass contour visualization. Based on
the framework, a task-oriented user study was conducted to demon-
strate how different choices of parameters and their attributes in the
framework affect user performances in different analysis tasks. The
results provided valuable guidance for choosing attribute values for
constructing multiclass contour visualization. Finally, we showed how
the guidance could enhance real-world analysis tasks by giving an
example of NSF project data.

We will extend the framework for future work by considering more
design parameters and user interaction activities and testing it with
data from broader application domains. The DSL can also be further
improved to support the extension of the design parameters. More
experimental studies are also needed to validate other design param-
eters and deepen the understanding of the interaction among various
design parameters. Finally, we will also make efforts to develop more
comprehensive design guidelines based on the framework, including
more detailed user studies and summaries.

ACKNOWLEDGMENTS

The authors thank the participants for attending the user study and the
anonymous reviewers for their valuable comments. This work was
supported by NSFC No. 61872013.

REFERENCES

[1] J. D. Anderson and J. Wendt. Computational fluid dynamics, vol. 206.
Springer, 1995.

[2] P. Bergthörsson and B. R. Döös. Numerical weather map analysis. Tellus,
7(3):329–340, 1955.

[3] N. Cao, J. Sun, Y. R. Lin, D. Gotz, S. Liu, and H. Qu. FacetAtlas:
Multifaceted visualization for rich text corpora. IEEE Transactions on
Visualization and Computer Graphics, 16(6):1172–1181, 2010. doi: 10.
1109/TVCG.2010.154

[4] W. Chen, F. Guo, D. Han, J. Pan, X. Nie, J. Xia, and X. Zhang. Structure-
based suggestive exploration: A new approach for effective exploration
of large networks. IEEE Transactions on Visualization and Computer
Graphics, 25(1):555–565, 2019. doi: 10.1109/TVCG.2018.2865139

[5] H. Choi, W. Choi, T. M. Quan, D. G. Hildebrand, H. Pfister, and W. K.
Jeong. Vivaldi: A domain-specific language for volume processing and
visualization on distributed heterogeneous systems. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2407–2416, 2014. doi: 10.
1109/TVCG.2014.2346322

[6] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set
relations with isocontours over existing visualizations. IEEE Transactions
on Visualization and Computer Graphics, 15(6):929–936, 2009. doi: 10.
1109/TVCG.2009.122

[7] A. Coninx, G. Bonneau, J. Droulez, and G. Thibault. Visualization of
uncertain scalar data fields using color scales and perceptually adapted
noise. In Proceedings of the 8th Symposium on Applied Perception in
Graphics and Visualization, APGV 2011, Toulouse, France, August 27-28,
2011, pp. 59–66. ACM, 2011. doi: 10.1145/2077451.2077462

[8] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, pp. 4171–4186, 2019.

[9] C. Healey and J. Enns. Attention and visual memory in visualization and
computer graphics. IEEE Transactions on Visualization and Computer
Graphics, 18(7):1170–1188, 2012. doi: 10.1109/TVCG.2011.127

[10] J. Heer and M. Bostock. Declarative language design for interactive
visualization. IEEE Transactions on Visualization and Computer Graphics,
16(6):1149–1156, 2010. doi: 10.1109/TVCG.2010.144

[11] J. Hoffswell, A. Borning, and J. Heer. SetCoLa: High-level constraints for
graph layout. Computer Graphics Forum, 37(3):537–548, 2018. doi: 10.
1111/cgf.13440

[12] J. Jo, F. Vernier, P. Dragicevic, and J. D. Fekete. A declarative rendering
model for multiclass density maps. IEEE Transactions on Visualization
and Computer Graphics, 25(1):470–480, 2019. doi: 10.1109/TVCG.2018.
2865141

[13] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[14] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan. GoTree: A grammar
of tree visualizations. In Proceedings of the International Conference
on Human Factors in Computing Systems, pp. 1–13, 2020. doi: 10.1145/
3313831.3376297

[15] Z. Li, C. Zhang, S. Jia, and J. Zhang. Galex: Exploring the evolution
and intersection of disciplines. IEEE Transactions on Visualization and
Computer Graphics, 26(1):1182–1192, 2020. doi: 10.1109/TVCG.2019.
2934667

[16] Y. R. Lin, J. Sun, N. Cao, and S. Liu. ContexTour: Contextual contour
visual analysis on dynamic multi-relational clustering. In Proceedings of
the 10th SIAM International Conference on Data Mining, SDM 2010, pp.
418–429, 2010. doi: 10.1137/1.9781611972801.37

[17] M. Lu, S. Wang, J. Lanir, N. Fish, Y. Yue, D. Cohen-Or, and H. Huang.
Winglets: Visualizing association with uncertainty in multi-class scat-
terplots. IEEE Transactions on Visualization and Computer Graphics,
26(1):770–779, 2020. doi: 10.1109/TVCG.2019.2934811

[18] R. MacIejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouz-
zani, W. S. Cleveland, S. J. Grannis, and D. S. Ebert. A visual analytics
approach to understanding spatiotemporal hotspots. IEEE Transactions
on Visualization and Computer Graphics, 16(2):205–220, 2010. doi: 10.
1109/TVCG.2009.100

[19] O. Malkai, M. Lu, and D. Cohen-Or. Clusterplot: High-dimensional
cluster visualization. CoRR, abs/2103.02992, 2021.

[20] C. Maple. Geometric design and space planning using the marching
squares and marching cube algorithms. In Proceedings of the 2003 Inter-

national Conference on Geometric Modeling and Graphics, GMAG 2003,
pp. 90–95, 2003. doi: 10.1109/GMAG.2003.1219671

[21] A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in
scatter plots. IEEE Transactions on Visualization and Computer Graphics,
19(9):1526–1538, 2013. doi: 10.1109/TVCG.2013.65

[22] D. Park, S. M. Drucker, R. Fernandez, and N. Elmqvist. Atom: A grammar
for unit visualizations. IEEE Transactions on Visualization and Computer
Graphics, 24(12):3032–3043, 2018. doi: 10.1109/TVCG.2017.2785807

[23] N. H. Riche and T. Dwyer. Untangling euler diagrams. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1090–1099, 2010. doi: 10
.1109/TVCG.2010.210

[24] R. E. Roth. An empirically-derived taxonomy of interaction primitives
for interactive cartography and geovisualization. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2356–2365, 2013. doi: 10.
1109/TVCG.2013.130

[25] S. Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[26] A. Sarikaya, S. Member, and M. Gleicher. Scatterplots: Tasks, data, and
designs. IEEE Transactions on Visualization and Computer Graphics,
24(1):402–412, 2017. doi: 10.1109/TVCG.2017.2744184

[27] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum, 33(3):351–360, 2014. doi: 10.
1111/cgf.12391

[28] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017. doi: 10.1109/TVCG.2016.
2599030

[29] R. Scheepens, H. van de Wetering, and J. J. van Wijk. Contour based
visualization of vessel movement predictions. International Journal of
Geographical Information Science, 28(5):891–909, 2014. doi: 10.1080/
13658816.2013.868466

[30] M. Shih, C. Rozhon, and K. L. Ma. A declarative grammar of flexible
volume visualization pipelines. IEEE Transactions on Visualization and
Computer Graphics, 25(1):1050–1059, 2019. doi: 10.1109/TVCG.2018.
2864841

[31] P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation
of overlapping sets. Computer Graphics Forum, 28(3):967–974, 2009. doi:
10.1111/j.1467-8659.2009.01452.x

[32] W. Tao, X. Hou, A. Sah, L. Battle, R. Chang, and M. Stonebraker. Kyrix-S:
Authoring scalable scatterplot visualizations of big data. IEEE Transac-
tions on Visualization and Computer Graphics, 27(2):401–411, 2021. doi:
10.1109/TVCG.2020.3030372

[33] L. Van Der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9(11):2579–2605, 2008.

[34] C. Ware. Quantitative texton sequences for legible bivariate maps. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1523–1530,
2009. doi: 10.1109/TVCG.2009.175

[35] R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour boxplots: A
method for characterizing uncertainty in feature sets from simulation
ensembles. IEEE Transactions on Visualization and Computer Graphics,
19(12):2713–2722, 2013. doi: 10.1109/TVCG.2013.143

[36] J. Yuan, S. Xiang, J. Xia, L. Yu, and S. Liu. Evaluation of sampling meth-
ods for scatterplots. IEEE Transactions on Visualization and Computer
Graphics, 27(2):1720–1730, 2021. doi: 10.1109/TVCG.2020.3030432

[37] J. Zhao, X. Liu, C. Guo, Z. C. Qian, and Y. V. Chen. Phoenixmap: An
abstract approach to visualize 2d spatial distributions. IEEE Transactions
on Visualization and Computer Graphics, 27(3):2000–2014, 2021. doi: 10
.1109/TVCG.2019.2945960

[38] M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive level-
of-detail rendering of large graphs. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2486–2495, 2012. doi: 10.1109/TVCG.
2012.238

	Introduction
	Related Work
	Contour Visualization
	Declarative Language for Visualization Design

	Analysis of Design Parameters in Multiclass Contour
	Our Framework of Multiclass Contour Visualization
	Design Parameters
	Line
	Fill
	Order
	Mix

	DSL for Multiclass Contour Generation

	User Study on Different Designs
	Tasks
	Preliminary Study
	User Study
	Data
	Experimental Design
	Participants and Apparatus
	Procedure

	Results
	Analysis of Individual Parameters
	Line Number
	Fill
	Halo
	Classes

	Interaction Analysis of Pairs of Parameters
	Insights

	Application
	Discussion
	Conclusion and Future Work

