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Abstract—Maps, as one of the most effective means of conveying spatial information, are widely used in various scenarios.
By overlaying rich visual elements onto cartographic maps, people further enhance the ability of maps to encode custom
data. This includes thematic maps and map visualizations by experts, as well as annotated maps sharing personal
opinions, experiences and emotions by ordinary users. However, existing tools seem to have diverged into two extremes.
On one hand, there are programming-based map visualization scripts, which offer high flexibility and customizability, but
also come with a steep learning curve. On the other hand, there are clip-art-style tools that allow users to place annotation
elements on maps by simple interactions, reducing operational difficulty but often resulting in inefficiency, ambiguity and
poor reusability. To address this, we propose GoMA, a structured grammar for expressing map annotation semantics. By
decomposing the semantic space of annotations, GoMA structures the information to be annotated and further links it with
geographic data and visual encoding strategies to generate annotated maps. Based on GoMA, we provide a framework
for constructing annotated maps and demonstrate its advantages, including modularity, ease of extension and reusability,

through case studies.

Index Terms—Map Annotations, Declarative Grammar, Semantic Space, Spatial Visualization.

1 INTRODUCTION

Maps have consistently been among the most effective means of
conveying spatial information, widely used in various scenarios.
By building upon basic cartographic maps—altering visual
styles and adding supplementary annotation elements—people
can create annotated maps or map visualizations that enhance
the map’s ability to encode custom data.

However, current tools for constructing annotated maps or
map visualizations have diverged into two extremes. On one
hand, tools typified by online clip-art-style annotation enable
users to easily add visual elements onto maps through simple
interactions, such as Social Explorer', Scribble Maps? and Map-
Maker3. While these tools lower the entry barrier for creat-
ing annotated maps, it weakens the semantic linkage between
the annotations and the underlying geographic entities. Typi-
cally, the spatial relationships are loosely determined through
user-specified positions, resulting in fragile semantic associa-
tions. This fragility imposes severe limitations on the explo-
ration, browsing, dissemination, and reuse of annotated maps.
For instance, zooming operations can introduce ambiguity dur-
ing exploration and browsing, while difficulties in changing base
maps, reusing similar annotation semantics, or modifying styles
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can impede reuse. On the other hand, more professional map vi-
sualizations often require programming proficiency [3,13]. Users
must select appropriate visual encoding strategies based on data
types and semantics and then implement these strategies through
custom coding. While scripts created in this manner efficiently
automate map visualizations and support rapid data replacement
and style modifications, the programming requirement poses a
barrier. Furthermore, significant changes in annotation elements
resulted from changes in data type or semantics necessitate repro-
gramming, leading to considerable expense of time and effort.

Some tools have attempted to bridge these two extremes by
enabling users to convert imported data into map visualizations
through intuitive interactions [15,23,27]. However, existing tools
offer limited map visualizations, typically restricted to choro-
pleth or bubble maps, which are not enough to satisfy the users’
needs. Map annotation elements have a broad design space to
meet the rich semantic representational needs of users when con-
structing annotated maps. However, the semantic space of map
annotations received insufficient attention. Annotation semantics
form a crucial bridge, linking geographical entities with visual
encoding strategies, thus directly impacting the expressiveness
and usability of annotated maps. Clip-art-style methods tend to
fragment annotation semantics, treating annotations as decorative
elements positioned manually, with negligible integration with
geographic context or structured semantic intent. Conversely,
scripted or template-driven approaches predetermine annotation
semantics, geographic associations, and visual encodings, greatly
constraining user creativity and flexibility.

To address these issues, we categorize and summarize annota-
tion semantics at an appropriate abstraction level, and introduce
Grammar of Map Annotations (GoMA), a declarative grammar
designed to construct annotated maps. GoMA supports struc-
tured and modular description of map annotation information by
decomposing the material for constructing annotated maps into
three parts: geographic data, visual element constructor functions
and annotation scripts. GoMA allows flexible replacement of
data, annotation semantics, or visual encoding strategies, thus
ensuring the adaptability and reusability of annotated maps. For
professional users, GoOMA leaves room for customization, en-
abling creative visual encoding strategies through programming.



Simultaneously, tools derived from GoMA can offer non-expert
users an extensive library of predefined visual encoding strategies,
allowing the construction of complex annotated maps through
straightforward, interactive semantic annotation operations.

2 RELATED WORK

To situate our work, we review related research in two directions:
annotated maps and visualization grammars. We identify a gap at
the intersection—existing methods often lack structured seman-
tic representations for annotations. To address this, we propose
GoMA, a declarative grammar designed to construct annotated
maps.

2.1 Map Visualizations and Annotated Maps

As one of the most effective methods to express spatial infor-
mation, maps have been used ever since antiquity. Among all
types of maps, annotated maps, which are maps with various
annotations on them, are frequently used by individuals to convey
to their audiences the geographic knowledge involved in other
materials, including experiences, stories, analysis insights and
so on. Those annotated maps emphasize special places, areas,
and the stories on them, which would never been covered in
traditional cartographic maps.

Researchers have already noticed the trend of combining maps
with other materials for better expression and communication.
Andrienko et al. [1] review the analysis tasks and methods to-
wards the spatio-temporal data. The combination of modern
computer techniques and conventional cartography brings new
potentials and challenges for researchers and mapmakers. Si-
mone et al. [25] compare the communication power between
textual materials and annotated maps. They find that the maps
provide users with a deeper understanding and a better ability to
recall the represented phenomenon. Through annotations, map-
makers recreate conventional maps to encode more information
in them. Maps are provided to audiences together with other ma-
terials like text, and those annotated maps thus become effective
assistance for readers to understand the insights from authors.

Researchers from various fields have made attempts with an-
notated maps. Pearce [13] applies annotated maps in narratives
to emphasize the places involved in trade voyageurs’s trajectories.
Shin et al. [23] developed a web-based authoring tool prototype
for studying the creation of AR stories for outdoor cultural her-
itage sites. And other researchers combine annotated maps with
news articles and multimedia. Stephens et al. [27] mark crowd-
sourced video-recorded stories about sea level rise on interactive
maps, while Lindgren et al. [10] apply interactive maps to nar-
rate community news for the public. Vujakovic et al. [29] also
explore the role of news maps in geopolitical discourse.

With the rapid development of GIS techniques [9, 28], it be-
comes much easier for individuals to create their own annotated
maps based on digital maps. Thus, more and more annotated
maps are applied to help with communication and narration.
Considering this phenomenon, researchers also explore the tech-
niques and strategies to guide the construction and usage of
annotated maps. Caquard et al. [4] discuss the relation between
maps and narratives from the aspect of cartography. Roth et
al. [17,19] propose methods for constructing interactive maps.
They explore the usability of those map interfaces and provide
areview of those interactive cartographic and geo-visualization
maps. Griffin et al. [8] introduce the design transferability and
context of maps, which will guide the design of those maps for
different situations.

Other works explore the tasks using annotated maps in their
research fields. Song et al. [26] and Roth et al. [18] classify the

themes, elements, genres and visual tropes applied in narrative
maps and conduct user studies on individual audiences to study
the influences. In earth sciences, Phillips et al. [14] conclude
the eight basic plots that are required to be expressed. Fish et
al. [6,7] collect a dataset of annotated maps for climate change
communication. They interview the mapmakers for their strate-
gies for conveying data insight to the audiences. Sieber et al. [24]
study the potential of public participation in the case of building
geospatial maps. Antoniou et al. [2, 3] propose a web-based map
case on a volcanic peninsula, introducing their research findings
in the area. Sun et al. [5] show a partial case of a water resource
survey. They also adopt techniques of spatial mapping in their ex-
pression and find out that their method can enrich the expressive
forms by combining abundant information, which may provide
references for future design.

The barriers to creating annotated maps have been reduced
with the development of computer sciences and geography tech-
niques. More and more people begin to add annotations on maps
to convey their insights, stories and so on information to their
audiences. Nearly all kinds of spatial-related information can
be combined with annotated maps to improve the efficiency of
expression and communication. Most of these works focus on
the theories of how to use annotated maps, especially applying
those annotated maps to storytelling tasks. However, the analysis
of the map annotation design space still stays at a primary stage,
where researchers only propose classification theories borrowed
from other annotation designs, such as chart annotations. Map
annotations should be strictly linked with geographic information
and the design space of those map annotations requires system-
atical reviews and summaries. In this work, we categorize and
summarize annotation semantics at an appropriate abstraction
level and introduce GoMA, which decomposes annotation se-
mantics and links them systematically to geographic entities and
visual encodings.

2.2 Grammars for Visualizations

Visualization grammars provide a formal way to describe data
graphics by breaking them into fundamental components. Visu-
alization grammars are appealing, for they are abstract enough to
make the specifications concise and easy to modify, but also flex-
ible enough to produce many custom visualization designs [16].
A seminal example is Grammar of Graphics [31], which defines
a system to concisely specify the components of a graphic, in-
cluding data, aesthetics, statistics, geometry, scale, coordinate,
and facet. Hadley Wickham’s ggplot2 [30], a widely used R
package, is a direct implementation of the Grammar of Graphics,
using a layered grammar of graphics approach. Vega [20] is
another general-purpose visualization grammar for interactive
graphics on the web. Vega specifications are JSON documents
that declaratively define a visualization’s structure. Built on top
of Vega is Vega-Lite [21], a higher-level grammar that simplifies
common tasks. Vega-Lite is a high-level grammar of interactive
graphics with a concise JSON syntax for rapidly creating typical
charts.

Beyond general tools, many visualization grammars target
specific domains or chart types to address specialized require-
ments. The OpenGIS Styled Layer Descriptor (SLD) Profile [11]
of the OpenGIS Web Map Service (WMS) Interface Standard
defines an encoding that extends the WMS standard to allow user-
defined symbolization and coloring of geographic feature and
coverage data. CartoCSS [12] is a style encoding which allows a
high-level customization for the cartographic aspects of a map.
It offers a compact and familiar syntax for cartographers to write
styling rules, which can then be compiled to lower-level specifi-
cations. Florence [15] is built with existing open web standards



(HTML, CSS, JavaScript) and the JavaScript framework Svelte.
Florence introduces custom Svelte components that correspond
to marks and layers in a map, allowing developers to declara-
tively compose map visuals in code. Bertin.js* is a JavaScript
library for visualizing geospatial data and making thematic maps
for the web. Bertin.js makes it easy to produce common map
types by providing high-level functions. Existing map visualiza-
tion grammars and systems demonstrate capabilities in styling,
layering, and rendering geospatial data with rich visual elements.
Standards like SLD and tools like CartoCSS enable declarative
control over map appearance, while frameworks like Bertin.js
and Florence lower the barrier for thematic mapping and interac-
tive design through domain-specific abstractions. However, these
approaches primarily focus on visual styling and lack structures
expressing the underlying semantics of annotations, which limits
reusability, interactivity, and higher-level reasoning. To address
this gap, our work introduces GoMA, a grammar of semantic
annotations on maps, which enables structured, extensible, and
semantically meaningful annotated map construction.

3 METHODOLOGY

In this section, we first outline the fundamental workflow for
constructing annotated maps and provide a detailed explanation
of the relevant concepts. The annotated maps examined in this
study are based on cartographic maps. This requires that repre-
sentation of geographic entities should retain their original spatial
coordinate information, utilizing points, lines and polygons. The
styling of map elements can be customized and additional visual
elements can be added to enhance representational clarity. As a
result, specialized forms of geographic representation, such as
cartograms, are excluded from the scope of this work.

3.1 Materials

As with the construction of most data visualizations, creating an
annotated map involves three essential components: data, visual
encoding strategies, and the visual element constructors. By
mapping each data dimension to suitable visual channels based
on the chosen encoding strategy, corresponding visual elements
are generated and integrated to form the final representation.
Each of these components will be discussed in detail below.

type BaseGeoEntity = Point | Line | Polygon | MultiPoint |
MultiLine | MultiPolygon

type GroupGeoEntity = GeoEntitylList | GeoEntityCollection

type GeoEntity (GE) = BaseGeoEntity | GroupGeoEntity

func Annotation ( ...GE[], Data?) = VisualElements (VEs) (B)
func AnnoState (GE, Data?) = VEs (S1)
func AnnoState (BaseGeoEntity, Data?) = VEs (S2)
func AnnoState (GroupGeoEntity, Data?) = VEs (S3)
func AnnoState (GroupGeoEntity,

(List<Data> | Collection<Data>)?) = VEs (S4)
func AnnoRelation ( ...GE[], Data?) = VEs (R1)
func AnnoRelation (GE, GE, Data?) = VEs (R2)
func AnnoRelation (GE, GroupGeoEntity, Data?) = VEs (Rs)

func AnnoRelation (GE, GroupGeoEntity,
(List<Data> | Collection<Data>)?) = VEs (Rs)

func Annotation ( ...GE[], Data?, Configuration?) = VEs (E)

Fig. 1: Type definitions for geographic entities and declarations
of visual element constructor functions are provided. Function
overloading is employed to define these constructors. GE refers
to GeoEntity and VEs denotes VisualElements. A question mark
(’?’) indicates optional parameters.
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Geographic Data

The geographic data used in constructing annotated maps
exhibits distinct characteristics: all data pertains to specific geo-
graphic entities, describing their attributes and interrelationships.
This characteristics allow geographic entities to serve as a natural
index for organizing geographic data. Based on the type of geo-
graphic entities, the data can be broadly categorized into three
fundamental types: points, lines and polygons. To support simple
combinations, additional classes such as multi-points, multi-lines
and multi-polygons are included. These classifications are con-
sistent with widely adopted geographic data formats, such as
GeoJSON? and KMLP. In addition to these basic categories, two
extended types of geographic entity groups are introduced: or-
dered geographic entity lists and unordered entity collections.
These serve as extensions to the foundational classifications.
Fig. 1 presents the type definitions of GeoEntity.

With respect to geographic entities, geographic data encom-
passes three types of information: geometric coordinates, entity
attributes and inter-entity relations. Coordinates and attributes
are associated with individual geographic entities, whereas rela-
tions pertain to entity groups.

* Geometric Coordinates describe the spatial properties
of basic geographic entities, capturing geometric details
such as location and shape. These data are fundamental for
rendering the underlying cartographic map.

* Properties encompass the attributes of geographic entities,
such as name, area, and population. These non-geometric
data can be ordinal, quantitative, or categorical, providing
substantial flexibility in terms of data type.

* Relation Properties contain relational information among
a group of geographic entities, functioning similarly to
attributes but applying to interconnected entities rather than
to individual, independent ones.

Comparing with the most commonly used geographic data
format, GeoJSON, the aforementioned definitions provide en-
hanced support for richer relational information. Specifically,
in GeoJSON, a feature defines an individual geographic entity,
where the geometry specifies the entity’s type and corresponding
coordinate information, and the properties contain its attribute
data. These components correspond directly to the first two cate-
gories of data described above. However, GeoJSON has limited
capacity to represent relational information among geographic
entities, primarily relying on hierarchical structures to express
subordinate relationships. More complex multi-entity data, such
as origin-destination (OD) data or multi-point trajectory data,
cannot be adequately represented. These data correspond to the
third category, which can be effectively described by the def-
inition of entity groups. For instance, trajectory information
can be structured as an ordered entity list, with relation proper-
ties specifying attributes such as speed or duration. Similarly,
unordered entity collections can represent spatial relationships
such as containment or membership among geographic entities.
This extension significantly enhances the expressive capacity of
geographic data beyond that of GeoJSON.

Visual Element Constructors

In the construction of annotated maps, data is transformed
into various visual elements that are subsequently combined to
produce the final representation. The tools employed to generate
these visual elements are termed Visual Element Constructors.
Functionally, these constructors accept geographic data as input

Shttps://geojson.org/
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and generate corresponding visual elements based on that data,
as defined in Fig. 1 (B). The input geographic data encompasses
coordinate information, attributes and relational data. Within the
constructor, data are mapped to distinct visual channels and con-
verted into visual elements. By appropriately integrating these
constructors, all data intended for map annotations can be se-
quentially transformed into visual elements, thereby assembling
the annotated maps.

Visual element constructors constitute essential components
in building annotated maps, enhancing their extensibility and
reusability. However, these constructors have received insuffi-
cient attention in existing tools and workflows. In interactive
placement-based construction tools, user interactions implicitly
perform the functions of these constructors by selecting appro-
priate visual elements and adjusting their positions and styles.
Conversely, in map visualization scripting, all constructor func-
tionalities are typically combined without modular separation
into reusable components. For example, when creating a choro-
pleth map that encodes population density through regional color
gradients, the process of converting a regional geographic entity’s
coordinates into a polygonal visual element and coloring it based
on the density value could be modularized as an independent,
reusable constructor.

Extracting and modularizing these reusable constructors can
substantially improve the efficiency of annotated map construc-
tion. This approach increases the extent of automated processing
while minimizing redundant coding and repetitive interactive
tasks. Furthermore, it enables easier modification and reuse of
annotated map outputs.

Annotation Scripts

The visual encoding strategy defines how data are transformed
into visual elements. We refer to the formal description of this
strategy as Annotation Scripts. Specifically, annotation scripts
comprise a series of operations for the visual encoding of data.
These scripts establish the linkage between geographic data and
visual element constructors. They select relevant subsets of geo-
graphic data and input them into the corresponding constructors,
thereby completing the transformation from data to visual el-
ements. In other words, annotation scripts specify how visual
element constructors should be executed.

The annotation script itself need not address specific data
details or the internal implementations of visual element con-
structors; rather, it focuses on decision-making and semantic
alignment. An annotation script comprises a series of annotation
operations, each involving two key components: the relevant
data and the applied constructor. Each operation embodies op-
erational semantics, specifically transforming designated data
into visual elements via the encoding method provided by the
assigned constructor.

The data includes indice of geographic entities and the keys
pointing to corresponding coordinates, attributes or relational
data of these entities. The constructor part declares the function
index to be executed, as well as configure parameter specifi-
cations, which supports additional arguments required by the
function beyond geographic data. These configure parameters
typically serve as convenient means to externally influence inter-
nal encoding behaviors. For instance, as shown in Fig. 2 (C),
when rendering glyphs for cities, the construct function may
accept a showLabel parameter which controls whether the text
labels should be rendered to accompany the city glyphs.

3.2 Annotation Semantic Space

The design space for map annotation is exceptionally rich, pri-
marily due to the endless possibilities of visual element design.

Constructort (city: Point, name: string, configuration? = {showLabel: true})
Constructor2 (province: Polygon, density: number)

Constructor3 (city1: Point, city2: Point)

Constructor4 (city: Point, citygroup: GeoEntityCollection)

o
‘o

(C2) (C3) (Ca)

Fig. 2: Four examples of constructor functions, including their
function declarations, parameter types, and output visual effects.

However, from the perspective of annotation semantics, it is lim-
ited. Specifically, annotation semantics address the following
questions: in an annotated map, what geographic data is encoded
into visual elements and through what means? This corresponds
to the semantics of annotation scripts. By incorporating seman-
tic information carried by the data, we can further refine the
semantic space of map annotations.

The semantics of visual element constructors are reflected
in two aspects. The inputs of these functions primarily consist
of geographic data, which has already been considered in the
data part. The other aspect involves the actual construction of
visual elements, which pertains to visual encoding strategies
and corresponds to the design space of visual elements. We
just retain it with the constructor as an inherent feature of the
function. Based on this, the following discussion focuses on
analyzing the semantic space from the dimensions of data and
annotation operations.

As mentioned, geographic data can be categorized into three
types: entities’ coordinates, attributes, and relations. Considering
that annotations are all based on cartographic maps, the entity
coordinates, which include the specific location and shape of
geographic entities, are already reflected in the positional spatial
semantics conveyed by the base map. Therefore, we exclude it
from the core annotation semantics and focus primarily on the
entity attributes and relations. Using annotation scripts to label
this data thus involves two types of semantics: annotating entity
states and annotating entity relationships.

Annotate States

The annotation of entity states is the operation that encodes the
attribute information of geographic entities and transforms them
into visual elements, as shown in Fig. 1 (S}) extended from (B).
Strictly speaking, the geographic entities in this context refer
to individual entities, which can only belong to fundamental
types. The visual element constructors take entities and their
attributes as input and output corresponding visual elements, as
shown in Fig. 1 (S2). Here the geographic entity parameters
typically include the entity’s index and coordinate information,
while the state parameter corresponds to the attribute dimension
to be encoded.

The annotation semantics vary depending on the category of
the geographic entity and the attribute dimension being processed.
For example, Fig. 2 (C) represents annotating the name attribute
of entity City; (Point), while Fig. 2 (Cy) denotes annotating the
population density attribute of entity Province (Polygon).

The category of geographic entities can further be extended
to a group of entities. This involves two distinct scenarios. The
first treats the group of entities as a unified whole, expressing the
attribute information of the collective, as shown in Fig. 1 (S3). In
some cases, this entity group can be decomposed to individual
entities, meaning all entities in the group share the same value on
that attribute dimension. For example, if a group of cities are all
classified as first-tier cities, this can be interpreted either as the
entire group being a first-tier city group or as each individual city



entity having the same classification level of first-tier. In other
cases, such decomposition may not be applicable. For instance,
if the boundary between two countries is represented by a series
of connected landmarks (Point), and the annotation emphasizes
the line formed by these landmarks. The semantics cannot be
simplified to merely stating that each individual landmark lies on
the boundary.

When the geographic entity group exhibits varying values in
the specified attribute dimension, the annotation operation can be
interpreted as batch annotation of each individual entity within
the group. In this scenario, the state parameter passed to the
constructor should maintain the same indexing structure as the
entity group, as illustrated in Fig. 1 (S4). An ordered list of
geographic entities should correspond to an equally ordered list
of state parameters, while a collection entity group should align
with collection state parameters. For example, Fig. 2 (C;) can
also be used to demonstrate annotating the name attribute for each
entity City; (Point) within a city entity group with this aggregated
method as Fig. 5 (RenderCity). This kind of expression serves
as an aggregated simplification method for large-scale, similar
annotation operations.

Annotate Relations

The annotation of relations is the operation that encodes re-
lation information among geographic entities and transforms it
into visual elements, as shown in Fig. 1 (R|) extended from (B).
The number of specific geographic entities involved in relation
information is indeterminate. The following discussion uses the
relation between two entities as the primary example, while cases
involving more entities can be straightforwardly extended from
this basis. Thus, the visual element constructors for relation
annotations can be expressed as shown in Fig. 1 (R,), taking
two entity parameters, entity; and entity,, and a relation data
parameter as input, and outputting visual elements.

When both entity parameters belong to fundamental cate-
gories, the semantics are relatively straightforward, representing
the annotation of relation between these two entities. For ex-
ample, Fig. 2 (C3) illustrates annotating movement trajectory
information from city; (Point) to city, (Point).

When one entity is extended to an entity group, either an
ordered list or unordered set, the semantic interpretation becomes
correspondingly more complex. Similar to state annotation, it is
necessary to classify whether the entity group should be treated
as a unified whole. Given the symmetric nature of the two entity
parameters, the following discussion will use the case where
entity, is an entity group as an example.

First, when the group is treated as a whole, the annotation se-
mantics remain consistent with relation annotation between basic
entities, while the corresponding constructor expression is shown
in Fig. 1 (R3). For instance, Fig. 2 (C4) demonstrates annotating
that city is the most developed city within the group. In the
second scenario, the entity group needs to be decomposed. This
annotation operation can be interpreted as separately annotat-
ing the relation information between entity; and each individual
entity within the entity group entity,, serving as an aggregated
simplification for numerous similar annotation operations. Here,
we further consider whether the relation information is consistent
across the group. That is, whether each entity in the entity group
entity, shares the same value in the annotated relation dimension
with entity;. When it is identical, the relation parameter can be
passed as a single instance, corresponding to the format shown
in Fig. 1 (R3). While when it varies across the dimension, the
relation parameters must maintain indexing consistency with the
geographic entity group, as demonstrated in Fig. 1 (Ry4).

Extending this further, when both entity parameters are en-
tity groups, the semantic interpretation of the annotation can

be analyzed by first treating one of them as a unified whole
to examine its annotation semantics with the other one. Then
further decomposition of entity group can be done towards this
parameter.
Conclusion

We have established the semantic space for annotation opera-
tions in map annotation construction. First, based on the category
of geographic data being annotated, this space is decomposed
into two major classes: annotating geographic entity attributes
and annotating entity relations. Subsequently, each category
is further analyzed in detail according to the specific types of
entities and information involved in the annotation operation.
This process also demonstrates the advantages of introducing the
concept of geographic entity groups. First, groups expand the
semantic coverage of annotations, enabling multiple geographic
entities to be treated as a unified whole and assigned attribute
information or relation information with other entities. Besides,
groups facilitate the aggregation and simplification of similar
repeated annotation operations, thereby improving the expres-
sive efficiency of annotation scripts and reducing the cost of
construction and modification.

4 GENERATE ANNOTATED MAPS

This section will present a formal grammar for constructing an-
notated maps based on the analysis and definitions mentioned
above. Building upon this grammar, we further propose a work-
flow framework for constructing annotated maps.

GoMA: {
GeoData: {
[key: BaseGeoEntity.ID]: {Coordinates, Attributes},
[key: GroupGeoEntity.ID]: {Contents, Relations},
}’
Libs: {
[key: Constructor.ID]: {
FunctionPointer,
ParameterDeclaration,
ConfigurationDeclaration,
}
},
Scripts: Array<{
Data: {
Entity: GE.ID | GE.Contents,
Keys: (Attribute.Key | Relation.Key)[],
b
Func: {
ID: Constructor.ID, Configuration?: any,
}
1>
}

Fig. 3: The structure of GoMA, including data part (GeoData),
function declarations part (Libs) and annotation operations part
(Scripts). *? means the attribute that is optional.

4.1 Grammar of Map Annotations

This grammar for constructing annotated maps comprises three
components, geographic data, function declarations for visual
element constructors, and annotation scripts, as shown in Fig. 3.
Among these, the data and function declarations remain relatively
independent, while the annotation scripts will reference and
correlate the other two parts to describe the operational workflow
for creating annotated maps.

GeoData employs geographic entities as indices and catego-
rizes them into basic geographic entity data and geographic entity
group data. Basic geographic entities are indexed by individual



geographic entities, containing both coordinate information and
attribute information. The coordinate information records the
specific category of the entity along with the corresponding geo-
metric coordinate data. The attribute information may include
multiple attributes, distinguished by attribute names. There are
no further constraints imposed on the specific types of attribute
values. Theoretically all types of data can be assigned as the
value for a geographic entity’s attribute, including but not limited
to string, number, boolean, vector, matrix, etc., which can be
freely defined according to practical requirements.

Geographic entity group data entries form their indices with
the entities in the group. In practice, indexing can be achieved
either by combining the indices of the constituent entities or by
assigning an independent unique identifier. The data includes
the group contents as well as corresponding relation information.
The group content will be either a list or a collection, depending
on the organizational structure of the entity group, with only the
indices of the constituent entities recorded. Relational informa-
tion is analogous to the attribute information of basic entities,
except that it applies to the entity group as a whole. Different
relations are distinguished by their names. Similarly, the ac-
tual value types of relation information can be flexibly specified
according to practical requirements.

Basic geographic entity data are self-contained, while entity
group data reference other data items in their content field, includ-
ing both basic entities and other entity groups. All geographic
entity data entries possess unique identifiers, and form a directed
acyclic dependency graph.

Libs is a function declaration, containing an index of all avail-
able visual element constructors. Each of the functions has a
unique identifier and should belongs to the categories defined pre-
viously in the annotation semantic space. The number and types
of input parameters should meet the corresponding constraints,
and all functions output visual elements.

In GoMA, Libs field works as function declaration header
files. It records the specific input requirements of each function
and provides pointers to the executable functions themselves.
The internal implementation details of these functions are not
included. A configuration declaration is also included to provide
information on the supported configurations.

Script is an array in which each entry records an annotation
operation, namely passing specified geographic data to the as-
signed constructor function to generate corresponding visual
elements. The operations should be executed sequentially, with
the resulting visual elements naturally overlaid to form the anno-
tated map. Two components are included in each operation entry,
the data specification and function specification.

In the Data field, geographic entity indices and attributes or
relation information keys are provided. Specifically, the Entity
part contains the indices of the geographic entity or group to be
processed. Depending on annotation requirements, this may con-
sist of a base geographic entity, a list or a collection of entities.
Temporary lists and collections can be formed here to construct a
temporary entity group in cases when the corresponding annota-
tion operations are semantically aggregated (GE.Contents). And
these temporary entity groups will be used only for the current
annotation operation. In contrast, passing the indices of an en-
tity group as parameters means that the entity group should be
regarded as a whole.

The data keys inputed represent the state or relation data in-
volved in the annotation operation. The Keys field records the
data names of the attribute or relation data being referenced.
When a temporary entity group is constructed in the Entity field,
the data keys recorded in this field should be interpreted as di-
rectly referencing each individual entity within the group.

In the Func field, the index of the constructor and configura-
tion are included. The constructor index directly references the
corresponding entry in the function library and thus points to
the executable function. To further enhance the flexibility and
extensibility of these constructors, in addition to the geographic
entity parameters and the state or relation parameters specified
in the annotation semantics, these construction functions are al-
lowed to provide a configuration interface. The configuration
can influence the function’s behavior differently from the input
geographic data. They are not part of the data but rather relate
to internal visual encoding details within the functions. Config-
uration is optional and if omitted, the function should provide
default values. When executing the annotation script, the con-
figuration is passed to the function along with other geographic
data, as shown in Fig. 1 (E).

Inputs Linkage Rendering Qutputs
Library
Annotated
GoMA
Description

Fig. 4: The workflow of generating annotated maps. It takes con-
structor function library and GoMA descriptions as input. Purple
arrows represent linkages, while the green ones indicate execution
of constructor functions.

4.2 Workflow

Based on the grammar, we propose a feasible workflow for con-
structing annotated maps, as illustrated in Fig. 4. The input
consists of two components, a structured description following
the grammar and a visual element constructor function library.
The output will be the complete annotated maps. The core pro-
cess is to parse the annotation scripts in the description, linking
the geographic data with the constructing functions. After the
linkage, the step-by-step execution of those functions will build
visual elements according to the script and ultimately accomplish
the annotated map.

The first step is to link the data and function with the scripts
in the description. Based on the geographic entity indices and
parameter keys contained in the Entity fields, corresponding ge-
ographic data entries can be retrieved from the GeoData field.
The acquired data includes geometric coordinates for each entity,
which is often default, along with the state or relation information
specified by data keys. Besides, the constructor indices specified
in the Func fields are used to retrieve corresponding executable
functions from the function library. After the linkage, geographic
data, including entity coordinates, state or relation data, along
with the configuration can be passed to the visual element con-
structor as input arguments. The constructor then generates the
visual elements accordingly. By sequentially executing all func-
tion calls as defined in the script, all annotation elements are
obtained and combined to produce the annotated map.

Fig. 5 shows a case of annotation description for construct-
ing a trajectory annotation map, where the Scripts field contains
three operations. The first step involves rendering the base map
of provincial regions. The input geographic data consists of an
entity group comprising all provincial entities, requiring only co-
ordinate information without additional state data. The specified
constructor function is a polygon collection rendering function.

The second step involves plotting key city points on the map.
The input data consists of a temporarily constructed entity group,



namely a collection of key cities. In addition to city points’
coordinates, city names are required as state parameters. Since
the geographic entity parameters form a temporary entity group,
the state parameter specification in the script should be directly
applied to each entity within the group. Consequently, the linked
parameters comprise collections of name attributes of each key
city. The constructor function assigned for this operation is
designed to plot city glyphs for point entities and append text
labels beside them. The whole operation should be regarded as
an aggregation of plotting all city points on the map.

The final step involves trajectory rendering. The trajectory
route is defined in the data through an ordered entity list, which is
passed to the function as geographic entity data. The constructor
processes this entity list by rendering arrow elements between
adjacent pairs of points to visualize the path. This function sup-
ports arrow color specification through configuration. Thus, the
script designates the arrow color as blue in the configuration field.
Since this color assignment encodes no geographic information
and merely adjusts visual styling, it is implemented as part of the
configuration rather than data inputs.

The visual elements constructed by the three-step script are
sequentially overlaid to produce the final trajectory map.

Scripts: [

{
Data: {
Entity: AllProvinces, Keys: []
}

'
Func: {ID: ‘RenderProvinces’}

b
{

[RenderProvinces (entity: GeoEntityCoLlection)]

Data: {

Entity: {Cityi, Cityz,
}I
Func: {ID: ‘RenderCity’}

..}, Keys: ['name’]

I8
{

IRenderCity (entity: Point, cityname: Data)]

Data: {
Entity: Trajectory, Keys: []
},
Func: {
ID: ‘RenderTrajectory’,
Configuration: {ArrowFill: ‘blue'},
'
},

] [RenderTrajectory (entity: GeoEntitylist, configurationﬂ

Fig. 5: An example of Scripts which contains three annotation
operations and is used to build a trajectory map. The function
declarations related to the Func fields are also provided, marked
by stroked borders.

5 USAGE SCENARIO

In this section, we validate the feasibility of GoMA as well
as the corresponding workflow through a case study involving
automated text-based map annotation generation to assist text-
map cross-referenced reading. We demonstrate the advantages
of GoMA in structured and modular annotation construction,
improving the editing, modification, and reuse of annotated maps.

The data used in this case study are sourced from a histori-
cal geography research paper. Shen’s work [22] proposes new
insights into the boundary division between Shunning Prefec-
ture and Yongchang Prefecture in southwestern China during the
Qing Dynasty by incorporating additional evidence from local
chronicles.

It is noted that in the textual research of historical geographical
literature, the content typically focuses on two types of evidences.
The first type emphasizes the status of a single or a group of

RenderCity RenderCapital HighlightPoint GeoRelation
City Name
RenderRoad RenderRiver HighlightLine

R )
Por 2

RenderCounty

S

HighlightArea

RenderPrefecture

County o .
Name ‘@{'{e
55
N

Fig. 6: Pre-defined visual element constructors used in the case.
Six RenderXX constructors are used to generate the base map
entities. The HighlightXX ones are for state annotation, while
the GeoRelation ones are applied to emphasize the geographic
relations between various types of entities.

geographical entities, particularly concerning their jurisdictional
affiliations. The second type highlights the relations or events
between entities, such as the adjacency of areas, directional and
distance relations between cities, or shared historical events.

By automatically constructing annotated maps, correspond-
ing elements can be generated based on the textual content to
facilitate text-map cross-referenced reading. These two types of
textual content can be represented by predefined visual elements,
while large language models (LLMs) can be employed to extract
and structure the information from unstructured text. GoMA
description can be generated according to predefined rules by
integrating these two parts, thereby fulfilling the requirement for
automated annotated map generation.

Fig. 6 shows the predefined visual element constructors, which
can be divided into three categories, generating annotations for
the base map, individual entity’s emphasis, and spatial relations
between pairs of entities respectively. Considering reading assis-
tance does not require detailed semantic annotations on the map,
the focus remains on highlighting relevant entities. Based on the
categories of geographical entities, including points, lines and
polygons, distinct highlighting constructors are designed.

In terms of text information extraction and structuring, tailored
prompts for LLMs are designed. The prompt templates, as shown
in Fig. 7, include task descriptions, examples and the specific
data to be processed. The output of LLMs consists of structured
information that can be directly transformed to GoMA styles.

system |

Text Data System Interface

—

Process |_ Annotation
User Map Panel Authoring
> Interactions _ \
Text
Prompts for LLM pae:e‘ _I
[1: Requirements ( Description
An example Editing
U Gl GeoData: {},

GoMA Scripts: []
Description | € §

| [1: Response

Fig. 7: The workflow of the system introduced. It leverages LLM
to extract and structure the geographic information from text and
generates annotated maps to help with reading. Users can also
edit the GoMA description during this process.



We implemented an automated annotated maps generation
system accordingly, with its workflow illustrated in the Fig. 7.
The text and base map data (coordinate data in GeoJSON format)
are input into the system. The textual content is segmented
into individual sentences, and then be processed by LLMs with
corresponding prompts generated using predefined templates.
The LLMs return structured geographical information, which is
then combined with the base map data to generate the GeoData
field of GoOMA. Meanwhile, the Func field is also predefined
according to the constructors shown in Fig. 6.

Users can interact with the system by clicking on any sentence.
The system retrieves the geographical information contained in
the corresponding sentence, generates an annotation operation
script accordingly, and renders it into an annotated map. When
no sentence is selected, the annotation script only includes oper-
ations for generating annotations on the base map. Furthermore,
the system provides an editing panel, allowing users to modify
the map annotation scripts to address possible errors arising from
the automated process. Fig. 8 demonstrates the effects for the
base map and five individual sentences.

This case demonstrates the advantages of structuring and mod-
ularizing the annotated map construction process. First, modifica-
tion of annotated content only requires replacing the geographical
data and scripts in the description. In this example, text sentences
yield distinct geographical information. All such data is recorded
in the GeoData, and the system merely updates the Scripts when
users switch focus between sentences. Second, the final presen-
tation of the annotated map can be adjusted simply by updating
the visual element constructors, since the visual styling remains
independant from annotated content. By modifying the construc-
tors’ implementation or switch functions assigned by the scripts,
the map’s visual style is updated. Lastly, GoMA isolates the
geometric coordinate data in the base map. Subsequent updates
to the base map, such as refining regional boundary precision,
will not disrupt references from other components.

=i (4 5 (5) Rl (6

Fig. 8: Annotated maps generated by the system. Mapy is the
base map, with no sentence annotated. Map, to Maps demon-
strate the annotation results of five different sentences. In Map,
there is an error from the original text. Users can edit the GoMA
description to correct it, as shown in Map;.

6 DiscussION

In this work, we propose GoMA, a grammar for constructing
annotated maps. From semantics perspective, we summarize
the semantic space of data and annotation operation within the
workflow and decompose annotation materials into three parts,
including geographic data, visual element constructors and an-
notation scripts. Thus, GoMA enables structured and modular
descriptions of map annotations. The approach enhances both
the efficiency of building and modifying annotated maps, while
simultaneously improving their reusability.

Structured the materials of generating annotated maps.
GoMA reorganizes geographic information data around entities
and structures the semantic space of annotations. Beyond indi-
vidual entities, we introduce the concept of geographic entity
groups, significantly enriching data representation capabilities.
Thus, compared to popular data formats like GeoJSON, GoMA
can further encompass multi-entity relation information without
requiring additional tables or other forms of data expansion. In
terms of generating annotated maps, GoOMA decomposes the vi-
sual encoding process into two parts: specific annotation scripts
and reusable visual element constructors. This provides unprece-
dented flexibility for real-world scenarios, such as seamlessly
replacing data, map styles, or visual encoding strategies. Differ-
ent constructors can be substituted freely to achieve varied visual
effects without altering the annotated data or scripts, provided
the replacement ones maintain identical operational semantics.
Conversely, the visual style may be retained while replacing the
underlying information to be annotated, enabling rapid genera-
tion of thematic maps with consistent aesthetics.

Extensible visual element constructor function library.
Given the relatively limited variety of data types and annota-
tion operation semantics, a predefined external library of visual
element constructors plays a critical role in ensuring the richness
of map annotations. Under the GoMA framework, this function
library can be continuously expanded and refined. Any newly
appended function can seamlessly integrate into the workflow,
provided it adheres to the specified annotation operation seman-
tics and offers compatible input parameter interfaces. Right in
this work, we demonstrate only a limited set of concrete construc-
tor functions. Developing a more comprehensive and scalable
function library requires sustained effort and represents a long-
term endeavor, which would be our future direction.

Flexible implementation strategies. GoMA structures the
materials used for generating annotated maps and provides a
workflow based on it. However, the specific implementation
of GoMA'’s compiler and constructor library can be flexibly
adjusted according to the requirements of different usage scenar-
ios. This paper primarily presents examples of 2D SVG-format
maps, where the output visual elements of the constructors are
correspondingly SVG elements. Depending on different usage
scenarios, modifications can be made. For example, switching
from SVG to canvas rendering can significantly improve ren-
dering efficiency to accommodate larger-scale data annotation
demands. If the constructor’s output is changed to 3D grids and
transfer functions, and the visual element composition process
is modified to volume rendering, GoOMA can also be used to
construct 3D maps. Naturally, the constructor library should be
updated accordingly with the workflow’s implementation.

Diverse usage scenarios. GoMA can be applied to various
scenarios for various targeted users, including the automatic map
annotation generation demonstrated previously. For program-
mers, GOMA provides a map generation engine and an extensible,
reusable visual element constructor library. They can control
the generation by editing GoMA descriptive files or enrich the
constructor library by programming to meet customized require-
ments. For other users, generating maps by modifying descriptive
files significantly lowers the learning barrier. Developers can
further create beginner-friendly Uls for GoOMA, further reducing
the difficulty of editing these descriptive files.
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