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Fig. 1. System interface: (a) Parameter Panel; (b) Bicluster MDS Plot; (c) Bicluster Matrix View; (d) Spatial View; (e) Small Multiple View.

Abstract— In this work, we introduce a novel visual analysis method to explore correlations between locations and realizations of
ensemble data with large realization set. In our approach, the ensemble data is transformed into a matrix with two dimensions: location
and realization. The matrix is subdivided into cells which indicate behaviors of corresponding location-realization combinations.
Biclustering is employed to simultaneously partition the location domain and the realization set, the two dimensions of the matrix, into
several subspaces, where every intersection subspace shares similar coordinated behaviors. With the matrix subspaces and their
coordinated behaviors, a visual analytics workflow is designed to support visualization and analysis of location-realization correlations
and their variation across different location and realization. Case studies show that our system is able to reveal location-realization
correlations, such as the opposite behaviors of realization subspaces in different regions, which are normally difficult to be discovered
by previous methods.

Index Terms—Ensemble data, uncertainty, distribution, biclustering, subspace

1 INTRODUCTION

Ensemble simulations are important in many scientific research areas,
such as in climatology, ocean circulation, and aerodynamics, etc. In
many cases, scientists need to explore the impact brought by different
simulation parameters. The sensitivity of simulation parameters can be
studied by running a model several times with different initial values or
boundary conditions. This can also reduce the uncertainty of a single
simulation, and the results can be used to further improve the model.
In this paper, each independent run of the simulation is referred to as
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a realization that represents an output of the simulation under a set
of parameters. Together, all the realizations can be referred to as the
ensemble dataset. Due to the complexity of ensemble simulations, it is
challenging to extract and compare features from ensemble datasets.

Location and realization are two indispensable and closely related
dimensions in ensemble data. By investigating the relations between
these two dimensions, implicit features and data insights could be dis-
covered. Existing ensemble visualization and analysis methods can be
classified into location-based and feature-based [28]. Both of these
methods only focused on one dimension regardless of the other corre-
lated dimension such as realization. Hence, using these methods, it is
impossible to extract and study the correlations between the location
and realization as the information in other dimensions was lost due
to the data aggregation and reduction. In location-based methods, a
spatial field of distributions can be derived from realizations for visu-
alization and analysis [3, 37, 46, 6]. However, intensive aggregation to
distributions ignores information in realizations, which could lead to
misleading visualization. For example, assuming two locations always
have the same values but opposite signs (+/-) in every realization, their
behaviors will be treated as the same in the above approaches, due to
their identical distributions. In feature-based methods, spatial features
are extracted and compared from individual realizations [39, 51, 34].
Due to potential visual clutter in the spatial domain, either sparse fea-
tures, such as isocontours of a single isovalue, or fieldlines of a single



seed point, are used for visual comparison, or certain distance metrics
are defined to measure the overall differences of features. Either way
reduces the information regarding the spatial correlations and varia-
tions over the whole domain. It is possible that feature-based methods
show that two realizations are very different in terms of defined fea-
tures, yet the realizations can indeed have similar behaviors in local
regions. As the two examples above demonstrated, current location-
based and feature-based methods are difficult or unable to discover the
valuable information regarding the location-realization correlations.
The main reason is the severe aggregation on either the location di-
mension or the realization dimension, which makes it difficult for a
system to unfold the dimension being aggregated and relate it to the
other dimension once again.

In this work, to enable the extraction and analysis of the location-
realization correlations, we propose a subspace-based approach that
simultaneously investigates both the location and realization dimen-
sions of ensemble data. Our approach is inspired by subspace analysis
in high-dimensional data visualization. The concepts of subspaces are
extended to ensemble data analysis. The realization subspace can be
defined as a subset of realizations, and the location subspace is defined
as a subset of locations – which can be connected or disconnected re-
gions. Given a realization subspace, if some locations share similar
behaviors in the realizations, we refer to them as location clusters in
the realization subspace. The similar behaviors can also be treated as
shared by realization clusters in a location subspace. Here, we use
the general term behavior to indicate any information possessed by
location-realization combinations, such as a single scale value from
one variable or value vectors formed by multiple variables. The behav-
iors shared by one subspace cluster embody the correlation between
locations and realizations, which is denoted as coordinated behaviors.
Furthermore, with extracted subspaces, we can study how the coordi-
nated behaviors change in the clusters of the same location/realization
subspace, which corresponds to the variations of correlations.
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Fig. 2. Illustration of ensemble subspaces and coordinated behaviors in
forms of (a) small multiples and (b) bicluster matrix.

In Fig. 2, we provide an illustration of ensemble subspaces and re-
lated concepts. Fig. 2(a), locations P1, P2, and other locations in the
red regions exhibit similar behaviors in realization subspace 1, indi-
cating correlations between the red region and realization subspace 1.
The coordinated behaviors can be interpreted in two types of subspace
clusters: location clusters in realization subspace 1 or realization clus-
ters in location subspace 1, as shown in Fig. 2(b). Probability density
function curves are used to describe their shared behaviors. Another
important aspect is the variations in these coordinated behaviors across
different subspaces. When transitioning to realization subspace 2, the
behaviors of the location cluster become different, as the distribution
changes from red to purple. Similarly, the behaviors of realization
clusters change when transitioning to location subspace 2, as the dis-
tribution changes from red to blue. Therefore, through subspace anal-
ysis, we can not only discover location-realization correlations in en-
semble data but also analyze data variations along the dimensions of
either location or realization.

In our work, we employ biclustering techniques for the extraction
of subspaces and coordinated relationships. Biclustering is a widely
used subspace analysis method. By transforming ensemble data into
a matrix, the biclustering algorithm can simultaneously partition the
rows and columns into several subsets, revealing coordinated behav-

iors as sub-matrices, also known as biclusters. The row and column
subsets correspond to realization and location subspaces, respectively,
and the biclusters represent subspace clusters. Based on the bicluster-
ing results, we further develop a prototype system that supports a vi-
sual analytics workflow for interactive and progressive exploration of
ensemble datasets. Our system supports three levels of visualization
and analysis tasks: the data level, bicluster level, and subspace level.
Specifically, it enables the visualization of subspaces and coordinated
behaviors in biclusters, as well as the comparison of behaviors across
biclusters and subspaces for studying the location-realization corre-
lations and their variations. Progressive exploration based on previ-
ous biclustering results is also supported, allowing users to incorporate
their knowledge into the visual analytics process. We demonstrate the
usage of our system on datasets from various applications, including
computational fluid dynamics, ocean circulation, and climate simula-
tions. The results show that our system is capable of analyzing en-
semble datasets with hundreds of realizations and enables the identifi-
cation of richer details regarding the location-realization correlations
that previous approaches were unable to discover.

2 RELATED WORK

Our work falls within the domain of ensemble data visualization,
which can be categorized into two main approaches: feature-based
and location-based. In the subsequent paragraphs, we provide a
comprehensive literature review in this field. The concept we intro-
duce, ensemble subspaces, is inspired by subspace analysis in high-
dimensional data visualization. We briefly review the relevant litera-
ture on biclustering techniques and subspace analysis.
2.1 Basic Biclustering Algorithms
Biclustering is a series of algorithms to extract subspaces from high-
dimensional data by simultaneously clustering the rows and columns
of a matrix. The problem and first algorithm was originally introduced
by Hartigan [14] in 1972 and has been widely used in bioinformatics
to study the coordinated relationships between genes and expressions.
In the following, a concise introduction to the biclustering problem
and the algorithm is given.

Given a data matrix A = {aij} with n rows and m columns.A
bicluster is a subset of rows I which exhibits coordinated behaviors
across a subset of columns J , and vice versa. In other words, each bi-
cluster represents a submatrix in the original data matrix. We denote a
bicluster as Aij = (Ii, Jj), which involves a set of rows Ii and a set of
columns Jj . In this way, the problem of biclustering can be defined as:
given a data matrix A, we expect to identify a set of submatrix {Aij}
which represents a set of biclusters {(Ii, Jj)} such that cell values in
each bicluster satisfy some definitions of similarities. If the matrix A
represents a high-dimensional dataset with n data items and m dimen-
sions, then Ii and Jj are data and dimension subspace, respectively,
and Aijs are subspace clusters.

The above definition is a general description of biclustering
problem. As the application scenario varies, the problem could be
specialized according to the bicluster structure it produces. In this
work, we apply the non-overlapping biclusters with checkerboard
structure, that is more commonly used in applications. In the checker-
board structure, the entire set of rows I and columns J are partitioned
into K and L subsets respectively, denoted as {I1, · · · , IK} and
{J1, · · · , JL} accordingly. For those row subsets, they satisfy the
following conditions:

Ii ∩ Ij = ∅, 1 ≤ i, j ≤ K, I1 ∪ I2 ∪ ... ∪ IK = I.

Likewise, those columns subsets also satisfy similar conditions. Thus
K × L non-overlapping biclusters are revealed, and we can denote
them using the submatrix mark Aij or bicluster mark (Ii, Jj) as men-
tioned. If we reorder rows and columns so that elements in any row
subset and column subset stay together, the checkerboard structure is
revealed in the matrix (Fig. 3 top-right).

The original work of biclustering [14] provided a simplest but also
highly extendable algorithm to discover checkerboard structures in a
data matrix. The algorithm inputs include the data matrix A = {aij}
and the expected numbers of row and column clusters K,L. Then



labels are given for each row and column so that rows or columns
with the same label will form clusters. And the aim of the algorithm
is to simultaneously optimize the clusters of rows and columns.
The outputs can be represented as two mappings s, t that maps row
indexes and column indexes to labels:

s : {1 · · ·n} → {1 · · ·K}, t : {1 · · ·m} → {1 · · ·L}.

And we will use s−1(·) and t−1(·) to represent the subsets of rows
and columns with certain labels. Following steps are executed until
convergence is reached:

1. Initialize clustering labels for rows s and columns t.

2. Calculate the number of rows or columns assigned to each label,
denoted as ri for row label i and cj for column label j.

3. Evaluate the biclustering quality, here we calculate the mean
value of each bicluster. For bicluster (Ik, Jl):

mkl =
1

rk × cl

∑
i∈s−1(k)

∑
j∈t−1(l)

aij (1)

4. Update clustering labels for rows and columns:

s(i) = argmin
k∈{1,··· ,K}

m∑
j=1

(aij −mk,t(j))
2, 1 ≤ i ≤ n. (2)

t(j) = argmin
l∈{1,··· ,L}

n∑
i=1

(aij −ms(i),j)
2, 1 ≤ j ≤ m. (3)

5. Jump to step 2 if labels s(·) and t(·) are changed, otherwise stop.

When the algorithm stops, s(·) and t(·) are the final partition schemes
for rows and columns respectively, where s−1(·) and t−1(·) are corre-
sponding subsets, respectively.

2.2 Ensemble Visualization
Ensemble simulations are commonly utilized to investigate model un-
certainty and parameter sensitivities. The visualization methods for
ensemble data have considerable overlap with those used in uncer-
tainty visualization and comparative visualization [21, 24, 31]. These
methods can be classified into two categories: feature-based and
location-based [28].

In feature-based methods, spatial features are first extracted from
each individual realization and then compared and visualized. For
scalar fields, there has been extensive research on uncertainty visual-
ization of spatial features such as isocontours and isosurfaces. Several
methods address the extraction of isocontours from scalar fields with
uncertainty [2, 1, 36, 35, 33]. Alternatively, isocontours can be directly
extracted from each realization and their uncertainty visualized. For
instance, Ensemble-vis [39] introduced the spaghetti plot technique to
visualize isocontour ensembles from each realization. Building upon
the spaghetti plot, Noodles [41] employed glyphs and confidence rib-
bons to highlight their uncertainty. More advanced techniques have
been developed to describe uncertainty, such as contour boxplots [51]
and structural variability [34]. When isocontours vary over time, Fer-
stl et al. [9] employed hierarchical clustering to study the divergence
of isocontour ensembles along the time dimension. Zhang et al. [56]
utilized kernel density modeling to provide ensemble modeling with
different levels of abstraction. In the case of ensemble vector fields,
topological structures are commonly extracted as spatial features for
comparison [29, 30, 32]. Apart from visualizing uncertainty in spatial
features derived from simulation realizations, some methods directly
define and calculate overall similarities between realizations and em-
ploy clustering techniques for analysis [20, 13].

Location-based methods visualize or compare distributions ob-
tained from every location in the spatial domain. Traditional visual
encodings involve statistical values such as mean, standard deviation,
moment, and interquartile range [25, 38]. Shu et al. [48] visualized
regions with high variation using a storyline metaphor to depict the
evolution of uncertainty. However, statistical values can only cap-
ture a few major characteristics of value distributions. Particularly,

when the distributions are not assumed to be Gaussian, statistical val-
ues have limitations in describing the distributions. Subsequent meth-
ods often utilize histograms or density probability functions for visu-
alization [3, 37, 46]. Demir et al. [6] applied clustering methods to
histograms to help identify regions with similar distributions.

When dealing with vector fields, certain works directly visualize
the uncertainty of directional speeds using glyphs [52, 23, 15]. Jarema
et al. [20] further employed Gaussian mixture models to fit directional
distributions and visualized the Gaussian components using glyphs.
To handle non-Gaussian bivariate distributions, Hollister et al. [16] in-
troduced interpolation methods to address integration requirements of
ensemble vector fields. Several approaches focus on visualizing un-
certainty through streamlines or pathlines [47]. As the number of sim-
ulation runs increases, curve boxplots [27] and streamline variability
plots [7] were proposed to summarize the distribution of streamlines
originating from a single location. A similar concept is applied to
isocontours, where users can examine the joint occurrence of isocon-
tours in local regions with interactive techniques [8]. However, these
approaches face challenges in visualizing the variation of streamlines
originating from multiple grid points due to visual clutter. Therefore,
methods with a higher level of summarization have been proposed.
Hummel et al. [18] and Liu et al. [22] defined and calculated transport
variances at each grid point to represent overall uncertainty. Hollis-
ter et al. [17] used DBSCAN clustering to analyze divergence from
multimodal distributions within streamlines. Guo et al. [12] measured
variation in the attribute space rather than the geometric space.

However, both feature-based and location-based methods have their
limitations. Feature-based methods focus on highlighting differences
and uncertainty between realizations, but they provide limited loca-
tional information, relying on aggregated features such as isocontours,
isosurfaces, or topology. On the other hand, location-based methods
can visualize and compare locational information through distribu-
tions, but they often lose spatial correlation information within each
realization. In our approach, we propose a method for the coupled
analysis of locations and realizations, which can be considered a hy-
brid between the two aforementioned approaches.

2.3 Subspace Analysis and Biclustering Techniques

In the field of high-dimensional data visualization, subspace analy-
sis is a category of approaches that focuses on identifying meaningful
features in high-dimensional spaces. Since many data clusters are not
easily distinguishable in the full-dimensional space, researchers have
started exploring clusters in lower-dimensional subspaces, which are
spaces spanned by a subset of dimensions. Dimension projection ma-
trix/tree [55] enables interactive and progressive exploration to iden-
tify significant subspaces and subspace clusters. Tatu et al. [45] de-
fined appropriate subspace similarity functions for automatic search-
ing, grouping, and filtering of subspaces, generating numerous inter-
esting subspaces for users to gain different perspectives on the data.
To facilitate exploration, a framework was developed to decompose
high-dimensional data into a continuum of generalized 3D subspaces,
allowing data analysts to interactively visualize and understand the
data using visual tools while utilizing familiar trackball interfaces and
smooth transitions to adjacent subspaces for enhanced comprehension.

In addition to interactive subspace exploration, numerous automatic
subspace clustering algorithms have been proposed to detect data clus-
ters in various subspaces. Biclustering, a type of subspace clustering
method extensively used in bioinformatics to study the coordinated
relationships between genes and expressions [26], has also been intro-
duced into the visualization community to aid in data visualization.
Watanabe et al. [49] employed biclustering for correlated subspace
mining in multivariate data, as multivariate data can naturally be rep-
resented as a data matrix. Subsequently, biclustering techniques have
been adopted in various applications, such as exploring cross-view
data relationships [44] and mining events co-occurrence [54]. He et
al. [50] utilized biclustering to investigate relationships among vari-
ables in multivariate data. In our work, we utilize biclustering tech-
niques for subspace analysis in ensemble data to extract coordinated
behaviors between locations and realizations.



The visualization of biclustering results poses a non-trivial chal-
lenge. Sun et al. [43] proposed a five-level design framework to sum-
marize bicluster visualization, which includes visualizations at the en-
tity level, group level, and bicluster level. Matrix-based visualiza-
tions [42, 10, 57], parallel coordinated-based visualizations [11, 53],
and node-link diagrams [40] have been widely used in many works.
Some of our visualization approaches are inspired by these works, and
we also provide data-specific visualizations to enhance the understand-
ing of ensemble data.
3 REQUIREMENTS AND TASKS ANALYSIS

For ensemble data, locations and realizations naturally form two indis-
pensable and closely related dimensions. Basically, there are analysis
requirements from three aspects when dealing with ensemble data:

R1: Location aspect: Find the similarities and differences between
locations. Given a set of realization, analyzers want to identify the
location clusters that share common features.

R2: Realization aspect: Find the behavior patterns between real-
izations. Analyzers want to identify the realization clusters that have
similar influence on selected location domain.

R3: Data aspect: Check the original data at selected locations un-
der assigned realizations.

Previous works mostly focus on analyzing single dimension, either
the location or the realization. For example, the comparison between
realizations over the whole domain or specifically assigned locations
(R2), or the exploration of the distributions of cluster locations over
the entire realizations (R1). However, the distributions of locations
over all realizations are not isotropic, neither the behaviors of realiza-
tions on the location domain.

So, there is another one that involves both dimensions:
R4: Coordination of location and realization: Analysis the co-

ordinated behaviors of locations and realizations simultaneously. Ex-
ploration and comparison across both dimensions are required, where
analyzers can extract clusters sharing similarities from locations and
realizations at the same time.

In this work, we apply biclustering-based approach to take both di-
mensions into consideration simultaneously (R4). Table 1 compares
our approach with some other works with regard to those require-
ments. As we can see, realization-based methods [39, 9, 20, 13, 56]
can barely meet the requirements in location aspect (R1), while
location-based methods [6, 48, 5] can hardly meet the requirements
in realization aspect (R2), not to mention the coordinated analysis re-
quirement (R4). Exceptionally, a few works [20, 48] meet part of R4
that they allow users to extract clusters firstly on one dimension and
then explore the distribution on the other one. This two-steps approach
satisfies part of the coordinated analysis requirement while still has in-
evitable limitations compared to simultaneous methods like bicluster-
ing. We will discuss about this later, and they are marked with a star
in the table, indicating that they partially support coordinated analysis
requirements.

Table 1. Comparison of design requirements supported by different en-
semble analysis approaches.

Location Realization Coordinated Data

Our approach + + + +

Ensemble-Vis [39] - + - -

Ferstl et al. [9] - + - +

Hummel et al. [20] - + * +

Hao et al. [13] - + - +

Demir et al. [6] + - - -

EnsembleGraph [48] + + * -

EnConVis [56] - + * -

Souza et al. [5] + + - -

According to the four types of analysis requirements, we further
conclude five analysis tasks that the visual analytic system should sup-
port to explore the ensemble data.

T1: Visualize bicluster structures, showing the subspace partitions.
T2: Visualization of location-realization coordinated behaviors in

individual biclusters, showing the data distribution and basic statistics.
T3: Comparison of behaviors of biclusters in single subspace, to

study how coordinated behaviors vary in one subspace.
T4: Comparison of biclusters behaviors in multiple subspaces, to

study the positive/negative correlations between subspaces.
T5: Comparison of behaviors of arbitrary biclusters, to identify the

overall distribution of coordinated behaviors.
T1 shows the clustering results, combining with T2, the analysis

requirement of data (R3) is satisfied since users can check the data be-
hind each single clusters. T3 meets the requirements from single data
dimension (R2 & R3) that users can check the behavior patterns within
selected dimension of the ensemble datasets. T3 limits the comparison
within single subspace, whichever dimension the subspace is extracted
from, so it does not involve any cross dimensions analysis. While T4
and T5 support the coordinated analysis of two dimensions (R4), since
subspaces from different dimensions are compared together. In table 2,
we summarize the correspondence between them.

Table 2. The correspondence between analysis requirements, tasks,
and the view designs.

Requirements View Designs

Tasks R1 R2 R3 R4 MDS PCP Matrix Spatial Small Multiples

T1 + * *

T2 + * * * *

T3 + + * * * * *

T4 + + + * * *

T5 + + + * *

4 ENSEMBLE SUBSPACE EXTRACTION

In this work, we introduce a visual analytics system that utilizes a bi-
clustering algorithm to facilitate ensemble analysis based on the con-
cept of subspaces. Our approach focuses on extracting subspaces from
both realizations and locations simultaneously. The pipeline of our
biclustering-based approach is shown in Fig. 3.

In this section, we introduce the adaptations made to the origi-
nal biclustering algorithm mentioned previsouly to enable support for
matrics of value vectors for multivariate ensemble data. In addi-
tion, we also extend the Calinski-Harabasz criterion from clustering to
biclustering to assist the choosing of the bicluster number.

4.1 Biclustering for Ensemble Data
To apply biclustering method to ensemble subspace analysis, the im-
portant step is to transform the ensemble data to a data matrix (Fig. 3
top-middle). The rows and columns in the biclustering algorithm cor-
respond to the realizations and locations of ensemble data naturally.
The extracted biclusters correspond to certain coordinated behaviors
shared by realization clusters over location subspaces, and vice versa.
Since rows and columns are interchangeable, we just let the rows rep-
resent realizations and the columns for locations.

The domain of the ensemble data can be represented as E :
{L1, · · · , LM}×Ω, where Ω ⊆ RD denotes the D-dimensional spa-
tial domain, and M denotes the number of realizations. The range of
E depends on the type of ensemble datasets, such as R for a single
scalar field, R|V | for multivariate scalar fields with V variables, etc.
Given a spatial location pj ∈ Ω, the value produced by realization
i can be denoted as E(i,pj). To employ biclustering algorithm for
ensemble subspace analysis, we need to define certain transformations
to form a data matrix, that is aij = F(E(i,pj)). Experts can define
the most suitable F according to their data and analytic requirements.
For ensemble data with a single scalar field, we directly use the scalar
values in the data matrix, that is aij = F(E(i,pj)) = E(i,pj). It
is also possible to choose other transformations such as normalized
values when needed.

And for ensemble datasets with multivariate scalar fields, which
are also common in scientific simulations such as climate simula-
tion and ocean circulation simulation, we apply two alternative man-
ners to handle multivariate ensemble data. We denote E(i,pj) =
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Fig. 3. The pipeline of our approach, including data transformation, biclustering algorithm, and interactive visualization.

v⃗ij = (v1, · · · , vV )ij as the value vector at location pj in i-th realiza-
tion.The two mainly used ways to handle multivariate data is extending
univariate biclustering algorithms, and reducing value vectors to sin-
gle values. For the first approach, we extend the Hartigan’s algorithm
introduced previously, where we modify the steps of mean value cal-
culation and label update. For the former step, summation operations
in Equation 1 can be directly applied onto vectors.For the label up-
date step, differences between each cell and mean vectors need to be
computed. The costs of label assignments are adjusted from the mean
squared differences to L2-norm of vectors, i.e.

∑m
j=1 ||ai,j−mi,t(j)||2

and
∑n

i=1 ||ai,j − ms(i),j ||2 respectively. Direct L2-norm could in-
troduce bias for different variables, due to unmatched value ranges. So
the value vectors are normalized when needed.

Another approach is to reduce value vectors to single values, but
keep their distances as much as possible. Following the L2-norm dif-
ferences measure, we can choose a transformation F , so the total error
of similarities caused is minimized, that is

min
F

(
∑
s,t

(|F(v⃗s)−F(v⃗t)| − ∥v⃗s − v⃗t∥)2).

This objective function can be solved by Multidimensional Scaling
(MDS), a commonly used technique to represent high-dimensional
data in a low-dimensional space. In our situation, we embed the mul-
tivariate vectors into 1-dimensional space [19] and use it as the matrix
cell values. The benefits brought by the compact representation are
considered to overcome the accuracy loss, especially when the mul-
tivariate data has other dimensions, which are locations, realizations,
and variables in our case.

This two approaches for multivariate scalar field datasets, extend-
ing the Hartigan’s algorithm or reducing the vectors to single values,
have their own advantages under different conditions. The former one
keeps the original vectors and thus may improve the biclustering re-
sults compared with the latter one, since recuding the vectors to single
values actually change the data. However, it also brings great com-
puting complexity to the biclustering algorithm for doing vector arith-
metic. While the negative effect of vector dimension reduction can be
eased through carefully designed reduction methods. It is noteworthy
that both approaches are solutions of finding a function F to trans-
form the ensemble data into biclustering matrix. In our system, we
provide these two approaches, while there are still alternative chooses.
Experts can select the most suitable one dealing with their data and
special analysis tasks.

4.2 Decision of the Number of Biclusters
The most important parameters for biclustering algorithm are the num-
bers of biclusters K × L, i.e. the number of realization and location
subspace.However, it is not trivial to set appropriate values to obtain
ideal results. Although users can keep trying different parameters until
good results are obtained, such trial-and-error way is quite inefficient.

For this reason, we extend Calinski-Harabasz criterion [4] from 1D to
2D biclustering to measure the clustering quality of given parameters.

The intuition of Calinski-Harabasz criterion is that the overall
within-cluster variance should be as small as possible, while the
overall between-cluster variances should be as large as possible.
The overall within-cluster variance SSW is defined as SSW =∑k

i=1

∑
x∈ci

||x − mi||2, where k is the number of clusters, ci is
the ith cluster, x is a data point, and mi is the center of cluster
ci. The overall between-cluster variance SSB is defined as SSB =∑k

i=1 ni||mi − m||2, where mi is the center of cluster ci, ni is the
size of cluster ci, and m is the overall mean of the sampled data. Then
Calinski-Harabasz criterion is defined as S = SSB

SSW
× N−k

k−1
, where N

is the total number of data points. Larger scores indicate better clus-
tering quality. In the biclustering problem, since the algorithm cluster
cells, rows, and columns at the same time, we evaluate the quality of
all three clustering results. Specifically, we extend Calinski-Harabasz
criterion as a weighted combination of three individual scores, i.e.
S = Scell +m×Srow +n×Scolumn. The scores for rows and columns
are scaled with factors m and n respectively, to lift them to the same
scale of the cell scores.

Fig. 4(a) shows the criterion matrix with different parameter set-
tings ranging from 1× 1 to 10× 10. The scores in the matrix show a
significant increase when the number of location subsets or realization
subsets increases from 1 to 2. This observation supports our moti-
vation for subspace analysis, indicating the presence of correlations
and variations between the two dimensions of location and realization.
Additionally, it can be observed that when the number of realization
subspaces K reaches certain values (e.g., 2, 3, 5, etc.), the scores be-
come noticeably larger than others, suggesting these values as good
choices. In our work, we choose K = 5 as the default value.
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Fig. 4. (a) Calinski-Harabasz criterion matrix. (b) Distributions of ex-
tracted biclusters. (c-f) Spatial distributions of location subspaces keep
stable as the number of biclusters increases.



We further explore the clustering results over location subspaces in
terms of the bicluster numbers. Fig. 4(c-f) shows the spatial partition
results, i.e. location subspaces, with bicluster numbers from 5 × 2 to
5 × 5. As the location subset number increases, we can observe that
previously extracted subspaces are kept well, new subspace only being
separated from the largest gray one. For example, the purple region
in Fig. 4(c) is also extracted as a cluster in (d-f) when biclustering
parameter L increases from 2 to 5. From the bicluster matrix view (b),
we can also find that the value distributions of biclusters in the new
subspaces are indeed different from previous ones. From this aspect,
the stability of the biclusterings on location is adequately well. As
a result, users can choose the setting of parameter L according to the
data and analysis tasks freely. In this work, we adopt L = 5 as default.

In all, to tackle the problem of parameter selection, we study the
settings of bicluster numbers and their stability. As a result, our system
renewcommands a K×L = 5×5 biclustering setting as default, while
users are allowed to change those parameters when needed.

5 PROTOTYPE SYSTEM AND INTERFACE

To support users to comprehensively explore coordinated behaviors in
ensemble subspace and their variations, we further implement a visual
analytic system driven by the adapted biclustering algorithm described
above. In the system, several linked views are presented to visualize
the results from different facets as shown in Fig. 1.

Our system supports visual analytics workflow as shown in Fig. 5,
so that users are able to analyze the ensemble data progressively and
comprehensively.

Data Highlighting

Aggregation & Reduction

Data Comparison

Interactive 

Data Analysis

Variable Selection 

Dimension Deduction

Feature Selection

Parameter Tuning

Adjust Clusterings

Model Steering

Visualization

Spatial View

Bicluster Matrix

Parallel Coordinates

Bicluster MDS

Interaction

Select Biclusters

Select Locations

/Realizations

Brush regions

Fig. 5. Visual analytics workflow supported by our system.
Users are provided with interactive parameter setting for the biclus-

tering algorithm, and the clustering results are displayed in multiple
linked views, facilitating interactive analysis. Users can select and
highlight specific data of interest, ranging from individual realizations
and locations to biclusters and subspaces. The system enables com-
parison tasks by allowing users to perform linked operations across
different views. They can gain insights into the relationships between
biclusters and subspaces, uncovering coordinated behaviors within the
ensemble data. Furthermore, our system supports flexible and progres-
sive analysis. Users have the option to modify the biclustering param-
eters to re-run the clustering process. Alternatively, they can also focus
on selected subspaces to refine the provided results, that is to apply bi-
clustering algorhtm exactly within selected subspaces . Through inter-
actions, users can further divided or re-clustering selected subspaces
to have a deeper exploration of the data. With the proposed anal-
ysis workflow, our system empowers users to interactively and pro-
gressively explore ensemble data from various levels and perspectives,
catering to their specific analysis tasks.
5.1 Visualization System
A five-level design framework is presented by Sun et al. [43] to sum-
marize biclustering visualization, where the entity level, group level,
and bicluster level are almost used in most existing works. When it
comes to our application scenarios, i.e. ensemble data analysis, we
present more data-specific visualization techniques: volume rendering
techniques (2D and 3D), distribution-related visualization, and biclus-
ters MDS plot for comparison.

In our interface, the bicluster and subspace labels are used globally.
We use Ri and Lj to represent Realization and Location subspaces
respectively. Then, each bicluster is denoted as RiLj , that is the cross-
ing of the location subspace and realization subspace. In addition, we
adopt consistent color schemes for easy recognition of subspaces in
different views. For location subspaces, we choose colors with dif-
ferent hues, while for realization subspaces, to avoid confusion, we

use gray color with different intensities. Users can adjust the colors to
meet their needs better freely.

Bicluster Matrix and PCP Plots
The matrix gives (Fig. 1(c)) an initial perception of the structure of

biclustering results. In the bicluster matrix, each row and column cor-
responds to one realization and location subspace, respectively. The
cells represent biclusters. In the top and left header areas of the ma-
trix, we use colored blocks to indicate subspaces, as well as their labels
and the number of elements contained. Users are allowed to select one
subspace to conduct progressive computation described previously.

Histograms are derived from the values of realization-location com-
binations within each bicluster. These histograms are displayed in the
cells of the matrix. The axes of the histograms are unified to facilitate
easy comparison. The histograms provide a clear presentation of the
coordinated behaviors within the biclusters, including measures such
as mean, variance, skewness, and Gaussianness. In addition, boxplots
are superimposed to show basic statistics. For multivariate ensemble
data, users can decide to show either histogram of single variables
and/or an MDS plot deriving from multiple variables.

Brushing operation is also supported in the histogram of one bi-
cluster. The value distributions of selected location-realization com-
binations in other biclusters of the same subspaces are highlighted.
Based on distribution shapes and statistics, as well as the data behav-
iors across different subspaces, users can decide if it is necessary to
split one subspace further for deeper investigation.

Two parallel coordinates plots (PCP) are used to visualize the be-
haviors of biclusters across different subspaces just beside the matrix.
In the PCP for locations (right of the bicluster matrix), each axis rep-
resents one realization subspace aligned with the rows of the bicluster
matrix, while each line represents one location subspace, whose values
are the averages of their crossing biclusters. Users can easily identify
similarities and variations of coordinated behaviors within biclusters
in one subspace.

Bicluster MDS Plot
A bicluster MDS plot (Fig. 1(b)) is provided to show the similari-

ties between arbitrary biclusters in addition to the bicluster matrix. The
distance between any two biclusters is defined as the Jensen-Shannon
divergence of their distributions. Biclusters with similar distributions
are projected to near positions in the plot because of the property of
MDS algorithm. Similar to the cells in the bicluster matrix, 1D his-
tograms and/or 2D data MDS plots are shown in each bicluster cell.

The bicluster MDS plot can be exploited in two ways. Firstly,
it enables the identification of clusters of distributions with distinc-
tive properties such as left-/right-skewed or normal distributions.
These distribution clusters indicate that the corresponding location-
realization combinations share similar coordinated behaviors. Users
can select these distribution clusters to examine their associated bi-
clusters and subspaces, facilitating the exploration of relationships be-
tween realizations and different subspaces. This approach enhances
the understanding of correlations within the ensemble data. Secondly,
users can select subspaces in the bicluster matrix view to observe their
similarity and difference in the MDS plot. In the cases, we have found
some subspaces show very similar distributions in their containing bi-
clusters. While for some others, the distributions of their biclusters
could be very different, indicating significant variations of correlations
in single subspaces. The information regarding the variations of corre-
lations is especially difficult and inconvenient to be found with existing
approaches.

Spatial View and Small Multiple View
To obtain the physical meaning of extracted subspaces and biclus-

ters in ensemble data analysis, it is necessary to relate biclustering
results with their spatial distribution. We provide the spatial view
(Fig. 1(d)) and small multiple view (Fig. 1(e)) for this purpose.

In the spatial view, the location subspace partition is rendered in
user defined color scheme. Users can easily observe the spatial dis-
tribution of location subspaces, and relate them to physical environ-
ment. Besides basic navigation interactions, such as zooming and pan-
ning, we support brushing function as well as country-wise selection
in some specific datasets. The brushing operation is linked with the



histograms in the bicluster matrix, so that users can analyze the be-
haviors of brushed locations in detail.

In the small multiple view, for each realization subspace, we ren-
der the averaged fields over the corresponding realizations. Users can
easily compare behaviors of different regions within one realization
subspace. At the same time, all small multiple views use a unified di-
verging colormap: the orange-red color indicates the realization sub-
space produces larger values than the average, while the blue-purple
color is for smaller values. Comparison of regional behaviors across
different realization subspaces is enabled.

In all, we provide general biclustering visualization as well as en-
semble data-specific visualization to help users understand the coordi-
nated behaviors from different levels and facets. Comprehensive ex-
ploration on biclusters and subspaces are enabled through interactions
and multiple linked views. In addition, as users’ knowledge about the
ensemble data grows, users are allowed to progressively explore the
data with biclustering algorithm to obtain a deeper understanding.
6 CASE STUDIES

In this section, we describe case studies in two ensemble datasets: car-
bon emission and ocean circulation. We demonstrate how to make dis-
coveries through introduced analysis workflow with our system. All
these datasets contain a large number of realizations, and thus the co-
ordinated behaviors in realization subspaces are more statistically sig-
nificant. On the other hand, such a large number of realizations also
makes it more critical to study their correlations with locations.

6.1 Carbon Emission Dataset
Carbon emission data comes from the global CO2 flux simulation,
which has 150 realizations and a spatial resolution of 360 × 180. We
select one time slice at Jan. 2, 2010 from the original datasets and
focus on the optimized carbon emission value from the terrestrial veg-
etation source. Significantly, only land region has valid values.
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Fig. 6. (a) Small multiples view rendering the average fields of every re-
alization subspace. (b) Bicluster MDS plot showing the similarity among
biclusters. (c) Parallel coordinates plot supporting direct comparison of
location subspaces across different realization subspaces.

The biclustering results are shown in Fig. 4 and Fig. 6. In the spatial
view, Fig. 4(f), subspace L1 covers most of the land mass, and shows
high kurtosis concentrated near 0. Subspaces L0 and L4, the blue
and purple regions, cover most of South America. Subspace L2, the
green region, mainly covers Europe and the coastal region of southeast
Africa. Subspace L3, the red region, is scattered around North and
South American. In Fig. 6(a), the land mass is colored according to
the averaged field value for each realization subspace. Looking at the

region covered by the L0, L3 and L4 subspaces, i.e. South America,
we can observe that there is quite a significant amount of variance
across the different realization subspaces. Scientists explain that the
high forest cover in South America significantly affects the field value,
i.e. carbon emission from terrestrial vegetation source. Except L1, all
other location subspaces correspond to regions with forest cover larger
than about 25%. Furthermore, we can make the hypothesis that regions
with higher forest cover also have larger variances across realizations.
The variances across different realization subspaces are also supported
by checking the bicluster matrix (Fig. 4(b)).

Next, we study the relationships between biclusters and subspaces.
In the bicluster MDS plot (Fig. 6(b)), the overall similarity relations
among biclusters are shown. From the projection space, all biclusters
are roughly divided into three categories: left- and right-skewed, and
high-kurtosis distributions. Especially, for the blue location subspace
L0, the distributions of biclusters in it are either strongly left-skewed
or right-skewed, indicating strong variations of coordinated behaviors
across different realization subspaces. Similar behaviors of variations
can also be observed for the purple location subspace L4. From the
parallel coordinates view of the location subspace (Fig. 6(c)), we can
further observe that L0 and L4 show similar distributions in R0 and R1,
but exhibit distributions with opposite skewness in R2, R3, and R4.
These positive and negative correlations among distributions, which
have not been reported in previous works, provide opportunities for
studying the simulation conditions.

6.2 Ocean Circulation Dataset
The ocean circulation data comes from a simulation model which cov-
ers a region of Massachusetts Bay on the east coast of USA. The simu-
lation is run over a 3-dimensional spatial domain with a spatial resolu-
tion of 90× 53× 16.Part of the domain has no data, which represents
the land. In our figures, these are rendered in totally transparency. This
ensemble contains 600 realizations. The data contains 9 scalar vari-
ables that researchers are interested in, such as temp (temperature),
salt (salinity), NO3 (nitrate concentration), CELLNO3 (cellular ni-
trogen from nitrate), etc. We employ the two methods aforementioned
to process this multivariate ensemble data: direct computation using
value vectors, and using 1D MDS reduced values.
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Fig. 7. Visualization of biclustering results for ocean circulation dataset
(together with Fig. 1): (a) Spatial view showing the coverage of individual
location subspaces and the overall partition; (b) Small multiple views for
average fields of variables CELLNH4, CELLNO3, and detritus of each
realization subspace, respectively. (c) Small multiple views for average
fields of 1D MDS values.

In Fig. 1(b,c), we present the overall biclustering structures in the
matrix and the similarity relationships of all biclusters in the MDS
plot. The value distributions of the variable CELLNO3 are visual-
ized in the cells. At the same time, the spatial coverage of location



subspaces is shown in Fig. 7(a). By relating above visualizations, we
find that as we move deeper and westward, the variations of biclusters
in corresponding location subspaces become larger. The increasing
variances can be observed in all realization subspaces, even R1 and
R2 show different skewness from others. Domain scientists provide
an explanation regarding the location subspaces and their coordinated
behaviors. The western and deep seashore regions, represented by L1
and L4, are convergence zones for warm and cold currents, which lead
to more disturbances and mixing. Therefore, the variations of coordi-
nated behaviors in these regions are higher than those in other regions.

In Fig. 7(b) and (c), the results of two approaches handling the mul-
tivariate data are shown. In (b), we select three highly correlated vari-
ables, CELLNH4, CELLNO3, and detritus.We can easily find that,
although realization subspaces show very different coordinated behav-
iors in each region, they show consistent behaviors in these three vari-
ables. In (c), we directly use the 1D MDS values for analysis. It is
interesting that the shapes of visible features are consistent in the aver-
age field of each realization subspace. Note that the exact colors in (b)
and (c) are not comparable, but we can observe their relative values.
For example, in R3, L1 shows significant different values compared to
L3, which can be observed in both (b) and (c) easily. The above obser-
vation indicates that both approaches are able to identify meaningful
correlations among variables as well as the location-realization corre-
lations. Domain scientists explain that the correlations among vari-
ables are strongly related to the nitrogen cycle in the ocean. Bacteria
decompose and convert detritus of fish and other organisms into am-
monia (CELLNH4) and nitrate (CELLNO3). Such conversion makes
the concentration of the three variables change accordingly.

The two case studies above have demonstrated the usage and ef-
fectiveness of our system. It can reveal the coordinated behaviors in
ensemble subspaces, especially in exploring the variations of these be-
haviors across the dimensions of locations and realizations, which are
difficult for previous approaches.

In the ocean circulation case, we have demonstrated that our ap-
proach can effectively extract correlations among variables, as well
as the correlation between location and realization. Our approach en-
ables us to obtain meaningful results and explanations by analyzing
these correlations simultaneously.

7 DISCUSSION

In this section, we will primarily discuss the differences between our
approach and existing works, as well as the scalability of our approach.
Comparison with Other Methods

The novelty of our approach comes from the coupled analysis of
realizations and locations with subspaces, while existing methods typ-
ically focus on one aspect and heavily aggregate the other. In Table 3,
we compare the analysis tasks supported by these approaches. The
advantage of our approach is the automatic extraction of meaningful
clusters in subspaces and the subsequent analysis of their coordinated
behaviors and how they vary across different subspaces. Location- and
realization-based approaches are unable to analyze their correlation as
they lack information about the other dimension. Jarema et al. [20]
proposed a method that supports both approaches subsequently in their
analysis method. However, since their approach is still based on the
derived distributions, realization correspondence is not in the consider-
ation at the very beginning. Therefore, they are still unable to acquire
knowledge regarding the actual location-realization correlations.

Table 3. Comparison of analysis tasks supported by different ensemble
analysis approaches. * indicates that manual selection is needed for
corresponding tasks, where the subsets reflect users’ intention, rather
than objective clusters or subspaces.

Correlation and Variation
of Locations Considering

Similarity and Uncertainty
of Realizations Considering

A Single
Run

A Run
Subset

All
Runs

A Single
Location

A Location
Subset

The Whole
Domain

Location-based
[25, 6, 52, 23, 15, 20, 18, 12, . . . ] - +* + + - -

Realization-based
[39, 41, 51, 29, 32, . . . ] + - - - +* +

Our Approach + + + + + +

In addition to existing ensemble visualization and analysis ap-
proaches, one alternative approach to achieve coupled analysis is to
perform clustering twice, either by clustering the data based on real-
izations first and then clustering locations within each realization clus-
ter, or vice versa. However, our experiments have demonstrated that
these alternatives are unable to accomplish our objective of coupled
analysis. In Fig. 8, ensemble data is firstly clustered into 5 realization
clusters, then locations are clustered within each realization cluster.
The location clustering labels of Europe area in each realization cluster
are shown in small multiples, where each sub-figure of five indicates
one realization subspace, and the location subspaces are represented
using different colors . Although coordinated behaviors can somehow
be revealed, it is almost impossible to study how they change across
different regions, since the location clusters are not aligned in different
realization subspaces . For example, the large yellow part in the first
sub-figure can not be found in other sub-figures. Therefore, without
additional constrains in the two-level clustering, the results are prone
to inconsistency. In contrast, our biclustering method imposes simulta-
neous restrictions on coordinated behaviors based on both realizations
and locations. As a result, our approach allows for the discovery of
abundant information regarding the correlation between locations and
realizations, particularly the variations in coordinated behaviors across
different subspaces.

Fig. 8. Visualization of the alternative approach: First cluster data by
realizations, and then by locations. Clustering labels of Europe area in
each realization subset are shown.

Scalability of Our Approach
We discuss the scalability of our approach in two aspects: compu-

tation and visualization.
The computation in our approach mainly comes from the iterative

biclustering algorithm. In each iteration, the mean value for each bi-
cluster are calculated, and cluster labels are updated. For mean value
calculation, the data matrix is traversed once and the time complexity
is O(nm). To update rows labels, each possible label k ∈ {1, · · · ,K}
is tested by computing corresponding costs for each row. So the time
complexity is O(Knm). The column labels update is similar, and the
time complexity is O(Lnm). Hence, the overall time complexity is
O((K + L)nm). In terms of computation, the total time cost is also
influenced by the convergence speed, which generally needs less than
20 of iterations. In summary, our approach provides good scalability
concerning the data size.

Previous approaches often disregard the number of realizations,
since it is typically much smaller compared to the number of locations.
However, in our scenario, we are dealing with ensemble data consist-
ing of hundreds of realizations. The unique analysis tasks addressed in
this work present a significant challenge to visualization scalability, as
the number of biclusters can be on the order of the square of the typi-
cal number of clusters. In our visual analytics system, this will mainly
influence the visual space of histograms in the bicluster matrix and the
small multiple view. In our visual analytics system, this will mainly
influence the visual space of histograms in the bicluster matrix and the
small multiple view. In the system, we show 5 × 5 cells in matrix and
five realization subspaces in small multiple view, and they do not suf-
fer from overcrowding on a typical 1080p monitor. In addition, other
techniques including lenses and LoD can be applied to further allevi-
ate the pressure on visual space. Therefore, we think our visualization
can fulfill most analysis requirements with visual analytics workflow.



8 CONCLUSION AND FUTURE WORKS

In this work, we present a biclustering-based approach for the coupled
analysis of realizations and locations in ensemble data. With our sys-
tem, we can study the coordinated behaviors between locations and re-
alizations, and analyze how they vary across different subspaces. Our
case studies have successfully demonstrated several findings that ex-
isting tools have difficulty or are unable to discover.

In the future, we would like to improve our approach in two aspects.
Firstly, our approach can be further extended to other types of ensem-
ble data, such as time-varying scalar fields, flow fields, in order to
explore their coordinated features. This expansion requires addressing
the challenge of defining appropriate transformations for such ensem-
ble fields, which is a complex yet worthwhile endeavor. Secondly,
we intend to establish connections between subspace exploration and
the parameter space of simulation models to investigate their relation-
ships.
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[4] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Com-
munications in Statistics-theory and Methods, 3(1):1–27, 1974.

[5] C. V. F. de Souza, P. d. C. L. Barcellos, L. Crissaff, M. Cataldi, F. Mi-
randa, and M. Lage. Visualizing simulation ensembles of extreme
weather events. Computers & Graphics, 104:162–172, 2022.

[6] I. Demir, C. Dick, and R. Westermann. Multi-charts for comparative 3d
ensemble visualization. IEEE Trans. Vis. Comput. Graph., 20(12):2694–
2703, 2014.

[7] F. Ferstl, K. Bürger, and R. Westermann. Streamline variability plots for
characterizing the uncertainty in vector field ensembles. IEEE Trans. Vis.
Comput. Graph., 22(1):767–776, 2016.

[8] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann. Visual anal-
ysis of spatial variability and global correlations in ensembles of iso-
contours. Comput. Graph. Forum, 35(3):221–230, 2016.

[9] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann. Time-
hierarchical clustering and visualization of weather forecast ensembles.
IEEE Trans. Vis. Comput. Graph., 23(1):831–840, 2017.

[10] P. Fiaux, M. Sun, L. Bradel, C. North, N. Ramakrishnan, and A. Endert.
Bixplorer: Visual analytics with biclusters. IEEE Computer, 46(8):90–
94, 2013.

[11] C. Görg, Z. Liu, J. Kihm, J. Choo, H. Park, and J. T. Stasko. Combining
computational analyses and interactive visualization for document explo-
ration and sensemaking in jigsaw. IEEE Trans. Vis. Comput. Graph.,
19(10):1646–1663, 2013.

[12] H. Guo, X. Yuan, J. Huang, and X. Zhu. Coupled ensemble flow line
advection and analysis. IEEE Trans. Vis. Comput. Graph., 19(12):2733–
2742, 2013.

[13] L. Hao, C. G. Healey, and S. A. Bass. Effective visualization of temporal
ensembles. IEEE Trans. Vis. Comput. Graph., 22(1):787–796, 2016.

[14] J. A. Hartigan. Direct clustering of a data matrix. Journal of the american
statistical association, 67(337):123–129, 1972.

[15] M. Hlawatsch, P. C. Leube, W. Nowak, and D. Weiskopf. Flow radar
glyphs - static visualization of unsteady flow with uncertainty. IEEE
Trans. Vis. Comput. Graph., 17(12):1949–1958, 2011.

[16] B. E. Hollister and A. Pang. Bivariate quantile interpolation for ensemble
derived probability density estimates. International Journal for Uncer-
tainty Quantification, 5(2):123–137, 2015.

[17] B. E. Hollister and A. Pang. Visual analysis of transport similarity in 2D
CFD ensembles. Electronic Imaging, 2016(1):1–11, 2016.

[18] M. Hummel, H. Obermaier, C. Garth, and K. I. Joy. Comparative visual
analysis of Lagrangian transport in CFD ensembles. IEEE Trans. Vis.
Comput. Graph., 19(12):2743–2752, 2013.
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[36] K. Pöthkow, B. Weber, and H. Hege. Probabilistic marching cubes. Com-
put. Graph. Forum, 30(3):931–940, 2011.

[37] K. Potter, M. Kirby, D. Xiu, and C. R. Johnson. Interactive visualization
of probability and cumulative density functions. International journal for
uncertainty quantification, 2(4):397–412, 2012.

[38] K. Potter, J. Kniss, R. F. Riesenfeld, and C. R. Johnson. Visualizing
summary statistics and uncertainty. Comput. Graph. Forum, 29(3):823–
832, 2010.

[39] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pas-
cucci, and C. R. Johnson. Ensemble-vis: A framework for the statistical
visualization of ensemble data. In 2009 IEEE international conference
on data mining workshops, pages 233–240. IEEE, 2009.

[40] R. Santamarı́a, R. Therón, and L. Quintales. Bicoverlapper: A tool for
bicluster visualization. Bioinformatics, 24(9):1212–1213, 2008.

[41] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. J. Moorhead.
Noodles: A tool for visualization of numerical weather model ensemble
uncertainty. IEEE Trans. Vis. Comput. Graph., 16(6):1421–1430, 2010.

[42] M. Sun, L. Bradel, C. L. North, and N. Ramakrishnan. The role of interac-
tive biclusters in sensemaking. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1559–1562, 2014.

[43] M. Sun, C. North, and N. Ramakrishnan. A five-level design frame-
work for bicluster visualizations. IEEE Trans. Vis. Comput. Graph.,
20(12):1713–1722, 2014.



[44] M. Sun, A. R. Shaikh, H. Alhoori, and J. Zhao. Sightbi: Exploring cross-
view data relationships with biclusters. IEEE Trans. Vis. Comput. Graph.,
28(1):54–64, 2022.

[45] A. Tatu, F. Maaß, I. Färber, E. Bertini, T. Schreck, T. Seidl, and D. Keim.
Subspace search and visualization to make sense of alternative clusterings
in high-dimensional data. In Visual Analytics Science and Technology
(VAST), 2012 IEEE Conference on, pages 63–72, Oct 2012.

[46] D. Thompson, J. A. Levine, J. C. Bennett, P.-T. Bremer, A. Gyulassy,
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