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Figure 1: The interface of our system: (a) Projection View, visualizing the overview of the similarity relation between graphs of different time
steps; (b) Topic-Time Matrix View, showing probability distributions of extracted topics (structures) in graphs of different time steps; (c) Topic
View, showing the detailed information of extracted topics (structures); (d) Animation View, playing the animation to show the evolution of the
dynamic graph; (e) Small Multiples View, showing the snapshots of raw graphs in the context of extracted topics (structures) in different time
steps.

ABSTRACT

In dynamic graph visualization and analysis, it is very challenging
to visualize both the overall evolution of trends and the detailed
changes of structures simultaneously. In this work, we propose a
latent Dirichlet allocation (LDA) -based visual exploration method
for dynamic graphs. With the LDA-based analysis, we can reveal
important structures in the dynamic graph based on the extracted se-
mantic topics. To gain a deeper understanding of the derived struc-
tures and their evolution, we propose a visual analytics pipeline
enabling users to interpret and explore the dynamic graph. To ex-
periment with the proposed method, we provide a visual analytics
system to test with real-world data. Our cases on the datasets of
dynamic collaboration network and social communication network
have demonstrated the effectiveness of the proposed method.

Keywords: Dynamic Graph, Latent Dirichlet Allocation, Graph
Structure, Evolution

1 INTRODUCTION

Graphs are ubiquitous in our world, which are commonly employed
to describe relationships between entities. Graphs are featured rela-
tionships in a wide range of scenarios, such as the social network in
Twitter, financial transactions, biochemistry, software engineering,
etc. As the world is evolving, dynamic graphs depict relationships

in our world more vividly and reliably. The evolution of the graph is
reflected by changes of nodes, links, and structures along the time.
By studying such evolution of dynamic graph, we can get a better
understanding of how people relationships change over time, how
certain information spreads within social networks, etc. However,
analyzing the evolution in dynamic graphs is a big challenge due to
the complexity of topological and temporal information.

Researchers have contributed great efforts in visualization and
analysis of dynamic graphs. However, this problem is still far
from fully solved. Animation and small multiples are two basic ap-
proaches directly visualizing the evolution of graph structures [4].
Both of them are difficult for users to relate and compare graphs
of different time steps when the number of time steps becomes
large. More sophisticated analysis methods are proposed for dy-
namic graphs in recent years, such as dimension reduction tech-
niques and clustering approaches [23, 36, 38]. Although they al-
ready have a good emphasis on the overview of the evolution, they
can not directly tell how these evolutions happen. These methods
require users to manually check the original data to find reasons
of the similarity, which is infeasible when the graphs are large or
within a large time range. Therefore, dynamic graph analysis ur-
gently requires the capability to reveal the patterns of evolution,
which could be used to reflect details about the overall trends.

In this work, we proposed a latent Dirichlet allocation (LDA)-
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based visual exploration method, to reveal both the overall patterns,
such as stable patterns, recurring patterns and anomalies, and the
evolution of main structures of dynamic graphs. Our method re-
gards each link as one word and the graph in each time step as a
document. Main structures could be derived as LDA topics, which
involve the temporal patterns in the dynamic graph. To further an-
alyzing the derived topics, we propose a visual analytics system
to enable users to explore the evolutions of the main structures of
the dynamic graph. Our method can not only tell what the overall
patterns are, but also give reasons why such patterns happen based
on the identified main structures. Specifically, our contribution is
listed as followed.

• Proposing a novel technique to adapt LDA model to detect the
main structures in the dynamic graph.

• Analyzing both the evolution of the dynamic graph and the
changes of its main structures simultaneously, reasoning the
patterns and similarity of graphs in different time steps.

• Providing a visual analytics system to facilitate the analysis
of the results of our method, enabling the iterative exploration
of the dynamic patterns.

This paper is structured as follows. In Section 2, we review ex-
isting works in related topics. In Section 3, we present the tech-
nique details of the LDA model as a background. We detail our
motivation, design rationales, LDA settings and analysis pipeline
for dynamic graph analysis in Section 4. Visual analytics workflow
and technique details are presented in Section 5. We demonstrate
the usage of our method in Section 6. Finally, we discuss the limi-
tations of our method and future work.

2 RELATED WORKS

We review existing works that are most related to our method, in-
cluding techniques developed for (1) dynamic graph visualization,
(2) dynamic graph visual analysis and (3) topic model and LDA-
based analysis.

2.1 Dynamic Graph Visualization

To directly visualize the evolution of dynamic graphs, there are
mainly two kinds of approaches, i.e. animation and small multi-
ples. Beck et al. [4] propose a detailed classification and survey on
this topic. The animation technique shows a sequence of graphs
orderly like a movie. There are continuous research works using
animation to explore dynamic graphs [14, 2]. One important chal-
lenge in designing animation is how to preserve users’ mental map.
To solve the problem, Diehl et al. [12] compute a global layout
which makes the positions of nodes in each time step more stable.
GraphAEL [17] also aggregates a sequence of graphs to calculate
a consistent layout. Different from the previous works, equivalent
nodes in different time steps are linked by virtual edges to preserve
the stable layout. To better preserve the stability, Gorochowski et
al. [21] introduce an age-directed approach to adaptively changing
the position of nodes. When updating the graph layout, they not
only consider the local changes of positions of nodes, but also in-
volve their positions in the last layout. Che et al. [9] use a Laplacian
constrained distance embedding method to maintain overall struc-
tures of a sequence of graphs.

Besides maintaining the consistent layout, researchers also in-
vestigate the transition techniques between consecutive steps of the
dynamic graph [2, 20]. For example, Bach et al. [2] use staged tran-
sitions and specifically highlight changes in the graph between time
steps.

Small multiples technique shows the complete sequence of
graphs using static snapshots with juxtaposition [8], superimposi-
tion [13, 15], or the integration of these two methods [35, 37]. Small

multiples provide an overview of the dynamic graph and suitable
for analytical tasks. However, when the sequence is long, it is hard
to show all graphs because the screen space is limited. There are
research works focusing on addressing the challenge of displaying
long-sequence graphs [22, 37].

To take the advantage of both animation and small multiples,
Beck et al. [5] combine the two approaches to show long sequences
of graphs based on Parallel Edge Splatting. To better help users
keep the mental map, DiffAni [34] integrates animation and differ-
ence maps to generate semantic-meaningful small multiples.

Although existing works have employed small multiples and an-
imations for better context map preservations in the dynamic graph,
none of them are developed for visualizing the evolution of the dy-
namic graph and changes of detected main structures simultane-
ously with animation and small multiples techniques. Our paper is
focusing on this issue.

2.2 Dynamic Graph Visual Analysis

Visual analysis methods for dynamic graphs can be divided into two
main categories, i.e. similarity exploration and community analy-
sis. In similarity exploration, researchers focus on the topological
information [42] as well as the multi-variate information [23] of
the dynamic graph. Von Landesberger et al. [42] employ Multi-
dimensional Scaling (MDS) algorithm when analyzing the spread-
ing patterns of contagion. Besides the topological similarity ex-
ploration, Hadlak et al. [23] group nodes and links based on their
associated attributes which are changing over time. Based on the
similarities, Steiger et al. [36] propose visual comparison methods
to find anomaly situation in the dynamic graph. Existing works are
successful techniques in illustrating the similarity in the dynamic
graph. However, none of them can detect multiple representative
structures across multiple time steps, and compare similarities of
graphs based on these structures. More recently, van den Elzen et
al. [38] propose methods of reducing graphs in time steps to points.
They treat the graph in each time step as a high-dimensional vector,
and then uses dimension reduction method to effectively show the
similarity of graphs in the two-dimensional space for comparison.
However, their method only shows an overview of the evolution of
the dynamic graph, but can not give reasons why they are similar or
different, which is the challenge we want to tackle in this work.

Community detection is one important direction in analyzing dy-
namic graphs. A community is defined as a group of nodes with
strong inner-connections and weak inter-connections. Falkowski et
al. [16] detect and show communities over time without analyzing
the evolution of the dynamic graph. Small multiples are frequently
used in the community detection in dynamic network [39, 40].
Vehlow et al. [40] detect the communities and show the evolution
with Sankey diagram. Further to investigate the hierarchical struc-
tures of communities, they propose a series of connected matrices
to visualize the split and merge of the hierarchical community struc-
tures [39]. Different from focusing on the community structure, our
LDA-based method does not require a pre-definition of structures
of interest, which is flexible and suitable for extraction of more gen-
eral structures from dynamic graphs.

2.3 Topic Model and LDA-based Analysis

The topic model is widely used in text analysis to mine hidden se-
mantic structures in a corpus of documents. It also provides a more
reasonable way to measure the similarities between documents at
the high level of semantics instead of the level of words. Landauer
et al. [29] first propose the concept of Latent Semantic Analysis
(LSA) in 1988. In LSA, a latent semantic layer is added between
documents and words. Latent semantics are extracted from the re-
lationship among words to construct semantic space, where docu-
ments are then projected to obtain a sparse representation for fur-
ther analysis. Later, statistic analysis and generative model are in-
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troduced in pLSI/pLSA [25, 26] to solve synonyms and polysemy
problem. Blei et al. [6] propose the concept of topic model and re-
lated LDA model. LDA is a multi-layer Bayesian model, including
three layers, e.g. words, topics, and documents. Each topic is a
mixture of words, while every document is a mixture of topics. By
introducing the Dirichlet distribution, LDA model is able to avoid
over-fitting which pLSA suffers. Afterwards, there are more studies
on the variations of LDA [31].

In text visualization and visual analytics, LDA model is also
widely used. To visualize the evolution of topics along the time,
TIARA [45] encodes the hotness of topics using the width of rivers
in ThemeRiver. TextFlow [11] further uses the metaphor of rivers
to indicate the emerging, vanishing, merging and splitting events in
topic models. LeadLine [43] is also a river-like visualization, but
more emphasized on the bursting to topics hotness. iVisCluster-
ing [30] not only provides various visualization techniques for LDA
model, but also enables users steering of LDA process. Besides ap-
plications in text analysis field, LDA model has been adopted in
computer graphics and computer vision field [44] for various pur-
poses, such as segmentation, classification, pattern recognition, etc.
In the visualization of traffic data, Chu et al. [10] use LDA model to
discover hidden themes from trajectories data. In flow fields anal-
ysis, Hong et al. [27] develop an LDA-based model to measure the
similarities between fields lines in order to identify the meaningful
flow structures.

In graph mining and analysis, there are several works applying
LDA to analyze static graphs. Zhang et al. [46] propose to use LDA
to find communities in large-scale social networks. Henderson and
Eliassi-Rad [24] use LDA model to discover latent groups in large
directed graphs. Different from these previous works, we focus on
the dynamic graph analysis. In a later work from Henderson et al.,
they apply a dynamic version of LDA model to discover the group
in dynamic graphs [32]. In this work, they treat each source node at
each time step corresponds to a document at related time step and
links from this node as words in the document. Different from their
approach, we use a novel definition in the dynamic graph which is
able to identify the evolution of main structures, which can not be
achieved by their methods. Moreover, we integrate a visual ana-
lytics approach to facilitate the evolutionary patterns exploration.
Besides, these works focus on how to employ the LDA model in
graph analysis but ignore how to support users to explore results in
details. From the visual analytics research perspective, to the best
of our knowledge, there are no previous works employing the LDA
technique to analyzing the evolution of main structures in dynamic
graphs.

3 BACKGROUND

To better gain an overview of the problem and our proposed
method, we first give a brief introduction of the LDA model.

Latent Dirichlet allocation (LDA) was first proposed by Blei et
al. [6] to explain why documents are similar from the latent topic
level instead of the word level. The symbols used in this paper are
listed in Table 1. Any document d j is modeled as a mixture of K
topics, while any topic k is characterized by a multinomial distri-
bution φk over vocabulary V . Among all variables, only wi j is ob-
servable, while others like zi j , θ j, and φk are latent variables. LDA
model generates observations of latent variables using the following
process:

1. For every document d j ( j ∈ {1, · · · ,D}), a topic distribution
θ j is drawn from a Dirichlet prior with parameter α .

2. For every topic k (k ∈ {1, · · · ,K}), a word distribution φk is
drawn from a Dirichlet prior with parameter β .

3. For word position i in jth document (i ∈ {1, · · · ,Nj}, j ∈
{1, · · · ,D}), first choose a topic zi j = k from the topic dis-

Symbol LDA GraphLDA
D/T D: Number of documents T : Number of time steps

K Number of topics
V Vocabulary The universal set of links

d j/G j d j: the jth document G j: the jth Graph
Nj Number of words in d j Number of edges in G j

wi j/ei j wi j: the ith word in d j ei j: the jth link in Gi

zi j Topic assignment for word wi j / link ei j

θ j Probability of topics in document d j/graph G j

Θ Vector version of θ j

φk Probability of words in topic k
Φ Vector version of φ j

α Dirichlet prior for θ
β Dirichlet prior for φ

Table 1: Symbols used in this paper. Some symbols in GraphLDA
follow the tradition in graph visualization community, but are listed
with symbols of LDA model for correspondence.

tribution Multinomial(θ j), and then choose a word wi j from
the chosen topic with word distribution of Multinomial(φzi j

).

After the generative process is defined, the total probability of the
model is defined as:

K

∏
i=1

P(φi;β )
M

∏
j=1

P(θ j;α)
N

∏
t=1

P(Z j,t |θ j)P(Wj,t |φZ j,t ),

where W,Z,Θ,Φ denotes the vector version of wi j,zi j,θ j, and φk
respectively. We can use P(W,Z,Θ,Φ;α ,β ) to represent the like-
lihood function above. Then, the model estimation process is to
maximize it by Bayesian inference with parameters α and β . The
widely used Gibbs sampling implementaion [33] can accomplish
one iteration in O(KN) time complexity, where N donates the total
number of words in all documents.

The LDA model can be applied as a document clustering
method. The K topics could be treated as clusters, and the topic dis-
tribution θ j for the document d j denotes the probabilities of mem-
bership to every cluster. A more careful approach is to treat θ j as a
lower-dimensional feature vector for every document, and conduct
further analysis, such as dimension reduction. In our method, both
usages are employed to provide a better understanding of dynamic
graphs from different perspectives.

4 GRAPHLDA

In this section, we first discuss the analysis tasks and rationales for
choosing the LDA approach. Afterwards, we detail our adaption
of LDA model for the dynamic graph analysis. Finally, we de-
scribe our visual exploration pipeline illustrating how to integrate
our method with the interactive visual interface.

4.1 Analysis Tasks

In dynamic graph analysis, it is critical to derive the evolutionary
patterns with the changes of main structures of the graph. It is im-
portant to derive the main structure in each time step to tell the
reasons why graphs are similar in different time steps. Specifically,
our analysis tasks are as follows.

• T1: Overall trends and similarity in different time steps.
Overall trends indicate the general evolutionary patterns of the
dynamic graph. The trends are reflected by the similarities in
the graph of different time steps.

• T2: Evolution of main structures. Besides the overall trends
of dynamic graphs, we need to derive main structures in each
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time step. The derived patterns should consider both structural
and temporal information.

• T3: Important entities and connections in main struc-
tures. Important entities and connections play important roles
in the evolution of main structures. It is important to identify
the backbone of the graphs based on important entities and
connections.

To support the analysis tasks, we need a proper method, which
is able to reveal the insights of dynamic graph.

<           >

<           >

<           >

Document

Word

Topic

Math
English
Education

China
Compete
Education

1.0 0.7 0.7 0.5 1.00.3 0.5 0.3
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Graph in each
time step
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information

Links

Figure 2: Illustration of our dynamic graph LDA model. In our method,
we define a graph in each time step as a document, and a link con-
necting two nodes as a word. The derived topics could represent
the structural information in the dynamic graph.

4.2 Rationales

There are several approaches to seek patterns, including classi-
cal clustering methods, the community detection methods and the
LDA-based methods. First, we state why we do not choose the al-
ternative methods to fulfill the tasks. Afterwards, we tell the reasons
for applying the LDA for the dynamic graph analysis.

• Classical clustering methods It is a common approach to
cluster different nodes in the graph based on their connec-
tions and attributes. Classical clustering techniques, such as
K-Means, hierarchical clustering, DBSCAN, etc., define simi-
larities from the Euclidean distances by treating nodes or links
as high-dimensional points. However, the detected clusters in
each time step are not consistent if we apply it in each time
step separately. In the other aspect, clustering the super graph,
containing the graphs in all the time steps, would lose the
temporal information and it’s not easy to reveal the evolution-
ary patterns. In short, it is difficult to summarize high-level
features (i.e. evolutionary structures) directly from such low-
level similarity definitions (i.e. nodes, links), for they have
already been tightly aggregated in the clustering settings.

• Community detection methods A community is a set of
nodes that have heavy inner connections. There are several
state-of-the-art approaches to detect the dynamic communi-
ties in dynamic graphs. Fortunato and Hric have summa-
rized related approaches in the work [18]. However, com-
munity detection method highly depends on the data only if
the nodes forms communities in the graph. Moreover, the
community is not the only structure we want to analyze in
dynamic graphs. Other structures include backbones, strong
connections or other meaningful features. These structures
together contribute to the comprehensive descriptions of dy-
namic graphs.

In GraphLDA model, we not only identify similar graphs in dif-
ferent time steps, but also aggregate nodes and links into meaning-
ful high-level structures.

These meaningful structures are called topics. With proper defi-
nitions of the document and words, the topics give a top-down way,

i.e. from the aspects of the overall evolution, to understand the pat-
terns, as well as a bottom-up way, i.e. from the aspects of nodes and
links. This dual relationship is an important feature of LDA model,
which can not be achieved by other classical clustering methods and
community detection methods. In the other aspect, the LDA model
can be recognized as a probabilistic clustering technique, which is
fit for nature of dynamic graph data. A graph structure could be
decomposed into multiple meaningful structures. It is usually hard
to obtain clear boundaries between structures. In such situation, the
probabilistic assignment could give more accurate information to
describe multiple structures in dynamic graphs, compared to those
rigid assignments in classical clustering techniques. Considering
these points, we choose to employ LDA model to solve the chal-
lenging tasks of dynamic graphs. However, how to adapt the LDA
model for the dynamic graph analysis is a critical problem. We re-
port our strategies and parameter settings for the GraphLDA in the
next section.

4.3 Adaption of LDA Model for Dynamic Graph Analysis

In this part, we would like to introduce how to employ LDA model
in dynamic graph analysis.

There are three main entities in the LDA model - documents,
words, and topics. It is critical to define proper correspondences
using the entities of the dynamic graph. Since our main goal is
to reveal the evolution of structures in the dynamic graph, we de-
fine the graphs in different time steps as documents, and links in
graphs as the words, as shown in Figure 2. Then the topics in LDA
model correspond certain structures in the dynamic graph, which
could span across multiple time steps. A formal description of the
correspondence between LDA model and our GraphLDA method
is described as follows.

We model a dynamic graph Γ as a sequence of graphs:

Γ = (G1,G2, ...,GT ), (1)

where T is the total number of time steps, and G j represents the

graph in the jth time step. We directly define G j to correspond to
the document d j in the LDA model.

For graph G j, we denote the set of nodes and links as (Vj,E j).
The universal set of nodes is V =

⋃
Vj. The universal set of links

V can be represented as a Cartesian production V ×V , and for each
graph E j ⊆ V . Then we define all links ei j ∈ E j in graph G j as
its words. We should note if a link connecting two nodes exists at
different time steps, their corresponding graphs G j share a same ei j .
By this way, we are able to trace the evolution of graph structures
along the time dimension.

There are alternatives for the word definitions in our adaption of
LDA model. It is possible to define a word as a node, a link, a node
with all its connected links, or a connected subgraph. After careful
consideration, we decide to define a link in our method to be the
equivalent of a word in the LDA model. The main reason is that the
links are better in describing the topological information in graphs.
If we define a node as a word, then only the density and distribution
of nodes in the graph are reflected, but the connection information is
lost. If we choose a node with all connected links as a word, there
would be much more words but with fewer connections for each
word. In the other way, choosing a connected subgraph would lead
to a small number of words and lost details of the inner structure
of the connected subgraphs. Considering all these facts, we finally
made the decision to define links as words.

In addition, we would like to assign the weights of links to the
frequencies of words in each document (graph Gi). The weight of
a link ei j can be derived from its quantitative attributes, as follows:

w(ei j) = a× val(ei j)+(1−a)× imp(ei j) (2)
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Figure 3: The visual analytics pipeline, which includes three parts - preprocessing, topic extraction and visual exploration. With the input of the
document-word matrix, the LDA would output two parts of results - the document-topic distribution and the topic-word distribution. Users can
iteratively explore the LDA results from overview to details within a visual analytics loop.

val(ei j) can directly use attributes of the link in the original data,
while the imp(ei j) is derived from the topological information of
the link in the graph G j . For example, in the author collabora-
tion network, we can define val(ei j) as the times of collaboration
between connecting two authors, and imp(ei j) as the average of de-
grees of its connecting two nodes. We use a to balance these two
factors. We use 0.5 in our case.

With the correspondences defined above, we are able to represent
the graph G j as a set of links E j = {e1, j, ...,eNj, j} with frequencies

w(·). Then, the whole dynamic graph is transformed to a matrix,
where rows and columns represent graphs and links respectively,
and the values of cells donate the frequencies. Such relationship is
exactly fit the original document-word relationships in text analysis.
We feed the graph-link matrix as the input of LDA model. The
output contains a set of K topics, probability distributions of topics
in each graph θ j, and probability distributions of words in each
topic φk. We then donate Θ and Φ as the vector versions of θ j and
φk.

The extracted topics are the meaningful structures of the input
graph. We can understand the extracted topics from two perspec-
tives. On one hand, graph Θ in each time step contains a topic
distribution. We are able to compare graphs G(·) at different time

steps based on their topic distribution θ j . It provides a channel
to explain the similarity of graphs in different time steps. On the
other hand, each topic k contains a word distribution φk. We can
use detailed information of nodes and links to investigate how the
structures evolve along the time dimension. In short, the extracted
topics acts important roles in our GraphLDA model, bridging the
overview and details of the dynamic graph.

Due to the complexity of topics in the context of the dynamic
graph, it is not easy to directly understand the extracted results,
especially the temporal and topological relationship. To facilitate
the understanding of evolution of extracted structures, we present a
visual analytics system to integrate the GraphLDA model with the
interactive exploration.

5 VISUAL ANALYTICS SYSTEM

The visual analytics workflow is shown in Figure 3. It contains
three parts, including data preprocessing, topic extraction, and vi-
sual exploration. The raw dynamic graphs data are preprocessed
through sliding window and transformed with our previous defini-
tions. The graph-link relationships are fed into LDA model to ex-
tract topics. The output includes topic distributions in graphs Θ and
link distributions in topics Φ. In our visual analytics system, we

provide several views to help users explore dynamic graphs with
the LDA outputs. Projection View (Figure 1a) and Topic-Time Ma-
trix View (Figure 1b) are used to analyze the topics from overall
similarity and temporal attributes. Topic View (Figure 1c) provides
the detailed information of nodes and links in the selected topic.
To support drilling down to details, we provide Animation View
(Figure 1d) and Small Multiples View (Figure 1e) to explore how
structures of topics evolve within the original graphs.

5.1 Preprocessing and LDA Model

The preprocessing stage is to prepare the input for the LDA model.
For the input dynamic graph, we use a time window with a width
ω to get graphs within a specific time range. The sets of nodes and
edges in the time range are aggregated. To avoid missing patterns
due to hard boundaries, sliding windows are used and neightboring
windows are overlapped with ε time steps. Both the width of slid-
ing window and overlapping can be adjusted by users with respect
to input datasets. For the derived graphs using sliding windows, we
derive the relationships between graphs and links with our method
mentioned previously. Then we adopt the LDA algorithm with our
input. Users can control the number of topics, and we also pro-
vide estimated values for different datasets. The output of the LDA
contains two parts: probability distributions of topics in graphs Θ,
and probability distributions of words in topics Φ. In the following
sections, we introduce the exploration flow through the proposed
views for analyzing these two parts.

5.2 Dynamic Trend Exploration

As an entrance of the analysis, we provide a Projection View (Fig-
ure 1a) to show the overall evolution of the dynamic graph (T1).

In the view, each point represents a graph in a time step, and two
points are linked if they are in adjacent time steps. The position is
determined by the dimension reduction method. Dimension reduc-
tion is used to analyze the similarity of entities in high-dimensional
space. Therefore, in Projection View, close points indicate that re-
lated graphs are similar. Their effectiveness in the exploration of
dynamic graphs and time series data has been demonstrated [38, 3].
Different from previous works, we project the graphs to points into
two-dimensional space based on the similarity of topic distribution
in each graph θ j. It emphasizes the similarity of the topological
structures, instead of the similarity of raw node-link graphs. We
provide users with multiple choices for the dimension reduction,
including linear projection method Principal Components Analy-
sis (PCA) and Multi-dimensional Scaling (MDS), and non-linear
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projection method t-Distributed Stochastic Neighbor Embedding (t-
SNE).

In the Projection View, if several graphs are very similar, related
points in two-dimensional space would be overlapped which could
obstruct users’ identification. Therefore, we re-position points
with the same position using the Phyllotactic arrangement tech-
nique [41], which is also used in the work [38].

In addition, in order to support users to further investigate corre-
sponding graphs of different time steps, we provide the lasso func-
tion. Using the lasso, uses can select a group of points to check their
topic distributions in Topic-Time Matrix View (Figure 1b), and an-
alyze in which topics they are similar.

5.3 Reasoning about Evolution of Structures

In this stage, users are supported to explore why graphs in different
time steps are similar or dissimilar. To reason about such similarity
and dissimilarity, we provide users two views - Topic-Time Matrix
View (Figure 1b) and Topic View (Figure 1c). Topic-Time Matrix
View presents the probability distribution of topics in graphs Θ.
In the view, each column represents a topic k and each row is the
graph G j in jth time step. In order to show the evolution along
the time dimension, rows are arranged by time order. The opacity
of cells encodes the probability of the ith topic in the graph G j ,
i.e. θi j. Darker cells indicate higher probabilities, and vice versa.
With the Topic-Time Matrix View, we can find dominated topics
in each time step (Figure 1b) as well as multiple topics contribute
at the same time (Figure 7d - Day 4). Therefore, with this view,
we are able to analyze the evolution trends of main structures in
graphs along time, showing more details of the similarities in the
Projection View.

By selecting one topic, users can investigate its detailed struc-
tural information, i.e. nodes and links contained, in the Topic View
(Figure 1c). The structure to be visualized is derived from the prob-
ability distribution of links and connecting nodes in the selected
topic. Node-link diagram is directly used to render the structures,
and the probabilities of links are encoded using opacity. The opac-
ity of links encodes the probability of the ith word in the topic k,
i.e. φki. The links with high probabilities indicate important and
frequent connections in this topic. We also provide the detailed
information, i.e. node name, classes, etc on demand. Users are
allowed to filter out links with low probabilities and related nodes
with low probability by setting a threshold. Thus, users can eas-
ily perceive the main structure in each topic. Besides, users are
supported to lasso a group of nodes in Topic View and check their
temporal evolution using Small Multiples View (Figure 1e).

The exploration step fits the analytics tasks we proposed previ-
ously (T2, T3). We derive the topics, i.e. graph structures, to show
the global trend and its changes along time. We are able to know
in which time steps graphs are similar, and also to tell what exact
structures they share and how they change with time.

5.4 Detailed Exploration

In the detailed exploration, we support users to drill down to inves-
tigate how exact structures evolves along time. We aim to show the
appearance and/or the removal of nodes and links. We provide the
Animation View (Figure 1d) and the Small Multiples View (Fig-
ure 1e) for this purpose (T3).

In the Animation View, we take two strategies to preserve users’
mental map. On the one hand, we initialize the positions of nodes
at each time step by their layout in the last one using the following
equation:

p′t+1(x,y) = b× p′t(x,y)+(1−b)× pt+1(x,y),b ⊆ [0,1], (3)

where b is a parameter indicating the importance of the previous
layout. On the other hand, we employ five stages to transform the

a b c

def

Figure 4: Five stages in animation transition from the layout of the
current time step t to the next one t + 1. (a) The graph layout at
the time step t; (b) Highlight and fade out links to be removed; (c)
Highlight and fade out nodes to be removed; (d) Update nodes and
links; (e) Highlight and fade in nodes to added; (f) Highlight and fade
in links to be added, and finally get the layout at the time step t +1.

layout of the current time step to the next one, including removing
links, removing nodes, updating positions of nodes, adding new
nodes, and adding new links (Figure 4). The effectiveness of such
staged transition has been demonstrated in the work of Marey [19,
20] and GraphDiaries [2].

The animation requires users to memorize graphs in time steps,
which raises cognitive burden for graph comparison. To compen-
sate with this, we provide the Small Multiples View to compare the
structures of topics in multiple graphs of different time steps (Fig-
ure 5). We use different colors to represent different topics. Users
can perceive certain evolutionary patterns, such as emergence, dis-
appearance, morphing, etc., of structures in different time periods.
Those recurring structures can also be observed, as shown in our
case study (Figure 7).

When users find patterns and specific topics of interest in the
detail view, they can highlight them in the overview and explore
the related graphs sharing the patterns. They can also select the
topics in other time periods for continuous exploration. Through
such iterative process, users can finally understand the structural
evolution of the dynamic graph.

In summary, users can explore the results of our LDA-based
method from the overview to details. Overall trends and similar-
ity of graphs in different time steps are visualized in the Projection
View based on dimension reduction (T1). For the evolution of main
structures, it is showed in the Topic-Time Matrix View (T2). At the
same, Topic View is provided for users to explore detail structure in
each topic (T2, T3). With the filter interaction, users are allowed to
identify important nodes and connections in Small Multiples View
and Animation View (T3).

5.5 System Implementation

Our system is built upon three components: a data processing com-
ponent, a server component, and the web interface. The data pro-
cessing component is implemented for data handling and transmis-
sion. We build up a Python framework, supporting the sliding win-
dow, aggregation, and LDA calculation. The server component is
also built with Python, using a Tornado Web Framework, support-
ing the connection of data processing and web data fetching. The
front-end is built up with d3.js [7] within HTML5, using the Back-
Bone and Require.js framework.

6 CASE STUDIES

In this section, we provide two case studies with real-world dy-
namic graphs. One case is using the coauthor graph, while the other
one is the social communication graph.

6.1 Case 1: Dynamic Collaboration Network

The dynamic collaboration network we used here contains papers
published in IEEE VIS (previously named VisWeek) conferences

6
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Figure 5: Small Multiple View, showing the evolutions of the raw data. We can highlight the selected nodes of one topic for different periods.
Three groups formed a large group throughout different years. These dynamic scenarios can be explored from the specific topic.

from 1990 to 2015 [28]. The nodes in the graph represent authors.
A link is added between two authors when they collaborated to pub-
lish a VIS paper. There are in total 4,813 nodes and 14,033 links.
(Figure 1).

Figure 6: The structure of the dominating topic in 1995-1999 with
active researchers and their collaborations highlighted. There are
three connected sub graphs with different behaviors in different time
periods. The detailed could be interactively explored in Figure 5

.

In the preprocessing step, the length of sliding windows ω is set
to three years, and their overlap ε is set to two years. Then we ob-
tain 24 graphs. We set the number of topics K to 10, and run the
LDA algorithm with 2,000 iterations. The results are visualized in
Figure 1. In the projection view, we could observe three clusters
of projected points, which represent different stable periods in the
growth the VIS conference. In the early times of the conference,
the coauthor relations were stable, since the researchers are still in
a small number. Then graph structures changed a lot in the middle
years from 1996 to 2001, which is indicated by the path in the pro-
jection view. We speculate that it was caused by the rise of IEEE In-
foVis, which contributed a lot to the diverse features in those years.
There is also a visible change in the graphs structures around 2005
and 2006, which could be brought by the start of the VAST sympo-
sium. In recent years, the structures are gradually becoming stable,

since more researchers are contributing to the conference consis-
tently.

We further investigate the trend and its change in different peri-
ods in the Structure-Time View (Figure 1b). In the first 10 years,
two main topics dominated. While in recent years, the dominating
topics changed faster, which indicated that main structures of col-
laboration groups are changing faster than before. Further, we could
explore the details of extracted topics. These topics successfully ex-
tracted the main structures of the collaborations of coauthor graphs
in different years. We provide two topics as illustrations. First, we
are interested the dominating topic in 2013-2015 and checked the
details of the topic (Figure 1c). We find the active researchers, e.g.
Hanspeter Pfister, Eduard Gröller, Huamin Qu, Thomas Ertl, etc,
and their collaborations as the backbone of this topic. We select a
subset of nodes (Figure 1c - larger nodes) and highlight them in the
graphs of recent years using small multiples (Figure 1e). We can
find that these authors were becoming more active and had more
collaborations from 2009 to 2015.

Further, we can explore other topics and find evolutionary con-
nection patterns. We investigate the topic that was dominating peri-
ods in 1995-1999. In the Topic View (Figure 6), the links with high
probabilities connect nodes corresponding to authors including Arie
Kaufman, Claudio Silvia, Hansen Charles, Amitabh Varshney, and
Roni Yagel, etc. We select them and their collaborated people for
further exploration. We could observe they are active in different
periods of time (Figure 5). Before 1994, only a small portion of
them published papers, including Arie, Hansen, etc. (Figure 5a). In
1994-1999, we could find the stronger collaborations among them.
For example, Amitabh had more publications with Arie Caufman.
We checked the fact and found that Amitabh joined Stony Brook
to collaborate with Arie Kaufman in 1994. Later, the connections
become wider, and more people involved in the connections (Fig-
ure 5b, c). Afterwards, these people moved to other collaboration
structures in different colors, like Claudio Silva (Figure 5d). Finally
in recent years fewer corresponding nodes were highlighted in the
snapshot (Figure 5e).

In this case, we can observe the general evolutionary patterns
based on the detected topics derived from our GraphLDA method,
and similarities-based dimension reduction results. We can also
generate hypotheses and explore them into details to find the struc-
tural evolution that leads to the change of the overall trends. Using
our system, events, like emerging, dismissing, updating, etc., of
specific groups can be observed at different time steps.

7
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Figure 7: The visual exploration of evolutionary patterns in the social community network. From the projection view (a), we can see a hair-ball
cluster and three groups distributed (G1, G2, and G3). We could examine the similarities and relationship among these days by selecting
different dominating topics in different time periods (b, c, d). In each group, there are several dominating topics (T1-T8) that represent the main
structures at that periods. We could further explore how these patterns distributed in the raw data (e, f). We also identify several subsets of
nodes as interesting structures (P1-P6).

6.2 Case 2: Social Communication Network

The data used is a real-world face-to-face contacts records [1]. It
contains 180 students in the school and the time range is from
November 19 to November 27 in 2012. Specifically, nine days,
including seven weekdays and two days in the weekends are con-
tained. The students belong to 5 classes in the school. Each student
is represented as a node in the graph. Each contact between two
students is recorded by a wearable sensor and can be regarded as
a link. There are 45,047 contacts, among which 10,104 are unique
links. Our goal is to analyze the communication patterns and how
these patterns changed along the time dimension.

In the preprocessing and LDA stage, the length of the sliding
window ω is set to 180 minutes, and the overlap ε is set to 90
minutes. After aggregation, 135 time steps are obtained. We test
different settings of the number of topics K from the range 1 - 20.
To avoid losing expressiveness when K is set too small, or being
interfered with too many details when Kis set too large, we use 8 as
an experienced number. We then run the LDA algorithm with 2,000
iterations. The results are visualized in Figure 7. In the visualiza-

tion settings, we use the triangle shape to indicate the females while
the dot indicates males. We need to note that the color scheme in
the Topic View (Figure 7 T1-T8) is used to represent classes instead
of topics. Because people intended to communicate with students
in the same classes, we regard it as important features to highlight.

In the Projection View (Figure 7a) and Time-Matrix View (Fig-
ure 7b, c, d), we use a specific color mapping in order to show
the periodic behaviors. The white indicates the daytime and the
dark red indicates the night. From the Projection View with a t-
SNE projection (Figure 7a), we could see a hair-ball-like cluster in
the center, which indicates graphs with very similar patterns. By
drilling down to the time information, we find these graphs corre-
spond to the weekday nights and the weekend.

With our approach, we could further tell the evolution of struc-
tures in the left seven weekdays. By brushing the similar regions
around the center ball (Figure 7a), we could observe three groups
of graphs (Figure 7-G1, G2, G3). We report the interactive explo-
ration results here. For each group, we provide a Topic-Time Matrix
View with corresponding dominating topics. Generally speaking,
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we could observe the sequential pattern changes - different topics
dominated in different time periods, as well as periodical patterns.
For example, in G3, the topic T5 structure has recurred. In day 1
and Day 5 (Figure 7b), the connection structures could be grouped
as G1 (Figure 7-G1), topic T6 and T7 share structures that the pur-
ple and green class had strong inner connections (Figure 7-P4).
Moreover, we found that an active person - id 826 was bridging the
communications between these two classes. We could verify our
findings in the detailed raw data shown in the selected small mul-
tiples (Figure 7e). Similarly, in Day 2 and Day 3 (Figure 7c), we
find dominating structures of strong inter-connections of green and
cyan classes in group G2 (Figure 7-G2). The nodes within the green
and cyan classes are tightly connected (Figure 7-P3). By checking
the ground truth, we confirm our findings that these two classes are
in the same group, so that students in these two classes have more
chances to communicate with each other than the left three classes.
By examining the left days - Day 4, 8 and 9 (Figure 7d), we ob-
serve patterns forming the group as G3 (Figure 7-G3). We detect
the recurring patterns in Day 4 and Day 8 with the same dominating
topic T5. We find the two types of communication structures of the
orange class. In topic T1 and T5, nodes are inner-connected tightly
(Figure 7-P1). The second type is an interesting pattern that the
people in the orange classes, acting as hubs of the other four classes
(Figure 7-P2). In Day 4, the patterns happened together with other
structures, which was not easy to decompose such structures from
the original graphs from previous methods.

In this case, we have demonstrated our capability in detecting
semantic meaningful structures. We are also able to illustrate the
evolutionary patterns of dynamic graphs in the context of these
main structures. In the other aspects, we can detect community be-
haviors, inter-community behaviors and connected backbone of the
graphs, which can be applied to the general dynamic graph analysis.

7 DISCUSSION

In this work, we present a novel LDA-based method for analyzing
the evolution of dynamic graph and main structures simultaneously.
We adapt the advanced techniques in topic modeling for visual anal-
ysis of dynamic graphs, with a proper design consideration. Differ-
ent from the existing works that investigate global similarity and
patterns in the dynamic graph, our methods can further allow users
to explore the evolution of main structures in graphs. Moreover, the
extracted topics represent certain semantic structures and temporal
information in the dynamic graphs as shown in our case studies. We
provide visual analytics tools to trace how such semantic structures
evolve, such as the add or removal of nodes and links. The semantic
structure is a more general concept compared with the concept of
community, which is already widely studied. For example, in our
first case study, we could discover how the InfoVis-related authors
and collaborations emerged in the IEEE VIS conference. While the
community detection methods could hardly identify the whole life-
time, especially the very beginning when InfoVis community is not
well formed. As a whole, our LDA-based analysis method shows a
great of potential in our case studies.

However, there are some limitations in our method. One issue is
the parameter setting in LDA model. Currently, we allow users to
manually set the number of topics for each dataset. We would like
to further adapt automatic suggestion methods to set the number
of topics. In the other aspect, LDA model is based on stochastic
process. With the same input and parameter settings, the output
would be slightly different. Currently, to support the stable analysis,
we record the LDA results thus users can reproduce the previous
findings in the same settings. Moreover, our model can leverage
new advanced LDA techniques in the future.

It is a first trial to analyze the dynamic graph with the LDA
method in visual analytics. By comparing the methods of classic
clustering and community detection, we summarized the advan-

tages for using LDA to analyze the dynamic graph. We have learned
lessons in the design process. The advantages of LDA are that ex-
tracted topics could represent the structure information considering
the temporal information and the probability description naturally
fits the attributes dynamic graph. We have tested several candidates
for the documents and words, and finally chosen the current ap-
proach. The key issue is to make the mapping from graph concepts
to LDA entities be interpretable. Using graphs in each time step as
documents and links as words is reasonable, because the extracted
topics can represent structures in the dynamic graph. Other trials
fail because they lost structural information or the extracted topics
are not interpretable. Thus users can not understand what are the
representative structures.

8 CONCLUSION AND FUTURE WORK

In this work, we present a novel LDA-based visual exploration
method for analyzing the dynamic graph. Taking considerations
of the structural information and temporal information, we are able
to extract the main structures and analyze the evolution of dynamic
graphs, such as stable states, recurring states, and outlier. We pro-
vide a visual analytics system supporting the LDA-based visual ex-
ploration. The system supports users to explore the evolution of
dynamic graph with the changes of the main structures. With the
two case studies of real-world datasets, we have demonstrated the
capability of our method.

Though powerful and inspiring, we can still improve our method
from the following perspectives. First, we would like to update the
mapping method when employing LDA model in dynamic graph
analysis. On one hand, we would consider nodes’ attributes when
calculating the weight of links, which is the input of LDA model.
On the other hand, to gain semantic structures, it is useful to con-
sider more topological information in our method, such as between-
ness, centrality and so on. We plan to evaluate our methods with
such quantitative attributes in the future. On the one hand, users
can analyze the evolution of the dynamic graph based on the proba-
bility distribution of topics in graphs. However, it is still a challenge
to represent the topic probability distribution of links in the origi-
nal graphs. Currently, we only assign node color based on the topic
with highest probability value it had, which might lose information.
We envision for improving that in the future.
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